复杂装备系统开发方法研究与实践
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统产品设计主要以大规模制造产品为样本,其理论和技术不能适用于高价值、高技术、高成本和高顾客定制化的大型资本品的设计创新活动。复杂装备系统(简称CoES系统)开发面临的困难和挑战与一般大规模制造的产品所面临的有显著差别,必须为其建立新的理论技术体系,这也是本论文的研究目标。论文主要理论贡献有:1)界定了CoES系统进概念;2)创建了一个CoESEPM过程模型;3)建立了支持CoES系统开发的三大技术体系,包括CoESRM技术体系、CoESAM技术体系和CoESPE技术体系;冲压件测量机(SMM)开发实例验证说明,论文的研究成果将对CoES系统的开发具有理论上的指导意义和工程上的现实意义。本论文全文共分七章,其主要内容和观点如下:
     第一章的主要贡献是通过研究CoES系统的产品相关特征、创新相关特征、技术相关特征、生产相关特征和市场相关特征,界定了CoES系统(Complex Equipment System,简称CoES)的概念。论文明确了CoES系统是一类大型、复杂且昂贵的、通常单件小批生产的特殊产品,研发与生产没有明确区分。其典型特征决定了CoES系统开发的理论和技术手段应着重解决其开发过程的可体验性问题,提高开发结果的“一次成功率”。
     第二章主要贡献是针对CoES系统的典型特征,建立了CoES系统开发中的体验式过程模型(an Experiential CoES Development Process Model,简称CoESEPM模型)。CoESEPM模型是建立在传统产品开发方法基础之上的,充分考虑CoES系统的开发特点,体现出可体验性、可迭代性和强调数字化支持的特点。CoESEPM模型也体现出阶段性,论文将其划分为CoESEPM模型的反求工程阶段、CoESEPM模型的再设计开发阶段和CoESEPM模型的再设计实施阶段等三个阶段。
     第三章的主要贡献是建立了支持CoESEPM模型的CoESRE技术体系,即CoES开发中的反求工程技术方法体系(Reverse Engineering in the CoES Development,简称CoESRE技术)。CoESRE技术由CoESRE的拆解技术、CoESRE的CAD模型重构技术和CoESRE的快速原型制造技术构成,主要解决CoES系统开发中的对已有产品(标杆产品)的设计思想和结构的逆向工程问题。
     第四章的本章的主要贡献是建立了支持CoESEPM模型的CoESAM技术体系,即CoES开发中的装配成型技术方法体系(Assembly Modeling in the CoES Development,简称CoESAM技术)。CoESAM技术体系主要由CoESAM的信息输入技术、CoESAM的信息输出技术以及CoESAM的实施方法组成。CoESAM技术可以实现在设计阶段就对CoES系统的可装配性分析和评价。
     第五章的本章的主要贡献是建立了支持CoESEPM模型的CoESPE技术体系,即CoES开发中的产品体现技术方法体系(Product Emboding in the CoES Development,简称CoESPE技术)。CoESPE技术体系主要由装配过程的CoESPE技术、工作过程的CoESPE技术、控制过程的CoESPE技术、加工过程的CoESPE技术、运动学的CoESPE技术和动力学的CoESPE技术构成。
     第六章的本章的主要贡献是以SMM(冲压件测量机)为实例,验证了本论文提出的CoESEPM模型及其支撑技术体系CoESRE技术、CoESAM技术和CoESPE技术的可行性,并给出了相关技术的实施过程和方法。实践证明了本文提出的CoESEPM模型和三大设计技术体系在理论上是可行的以及在工程上是实用的。
     第七章,总结与展望。对本论文全文内容总结,创新点归纳以及今后研究难点重点问题的展望。
The overall product is designed to be mass-produced product as a sample, and its theory and technology cannot be applied for innovations of large-scale capital goods, which have a high value, high-tech, high cost and high customer customization features. Problems and challenges for development of Complex Equipment Systems (CoES) are significantly different from large-scale manufacturing products, and a new theory and technology system must be established. It is also the research objective of this thesis. The theoretical contributions of this thesis are that the concept of complex equipment system has been defined, and a experiential process model in the CoES development (CoESEPM), and three technology systems for the CoES development, including Reverse Engineering in the Development of Complex Equipment Systems (CoESRE), digital Assembly molding in the Development of Complex Equipment Systems (CoESAM) and Product Emboding in the Development of Complex Equipment Systems (CoESPE),have been established in this thesis. Research achievements of this thesis will have a theoretical significance and practical significance of engineering. This thesis is divided into seven chapters, the main content and opinions are as follows.
