Gd_2O_3掺杂HfO_2高k栅介质的制备与击穿特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着CMOS集成电路按照摩尔定律的快速发展,器件的特征尺寸已进入了纳米量级,传统的SiO2栅介质厚度减小会导致很高的隧穿电流,已不能用于纳米CMOS器件的制备,需要采用具有较高介电常数的(高k)栅介质薄膜替代SiO2。目前,高k栅介质材料(HfSiON)已经用于45 nm和32 nm技术节点集成电路,然而仍不满足下一代集成电路的要求,需要寻找新的高k栅介质材料,作为具有较大应用前景的高k材料HfO2,由于其结晶温度较低,抑制氧扩散的能力较差,需要对其进行改良,Gd2O3具有良好的热稳定性以及较大的带隙宽度,且能有效地抑制氧的扩散,本文采用Gd2O3掺杂HfO2的方法对其进行改良。
     1.采用磁控溅射方法,在不同的掺杂功率下制备了多种Gd203掺杂HfO2(GDH)高k栅介质薄膜,研究了掺杂功率与GDH薄膜电学性能的关系,掺杂功率为20 W时,电学性能最优,主要原因是Gd的电负性比Hf的大,对O离子的吸附能力强,能有效地抑制氧的扩散,减少了氧空位的缺陷密度,从而降低了漏电流密度,并且使C-V曲线向左漂移现象减弱。研究了N2中快速热处理工艺(RTP)对GDH-20(掺杂功率为20W)栅介质薄膜电学性能的影响,GDH-20最佳的快速热处理温度为700℃,C-V曲线的回滞窗口宽度会随着RTP温度的升高逐渐减小,并且积累区到耗尽区的过渡变得平缓。高的RTP温度使GDH-20/Si的界面得到更进一步钝化,减少了界面态密度,降低了界面处的负电荷积累,此外,N在高温下更易与GDH-20中的氧空位结合,降低了氧空位密度,使得C-V曲线发生正向偏移。
     2.分析了GDH-20薄膜的成分及结构,Gd203在GDH-20薄膜中的掺杂量为10mol%,并且在GDH-20/Si界面处产生了硅酸盐,HRTEM分析表明GDH-20薄膜结构为非晶,并且与纯HfO2相比,界面层厚度明显减小,说明通过Gd203的掺杂能有效降低氧在GDH-20栅介质中的扩散。
     3.研究了GDH-20薄膜的击穿特性,GDH-20的TDDB的软击穿是由于栅介质中的电荷积累造成的,栅压越大,击穿电量反而越小,软击穿后GDH-20栅介质的介电性能仍然良好。与施加在GDH-20上脉冲方波电压的测试结果相比,同等大小的栅压下,脉冲电压发生击穿的时间与电荷量均比直流栅压的大,这是由于氧化层的损伤自修复和脉冲应力分散造成的。GDH-20经受硬击穿后,栅介质漏电流显著上升,电容急剧下降,栅介质的介电特性变差,这主要是由正电荷的积累造成的。此外,研究了工作温度对GDH-20薄膜击穿性能的影响,GDH-20薄膜在100℃以下均能保持良好的介电性能,说明其具有较强的抗热击穿能力。
     综上可见,在Si(001)衬底上生长的非晶GDH栅介质可以作为高k栅介质应用的候选材料。
With the rapid development of Complementary Metal-Oxide-Semiconductor (CMOS) integrated circuit according to Moore's law, the device feature size will be reduced into the nanometer scale, decreasing of thickness of SiO2 gate causes dielectric high leakage current. It is necessary to find new gate materials with high dielectric constant to replace SiO2. The high-k gate dielectric material (HfSiON) has been used for 45 nm and 32 nm technology nodes, but still cannot meet the requirements of next-generation integrated circuits, it needs to find a new high-k gate dielectric material. HfO2, as a good promising high k material, can not be directly used for integrated circuits due to its low crystallization temperature and poor ability of preventing the oxygen diffusion. We selected Gd2O3 to dope in HfO2 for improving the properties of pure HfO2 gate dielectric due to its good thermalstability, larger band gap and effective prevention of oxygen diffusion.