     The principal contribution of ChapterⅠis which has defined the concept of Complex Equipment System with the related characteristic in product, innovation, technology, production and market, this thesis has been firstly defining the concept of CoES. CoES is clearly a superior product that it is large, complex and expensive and it is manufactured in single-piece and there is no clear distinction between development and production for CoES. For typical CoES characteristic, a CoES development process should focus on experiential, so as to improve the success rate of the development results.
     The foremost contribution of ChapterⅡis which has created an experiential process model in the CoES development, focusing on the archetypal characteristic of CoES. The CoESEPM model is experiential, iteration and digital; CoESEPM model classified CoES development process as three stages, including reverse engineering phase, redesign development phase and the redesign implementation phase. Then, focusing on the task for each phase, this thesis in the chapterⅢ,ⅣandⅤhas established CoESRE technology, CoESAM technology and CoESPE technology.
     The highest contribution of ChapterⅢis which has established Reverse engineering technology systems in the CoES development. CoESRE, including the disassembly, CAD model reconstruction in reverse engineering and rapid prototyping manufacturing in Reverse Engineering, mainly solves the problem for reverse engineering of the design and structure in CoES development of existing products (benchmarking products).
     The core contribution of ChapterⅣis which has established an assembly molding technology system in the CoES development. CoESAM, mainly including the information input and information output in the assembly molding process, can give an analysis and evaluation for the CoES Assembly before manufactured
     The principal contribution of ChapterⅤare which has established a product embodying technology systems in the CoES development. CoESPE, including product embodied in the assembly simulation, product embodied in the kinematics simulation, product embodied in the dynamics simulation, product embodied in the work simulation, product embodied in the control simulation, product embodied in the manufacturing simulation, can complete simulation for the variety of CoES performance, so as to to optimize performance and improve the design quality for CoES.
     The core contribution of ChapterⅥare which has practiced the CoES development process. With the CoESEPM model and the CoESRE, CoESAM and CoESPE technology, this thesis has given a development process of a stamping measuring machine and an implementation process in UGNX, ADAMS and ANSYS software. The practice has proved that the CoESEPM model and three technologies in this thesis is feasible in theory and practical in the engineering.
     ChapterⅦis a summary and outlook. A summary of the full text of this thesis, key innovations and future prospects of research difficulty has been provided.
引文
[1]ROSENBERG N. Perspectives on technology [M]. Cambridge Univ Pr,1976.
    [2]国务院.国务院,关于振兴装备制造业的若干意见[M].2006.
    [3]国务院.装备制造业调整和振兴规划[M].北京;新华网.2009.
    [4]HOBDAY M, RUSH H. Technology management in complex product systems (CoPS)-ten questions answered [J]. International Journal of Technology Management,1999,17(6): 618-38.
    [5]KASH D E, RYCOFT R W. Patterns of innovating complex technologies:a framework for adaptive network strategies [J]. Research Policy,2000,29(7-8):819-31.
    [6]董必钦.我国重大技术装备发展战略思考(上)[J].中国机电工业,2004,(5):11-3.
    [7]董必饮.我国重大技术装备发展战略思考(中) [J].中国机电工业,2004,(6):41-3.
    [8]董必饮.我国重大技术装备发展战略思考(下)[J].中国机电工业,2004,(7):18-21.
    [9]BALACHANDRA R, FRIAR J H. Factors for success in R&D projects and new product innovation:a contextual framework [J]. Engineering Management, IEEE Transactions on, 1997,44(3):276-87.
    [10]WANG Q, VON TUNZELMANN N. Complexity and the functions of the firm:breadth and depth [J]. Research Policy,2000,29(7-8):805-18.
    [11]杨志刚,吴贵生.复杂产品的创新及其管理[J].研究与发展管理,2003,15(3):32-7.
    [12]MONTOYA-WEISS M M, O'DRISCOLL T M. From experience:applying performance support technology in the fuzzy front end [J]. Journal of Product Innovation Management, 2000,17(2):143-61.
    [13]COOPER R G, KLEINSCHMIDT E J. What makes a new product a winner:Success factors at the project level [J]. R&D Management,1987,17(3):175-89.
    [14]KOEN P, AJAMIAN G, BOYCE S, et al. Fuzzy front end:effective methods, tools and techniques [J]. The PDMA toolbook for new product development,2002,5-35.
    [15]吴建运,周良毅.企业技术创新风险分析[J].科研管理,1996,17(3):34-8.
    [16]HOBDAY M. Product complexity, innovation and industrial organisation [J]. Research Policy,1998,26(6):689-710.
    [17]HANSEN K L, RUSH H. Hotspots in complex product systems:emerging issues in innovation management [J]. Technovation,1998,18(8-9):555-61.
    [18]童亮.复杂产品系统创新项目风险识别评估、动态模拟与调控研究[D].杭州;浙江大学,2004.
    [19]PRENCIPE A. Technological competencies and product's evolutionary dynamics a case study from the aero-engine industry [J]. Research Policy,1997,25(8):1261-76.
    [20]KODAMA M. Project-based Organization in the Knowledge-based Society [M]. Imperial College Pr,2007.
    [21]KARKKAINEN H, PIIPPO P, TUOMINEN M. Ten tools for customer-driven product development in industrial companies [J]. International journal of production economics, 2001,69(2):161-76.
    [22]ALTSHULLER G. TRIZ The innovation algorithm; systematic innovation and technical creativity [J]. Technical Innovation Center Inc, Worcester, MA,1999,
    [23]WEBB A. TRIZ:an inventive approach to invention [J]. Engineering Management Journal, 2002,12(3):117-24.
    [24]SUH N P. Axiomatic design [M]. Oxford university press,2001.
    [25]SUH N P. Axiomatic design of mechanical systems [J]. Journal of Vibration and Acoustics, 1995,117(2.
    [26]SUH N P. Axiomatic design theory for systems [J]. Research in Engineering Design,1998, 10(4):189-209.
    [27]SUH N P. Axiomatic Design:Advances and Applications (The Oxford Series on Advanced Manufacturing) [J].2001,
    [28]AKAO Y. Quality function deployment:integrating customer requirements into product design [M]. Productivity Pr,2004.
    [29]AKAO Y, MAZUR G H. The leading edge in QFD:past, present and future [J]. International Journal of Quality & Reliability Management,2003,20(1):20-35.
    [30]AKAO Y. QFD:Past, present, and future, F,1997 [C].
    [31]TAKEDA H, VEERKAMP P, YOSHIKAWA H. Modeling design process [J]. AI magazine, 1990,11(4):37.
    [32]REICH Y. A critical review of general design theory [J]. Research in Engineering Design, 1995,7(1):1-18.
    [33]HOOVER S P, RINDERLE J R, FINGER S. Models and abstractions in design [J]. Design Studies,1991,12(4):237-45.
    [34]GRABOWSKI H, LOSSACK R S, EL-MEJBRI E F. Towards a universal design theory, F, 1999 [C]. Kluwer Academic Publishers.
    [35]LAU H, MAK K, LU M. A virtual design platform for interactive product design and visualization [J]. Journal of Materials Processing Technology,2003,139(1-3):402-7.
    [36]RIFAI S M, BUELL J C, JOHAN Z, et al. Automotive design applications of fluid flow simulation on parallel computing platforms [J]. Computer methods in applied mechanics and engineering,2000,184(2-4):449-66.
    [37]STRATTON R, MANN D. Systematic innovation and the underlying principles behind TRIZ and TOC [J]. Journal of Materials Processing Technology,2003,139(1-3):120-6.
    [38]JUANG Y S, LIN S S, KAO H P. Design and implementation of a fuzzy inference system for supporting customer requirements [J]. Expert Systems with Applications,2007,32(3): 868-78.
    [39]CHEN C H, KHOO L P, YAN W. Evaluation of multicultural factors from elicited customer requirements for new product development [J]. Research in Engineering Design,2003,14(3): 119-30.
    [40]RUNHUA T. The conceptual design of a fast clasping mechanism based on function means tree and TRIZ [M].
    [41]TAN R, KRAFT D. A conceptual design methodology for variety using TRIZ and QFD; proceedings of the ASME 2002 International Design Engineering Technical Conference, Canada, F,2002 [C]. ASME.
    [42]SRINIVASAN R, KRASLAWSKI A. Application of the TRIZ creativity enhancement approach to design of inherently safer chemical processes [J]. Chemical engineering and processing,2006,45(6):507-14.