     1. We prepared Gd2O3 doped HfO2 (GDH) high-k gate dielectric films under a variety of doping power by magnetron co-sputtering. The relationship between different doping power of Gd2O3 and the electrical properties of the GDH films was studied. The best electrical properties appeared when the doping power was 20 W. The relationship between the rapid thermal process (RTP) in N2 and the electrical properties of GDH-20 (doping power of 20W) gate dielectric films has been studied. The best RTP temperature was 700℃for GDH-20 films. With the RTP temperature increasing, the width of hysteresis windows of C-V curves was gradually decreased and the depletion region from the accumulation to the transition became smooth. GDH-20/Si interface has been further passivated under high RTP temperature, and the interface state density and the accumulation of negative charges were reduced. In addition, oxygen vacancies can be combined by N easily in high RTP temperatures, leading to a reduction of the oxygen vacancy density.
     2. We have analyzed the composition and structure of GDH-20 film. The doping content of Gd2O3 in GDH-20 film was 10mol%, there was silicate generated at the GDH-20/Si interface. The amorphous GDH-20 film was revealed by HRTEM, and the interface layer thickness was significantly reduced compared with pure HfO2, indicating the effective prevention of oxygen diffusion in the GDH gate dielectric by doping Gd2O3
     3. Breakdown properties of GDH-20 high k dielectrics have been studied. GDH-20 gate dielectric maintained good dielectric properties after SBD (soft breakdown). QBD (the charges when breakdown) reduced with the gate voltage increasing. The tBD (time of breakdown) and QBD of breakdown under square wave pulse voltage for GDH-20 dielectric were larger than the case of DC voltage breakdown, due to the self-reparation of GDH-20 film and the dispersion of the pulse stress. The leakage current density increased significantly, while the capacitance density decreased sharply after hard breakdown (HBD). The dielectric properties of GDH-20 gate dielectric deteriorated because of the accumulation of positive charges. In addition, we have studied the effects of the working temperature on GDH-20 film breakdown charactors. GDH-20 thin films maintained good dielectric properties when the work temperature was 100℃
     In summary, the amorphous GDH high-k gate dielectrics grown on Si (001) substrates can be used as candidate for high-k gate dielectric applications.
引文
[1]许高博,徐秋霞.先进的Hf基高k栅介质研究进展[J],电子器件,2007,4:1194-1199
    [2]黄如,张国燕,李映雪,张兴. SOICMOS技术及应用[M],第一章.北京:科学出版社,2005
    [3]张雪锋.高k栅介质SiGe MOSFET迁移率模型及制备工艺研究[D],华中科技大学,2008
    [4]李杰.高介电复合材料电学性能研究[D],上海交通大学,2003
    [5]杨智超.高k栅介质材料的研究进展[J],赤峰学院学报:自然科学版,2008,4:1-9
    [6]陈伟,方泽波,谌家军.非晶ErAlO高k栅介质薄膜的制备及性能研究[J],电子元件与材料,2010,1:28-31
    [7]陈刚,王迅.呼之欲出的新一代MOS栅极电介质材料[J],物理,2000,7:388-392
    [8]屠海令,杜军.高介电常数栅介质的性能及与硅衬底间的界面稳定性[J].稀有属,2007,3:265:278