    [43]CHANG H T, CHEN J L. The conflict-problem-solving CAD software integrating TRIZ into eco-innovation [J]. Advances in engineering software,2004,35(8-9):553-66.
    [44]C. Z O. Multidisciplinary robust design optimized of an internal combustion engine [J]. Mechanical design,2003,125(1):124-31.
    [45]MECOY R. Target cascading in optimal system design [J]. Mechanical design,2003,125(4): 474-82.
    [46]GU X, RENAUD J E, ASHE L M, et al. Decision-based collaborative optimization [J]. Journal of Mechanical Design, Transactions of the ASME,2002,124(Compendex):1-13.
    [47]宋慧军,林志航.机械产品概念设计多层次混合映射功能求解框架[J].机械工程学报,2003,39(5):82-7.
    [48]张国全,钟毅芳,何海.基于功能推理机制研究复杂机械产品的概念设计[J].机械工程学报,2003,39(4):19-24.
    [49]邹光明,胡于进,肖文生.基于功能基的产品概念设计模型研究[J].中国机械工程,2004,15(3):206-9.
    [50]姚王君,宁汝新,张旭.计算机辅助产品方案t设计方法研究[J].中国机械工程,2002,13(18):1573-6.
    [51]李方义,段广洪,汪劲松.产品绿色设计评估建模[J].清华大学学报,2002,42(6):783-6.
    [52]YOSHIKAWA H. General design theory and a CAD system [J]. Man-Machine Communications inCAD/CAM,1981,
    [53]DIXON J R. On research methodology towards a scientific theory of engineering design [J]. AIEDAM:Artificial Intelligence for Engineering, Design, and Manufacturing,1987,1(03): 145-57.
    [54]PAHL G B W. Engineering Design [M]. London:Design Council,1984.
    [55]PAHL G, BEITZ W. Engineering design, The design council [J]. London, UK,1988,
    [56]R.KOLLER. Construction for product design [M]. New York:Springer-Verlag,1985.
    [57]HUBKA V, EDER W E. Theory of technical system [M]. Springer Berlin etc.,1988.
    [58]SUH N P. Axiomatic design as a basis for universal design theory [J]. Universal Design Theory Aachen Shaker Verlag,1998,
    [59]N.P.SUH. Axiomatic Design as a Basis for Universal Design Theory,in Universal Design Theory. [M]. Aachen:Shaker Verlag Press,1998.
    [60]JOHNSON R. Design synthesis-aids to creative thinking [J]. Machine Design,1993,15(2): 73-9.
    [61]V.A.TIPNIS. Problem Solving Methodologies:A Critique for Application to Design and Manufacturing.; proceedings of the Proceedings of the 3td CIRP Workshop on Design and Implementation of Intelligent Manufacturing System, F,1996 [C].
    [62]GUARINO N, WELTY C. A formal ontology of properties [J]. Knowledge Engineering and Knowledge Management Methods, Models, and Tools,2000,191-230.
    [63]STAAB S, STUDER R, SCHNURR H P, et al. Knowledge processes and ontologies [J]. Intelligent Systems, IEEE,2001,16(1):26-34.
    [64]POLI R. Ontological methodology [J]. International Journal of Human-Computer Studies, 2002,56(6):639-64.
    [65]KITAMURA Y, SANO T, NAMBA K, et al. A functional concept ontology and its application to automatic identification of functional structures [J]. Advanced Engineering Informatics,2002,16(2):145-63.
    [66]HORVETH I, VERGEEST J S M, KUCZOGI G. Development and application of design concept ontologies for contextual conceptualization [J]. Proc of 1998 ASME Design Engineering Technical Conferences DETC,1998,
    [67]ROCHE C. Corporate ontologies and concurrent engineering [J]. Journal of Materials Processing Technology,2000,107(1-3):187-93.
    [68]PEPPARD J. Customer relationship management (CRM) in financial services [J]. European Management Journal,2000,18(3):312-27.
    [69]CHEN I J, POPOVICH K. Understanding customer relationship management (CRM): People, process and technology [J]. Business Process Management Journal,2003,9(5): 672-88.
    [70]AGNES P. Customer Relationship Management (Crm) [J].
    [71]COOPER R G. Predevelopment activities determine new product success [J]. Industrial Marketing Management,1988,17(3):237-47.
    [72]DAHAN E, SRINIVASAN V. The Predictive Power of Internet Based Product Concept Testing Using Visual Depiction and Animation [J]. Journal of Product Innovation Management,2000,17(2):99-109.
    [73]KRISHNAN V, ULRICH K T. Product development decisions:A review of the literature [J]. Management Science,2001,1-21.
    [74]KING A M, SIVALOGANATHAN S. Development of a methodology for concept selection in flexible design strategies [J]. Journal of Engineering Design,1999,10(4):329-49.
    [75]STONE R B, WOOD K L. Development of a functional basis for design [J]. Journal of Mechanical Design,2000,122(359).
    [76]OTTO K N, WOOD K L. Product evolution:a reverse engineering and redesign methodology [J]. Research in Engineering Design,1998,10(4):226-43.
    [77]ISHII K, LEE B. Reverse fishbone diagram:A tool in aid of design for product retirement, F, 1996 [C].
    [78]HOBDAY M. Complex system vs mass production industries:A new innovation research agenda [J]. CENTRIM/SPRU Project on Complex Product Systems, England,1995,
    [79]OSHRI I, NEWELL S. Component sharing in complex products and systems:challenges, solutions, and practical implications [J]. Engineering Management, IEEE Transactions on, 2005,52(4):509-21.
    [80]HOBDAY M. Complex system vs mass production industries:A new innovation research agenda [J]. CENTRIM/SPRU Project on Complex Product Systems EPSRC Technology Management Initiative,1996,
    [81]STICE J E. Using Kolb [J]. Engineering education,1987,77(5):291-96.
    [82]HARB J N, DURRANT S O, TERRY R E. Use of the Kolb learning cycle and the 4MAT system in engineering education [J]. Journal of Engineering Education,1993,82(2):70"C7.
    [83]单鸿波.基于功能流的机械产品设计过程研究[D].武汉;华中科技大学,2004.
    [84]CHAN L K, WU M L. Quality function deployment:A literature review [J]. European Journal of Operational Research,2002,143(3):463-97.
    [85]KARKKAINEN H, PIIPPO P, TUOMINEN M. Ten tools for customer-driven product development in industrial companies [J]. International journal of production economics, 2001,69(Compendex):161-76.
    [86]GRUBER T R. Toward principles for the design of ontologies used for knowledge sharing [J]. International Journal of Human Computer Studies,1995,43(5):907-28.
    [87]GUARINO N, WELTY C. A formal ontology of properties; proceedings of the The Proceeding of the 12th International conference on Knowledge Engineering and Knowledge Management, F,2000 [C].
    [88]GUARINO N. Understanding, building and using ontologies [J]. International Journal of Human Computer Studies,1997,46(2-3):293-310.
    [89]BORST P, AKKERMANS H, TOP J. Engineering ontologies [J]. International Journal of Human-Computer Studies,1997,46(2-3):365-406.
    [90]CHANDRASEKARAN B, JOSEPHSON J R. Representing function as effect; proceedings of the Proceedings AAAI-96 Workshop on Modeling and Reasoning about Function, F,1997 [C]. Citeseer.
    [91]OTTO K, WOOD K. A reverse engineering and redesign methodology for product evolution, F,1996 [C].
    [92]ASHBY M F, JOHNSON K. Materials and design:the art and science of material selection in product design [M]. Butterworth-Heinemann,2002.
    [93]LEFEVER D, WOOD K. Design for assembly techniques in reverse engineering and redesign, F,1996 [C].
    [94]WOOD K L, JENSEN D, BEZDEK J, et al. Reverse engineering and redesign:courses to incrementally and systematically teach design [J]. JOURNAL OF ENGINEERING EDUCATION-WASHINGTON-,2001,90(3):363-74.
    [95]MILES L D. Techniques of value analysis and engineering [M]. McGraw-hill,1972.
    [96]HAUSER J R, CLAUSING D. The house of quality [J]. Harvard business review,1988, 66(3):63-73.
    [97]OTTO K. Forming product design specifications, F,1996 [C].
    [98]LITTLE A D. A Reverse Engineering Toolbox for Functional Product Measurement [D]; University of Texas at Austin,1997.
    [99]HOLMAN J P, GAJDA W J. Experimental methods for engineers [M]. McGraw-Hill New York,2001.
    [100]NORTON H N. Sensor and analyzer handbook [M]. Prentice-Hall,1982.
    [101]BENTLEY J P. Principles of measurement systems [M]. Pearson Education India,1988.
    [102]张红金.逆向工程技术的应用[J].电子产品可靠性与环境试验,2005,5):25-9.