    [9]Tu Hailing(屠海令)and Jun Du, High dielectric constant materials and their application to IC gate stack systems [J], Journal of Guandong Non-ferrous Metals, (2005) V15:42
    [10]http://www.itrs.net
    [11]魏峰,不同衬底上铪基稀土氧化物高k栅介质的 生长与性能研究[D],博士学位论文,北京有色金属研究总院,2006
    [12]D. L. Critchlow, Mosfet scaling-the Driver of VLSI Technology [C], Proc. IEEE, 1999(87):659-667
    [13]J. S. Kilby, Invention of the Integrated Circuit [J], IEEE Trans. Electron Devices, vol. 23, pp.648-654, July 1976
    [14]丁艳芳.特种SOI材料及相关技术研究[D],华东师范大学,2007
    [15]李驰平,王波,宋雪梅,严辉.新一代栅介质材料——高k材料[J],材料导报,2006,2:17-20
    [16]任杰,陈玮,卢红亮等.Zr02在Si(100)-2×1表面原子层淀积反应机理的密度泛函理论研究[J],化学学报,2006,11:1133-1139
    [17]谷志刚,退火处理对LaAlO_3薄膜微结构及性能的影响[D],南京航空航天大学,2008
    [18]杨红官,朱家俊,喻彪等.堆叠栅介质MOS器件栅极漏电流的计算模型[J],微 电子学,2007,5:636-639
    [19]Wilk G D,Wallace R M,Anthony J M.High-K gate dielectric; Current status and materials properties considerations[J].J.Appl.Phys,2001,89:5243
    [20]郭得峰,氧化铝基高k栅介质薄膜的制备和性能研究[D],兰州大学,2005
    [21]廖翠萍,超薄栅氧化层的TDDB特性与寿命评估[D].西安电子科技大学,2007
    [22]周涛.HfO2栅介质的表面界面特性研究[D],西安电子科技大学,2009
    [23]GD.Wilk,R.M.Wallace and J.M.Anthony, High-k gate dielectrics:Current Status and Materials properties considerations[J], Journal of Applied Physics,2001(89):5243-5275
    [24]H.Wong, YC. Cheng, Generation of interface states at the silicon/oxide interface due to hot-electron injection[J], J. Appl. Phys.1993,74(12)7364
    [25]李强,ALD方法制备的超薄HfO2材料的电学特性[D],西安电子科技大学,2009
    [26]蔡苇,符春林,陈刚.高k栅介质材料的研究进展[J],半导体技术,2007,2:97-100
    [27]L Khomenkova, X Portier, J Cardin and F Gourbilleau, Thermal stability of high-k Si-rich HfO2 layers grown by RF magnetron sputtering[J], Nanotechnology,2010,21, (28), p5707
    [28]J. P. Changand Y.-S. Lin Thermal stability of stacked high-k dielectrics on silicon[J], Applied Physics Letters.2001,79:3824
    [29]P. Darmawan, P. S. Lee, Y. Setiawan, J. C. Lai, P. Yang, Thermal stability of rare-earth based ultrathin Lu2O3 for high-k dielectrics[J], J. Vac. Sci. Technol. B 2007,25(4):1203
    [30]薛原,徐赛生,董琳等,高介电常数HfO2栅介质的制备及性能[J],半导体技术,2009,2:127-130
    [31]杨雪娜.掺镧(钐)Bi2Ti207薄膜的制备及其性能研究[D],山东大学,2005
    [32]王祖敏.高介电常数栅介质薄膜的紫外光诱导化学气相沉积生长与界面特性研究[D],中国科学技术大学,2005
    [33]K. Kitaa and A. Toriumi, Origin of electric dipoles formed at high-k/SiO2 interface. Applied Physics Letters,2009,94,132902
    [34]K. B. Chung, G. Lucovsky, W. J. Lee, M.-H. Cho, and H. Jeon, Instability of incorporated nitrogen in HfO2 films grown on strained Si0.7Ge0.3 layers[J]. Applied Physics Letters,2009,94,042907
    [35]C.Wang, Y. Jin, D. Zhang, J. Shao, Z. Fan, A comparative study of the influence of different post-treatment methods on the properties of HfO2 single layers[J]. Optics and Laser Technology,2009,41(5):570-573
    [36]J.S. Park, J. K. Jeong, Y. G. Mo, S. Kim, Impact of high-k TiOx dielectric on device performance of indium-gallium-zinc oxide transistors[J], Applied Physics Letters,2009,94, 042105
    [37]D. Brassard, and M. A. E. Khakani, Plused-laser deposition of high-k titanium silicate thin films[J], J. Appl, Phys.2005,98,054912
    [38]H.S.Craft, R.Collazo, Z.Sitar. Molecular beam epitaxy of Sm2O3, Dy2O3, and Ho2O3 on Si(111)[J], J.Vac.Scl.Technol,24(2006),2105-2110
    [39]Visokay MR, Chambers J, J, Rotondaro ALP, Shanware A, Colombo L, Application of HfSiON as a gate dielectric material [J], Applied Physics Letters,2002(80):3183-3185
    [40]H.Y.Yu, et al., Robust HfN metal gate electrode for advanced MOS devices application [J], VLSI Technology,2003:151
    [41]杨红,康晋峰,韩德栋等.Al2O3高k栅介质的可靠性[J].半导体学报,2003,24(9),1005~1008
    [42]杨红.高K栅介质可靠性研究[D],北京大学,2005
    [43]王玉强. Ti-Al-O和Ba,x Sr,1-x TiO,3高介电常数薄膜的制备及性能[D],河北大学,2010
    [44]孙以材。半导体测试技术[M]。北京:冶金工业出版社,1984:405-444
    [45]吴自琴,王兵.薄膜生长,第十四章.北京:科学出版社,2001
    [46]季梅.氧化钆掺杂对氧化铪高K栅介质氧空位抑制作用及电学性能研究[D].北京:北京有色金属研究总院,2010年
    [47]李璠.硅基ZnO薄膜的生长及ZnO:H薄膜的特性研究[D],南昌大学,2007
    [48]刘瑞鹏,李刘合.磁控溅射镀膜技术简述,科技前沿,2006,8:56-59
    [49]张志刚.磁控溅射法制备Mg_xNi_ (1-x) O薄膜及其表征[D],山东大学,2006
    [50]王成刚,韩德栋,HfO2高k栅介质漏电流机制和SILC效应[J],半导体学报25(2004),841
    [51]P.C.Joshi and S. B. Krupanidhi. Rapid thermally processed ferroelectric Bi4Ti3O2 thin films [J]. J. Appl. Phys.,1992,72:5827
    [52]Mohammad Shahariar Akbar, B.S.E.E, M.S.E.E. Process development, characterization, transient relaxation, and reliability study of HfO2 and HfSixOy gate oxide for 45nm technology and beyond[D], Austin:The University of Texas at Austin,2005
    [53]李晶.超深亚微米PMOSFET的自愈合效应[D],西安电子科技大学,2006
    [54]X. J. Wang, L. D. Zhang, et al. Effects of postdeposition annealing on the structure and optical properties of YOxOy films [J]. J. Phys. Lett.,2008,103:064101
    [55]李文静.钛酸铋铁电薄膜的改性研究[D],电子科技大学,2009
    [56]Wilk G D, Wallace R M, Anthony J M. J. Appl. Phys.,2001,89:5243
    [57]Chang C-H, Chiou Y-K, Chang Y-C, Lee K-Y, Lin T-D,Wu T-B,Hong M, Kwo J. Appl. Phys. Lett.,2006,89:242911
    [58]王卓.钛酸铋钠基铁电薄膜的制备及相关刻蚀工艺的研究[D],山东大学,2003
    [59]刘涛,李天博,赵永刚等.Ag与YBa2Cu3O7—δ超导薄膜接触电阻的研究[J],低温物理学报,2000,22(4)
    [60]常春荣.磁控溅射制备Sb-ZnO薄膜及其性能研究[D],南京航空航天大学,2006
    [61]吴海平,徐静平,李春霞.一种新型的6H—SiC MOS器件栅介质制备工艺[J],固体电子学研究与进展,2005,1:56-59
    [62]李宗林.小尺寸MOS器件栅极漏电与软击穿特性研究[D],华中科技大学,2007,p:12
    [63]季峰,徐静平,张洪强等. HfTiO氮化退火对MOS器件电特性的影响[J],固体电子学研究与进展,2008,3:330-333
    [64]蔡乃琼,刘红侠.新型HfO2栅介质电特性的理论分析与实验研究[J],西安电子科技大学学报,2008,3:513-516
    [65]M.J. Guittet, J.P. Crocombette, M. Gautier-Soyer, Phys. Rev. B 63 (2001) 125117
    [66]Xiaolei Wang, Kai Han, Wenwu Wang, Xueli Ma, Dapeng Chen, Jing Zhang, Jun Du, Yuhua Xiong, and Anping Huang. Appl. Phy. Lett.97 (2010) 062901
    [67]胡恒生,张敏,林立谨.TDDB击穿特性评估薄介质层质量.电子学报,2000,5:80~83
    [68]Miranda E, Sune J. Electron transport through broken down ultra-thin SiO2 layers in MOS devices. Microelectronics Reliability,2004 (44):1-23
    [69]Miranda E, Sune J, Rodriguez R, et al. Soft Breakdown Conduction in Ultrathin (3-5 nm) Gate Dielectrics. IEEE Transactions on Electron devices,2000,47:82-89
    [70]范焕章,王刚宁,张蓓榕等.脉冲和直流应力下栅氧化膜击穿特性的差别,华东师范大学学报(自然科学版),1998(1):50~54