    [103]牛卉原.逆向工程及其应用[J].北方交通2008,5):210-2.
    [104]荣烈润.面向21世纪的反求工程技术[J].机电一体化,2006,6):6-10.
    [105]BESL P J, MCKAY N D. A method for registration of 3-D shapes [J]. IEEE Transactions on pattern analysis and machine intelligence,1992,239-56.
    [106]BUTLER C. An investigation into theperformance of probes on coordinate measuring machines [J]. Industrial Metrology,1991,2(1):59-70.
    [107]DORAI C, WANG G, JAIN A K, et al. Registration and integration of multiple object views for 3D model construction [J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on,1998,20(1):83-9.
    [108]HORN B K. P. Closed-form solution of absolute orientation using unit quaternions [J]. JOSA A,1987,4(4):629-42.
    [109]MANTYLA M. An Introduction to Solid Modeling [J].1988,
    [110]周天祥.逆向工程中数据分片及模型重建研究[D];浙江大学,2008.
    [111]KNOPF G K, AL-NAJI R. Adaptive reconstruction of bone geometry from serial cross-sections [J]. Artificial Intelligence in Engineering,2001,15(3):227-39.
    [112]HOPPE H, DEROSE T, DUCHAMP T, et al. Surface reconstruction from unorganized points [J]. COMPUTER GRAPHICS-NEW YORK-ASSOCIATION FOR COMPUTING MACHINERY-,1992,26(71-.
    [113]CIGNONI P, MONTANI C, SCOPIGNO R. A comparison of mesh simplification algorithms [J]. Computers & Graphics,1998,22(1):37-54.
    [114]DEY S, O'BARA R, SHEPHARD M. Towards curvilinear meshing in 3D:the case of quadratic simplices [J]. Computer-Aided Design,2001,33(3):199-209.
    [115]KNUPP P M. Algebraic mesh quality metrics [J]. SIAM Journal on Scientific Computing, 2002,23(1):193-218.
    [116]BAJAJ C L, COYLE E J, LIN K N. Arbitrary topology shape reconstruction from planar cross sections [J]. Graphical models and image processing,1996,58(6):524-43.
    [117]BOISSONNAT J D. Shape reconstruction from planar cross sections [J]. Computer vision, graphics, and image processing,1988,44(1):1-29.
    [118]B HM W, FARIN G, KAHMANN J. A survey of curve and surface methods in CAGD [J]. Computer Aided Geometric Design,1984,1(1):1-60.
    [119]CHIVATE P N, JABLOKOW A G. Review of surface representations and fitting for reverse engineering [J]. Computer Integrated Manufacturing Systems,1995,8(3):193-204.
    [120]DIMAS E, BRIASSOULIS D.3D geometric modelling based on NURBS:a review [J]. Advances in engineering software,1999,30(9-11):741-51.
    [121]VERGEEST J. CAD surface data exchange using STEP [J]. Computer-Aided Design,1991, 23(4):269-81.
    [122]MA W, KRUTH J P. Parameterization of randomly measured points for least squares fitting of B-spline curves and surfaces [J]. Computer-Aided Design,1995,27(9):663-75.
    [123]PIEGL L, TILLER W. Parametrization for surface fitting in reverse engineering [J]. Computer-Aided Design,2001,33(8):593-603.
    [124]AZARIADIS P N. Parameterization of clouds of unorganized points using dynamic base surfaces [J]. Computer-Aided Design,2004,36(7):607-23.
    [125]HAHMANN S, KONZ S. Knot-removal surface fairing using search strategies [J]. Computer-Aided Design,1998,30(2):131-8.
    [126]YIN Z. Reverse engineering of a NURBS surface from digitized points subject to boundary conditions [J]. Computers & Graphics,2004,28(2):207-12.
    [127]KARNIEL A, BELSKY Y, REICH Y. Decomposing the problem of constrained surface fitting in reverse engineering [J]. Computer-Aided Design,2005,37(4):399-417.
    [128]SHEN B, HUANG G, MAK K, et al. A best-fitting algorithm for optimal location of large-scale blanks with free-form surfaces [J]. Journal of Materials Processing Technology, 2003,139(1-3):310-4.
    [129]LAI J Y, UENG W D. G2 continuity for multiple surfaces fitting [J]. The International Journal of Advanced Manufacturing Technology,2001,17(8):575-85.
    [130]MURAKI S. Volumetric shape description of range data using (?)°Blobby Model(?)±, F,1991 [C].ACM.
    [131]BAJAJ C L, IHM I. Algebraic surface design with Hermite interpolation [J].1990,
    [132]SAPIDIS N S, BESL P J. Direct construction of polynomial surfaces from dense range images through region growing [J]. ACM Transactions on Graphics (TOG),1995,14(2): 171-200.
    [133]CARR J C, BEATSON R K, CHERRIE J B, et al. Reconstruction and representation of 3D objects with radial basis functions, F,2001 [C]. ACM.
    [134]ZHOU L, KAMBHAMETTU C. Extending superquadrics with exponent functions: modeling and reconstruction [J]. Graphical models,2001,63(1):1-20.
    [135]CATMULL E, CLARK J. Recursively generated B-spline surfaces on arbitrary topological meshes [J]. Computer-Aided Design,1978,10(6):350-5.
    [136]HOPPE H, DEROSE T, DUCHAMP T, et al. Piecewise smooth surface reconstruction, F, 1994 [C]. ACM.
    [137]SUZUKI H, TAKEUCHI S, KANAI T. Subdivision surface fitting to a range of points, F, 1999 [C]. IEEE.
    [138]MA W, ZHAO N. Smooth multiple B-spline surface fitting with Catmull% ndash; Clark subdivision surfaces for extraordinary corner patches [J]. The Visual Computer,2002, 18(7):415-36.
    [139]MA W. Subdivision surfaces for CAD--an overview [J]. Computer-Aided Design,2005, 37(7):693-709.
    [140]LIN A C, LIU H T. Automatic generation of NC cutter path from massive data points [J]. Computer-Aided Design,1998,30(1):77-90.
    [141]LIN A C, LIN S Y. Computer-aided mold engraving:from point-data smoothing, NC machining, to accuracy checking [J]. Journal of Materials Processing Technology,1998, 86(1-3):101-14.
    [142]李剑.基于激光测量的自由曲面数字制造基础技术研究[D];浙江大学,2002.
    [143]HUR S M, KIM H C, LEE S H. STL file generation with data reduction by the delaunay triangulation method in reverse engineering [J]. The International Journal of Advanced Manufacturing Technology,2002,19(9):669-78.
    [144]CHEN Y, NG C, WANG Y. Generation of an STL file from 3D measurement data with user-controlled data reduction [J]. The International Journal of Advanced Manufacturing Technology,1999,15(2):127-31.
    [145]JIM NEZ P, THOMAS F, TORRAS C.3D collision detection:a survey [J]. Computers & Graphics,2001,25(2):269-85.
    [146]LIN M, GOTTSCHALK S. Collision detection between geometric models:A survey, F, 1998[C].Citeseer.
    [147]王志强,洪嘉振,杨辉.碰撞检测问题研究综述[J].软件学报,1999,10(5):545-51.
    [148]黄娟,顾寄南.装配仿真中碰撞干涉检查研究的综述[J].江苏大学学报,2002,23(2):17-21.
    [149]SU C J, LIN F, YE L. A new collision detection method for CSG-represented objects in virtual manufacturing [J]. Computers in Industry,1999,40(1):1-13.
    [150]DEL POBIL A, SERNA M A, LLOVET J. A new representation for collision avoidance and detection, F,1992 [C]. IEEE.
    [151]KETCHEL J, LAROCHELLE P. Collision detection of cylindrical rigid bodies using line geometry, F,2005 [C].
    [152]KETCHEL J, LAROCHELLE P. Collision detection of cylindrical rigid bodies for motion planning, F,2006 [C]. IEEE.
    [153]ZACHMANN G. Minimal hierarchical collision detection, F,2002 [C]. ACM.
    [154]COHEN J D, LIN M C, MANOCHA D, et al.I-COLLIDE:An interactive and exact collision detection system for large-scale environments, F,1995 [C]. ACM.
    [155]VAN DEN BERGEN G, VAN G. Efficient collision detection of complex deformable models using AABB trees, F,1998 [C]. Citeseer.
    [156]REDON S, LIN M C, MANOCHA D, et al. Fast continuous collision detection for articulated models [J]. Journal of Computing and Information Science in Engineering,2005, 5(126.
    [157]REDON S, KHEDDAR A, COQUILLART S. Fast continuous collision detection between rigid bodies, F,2002 [C]. Wiley Online Library.
    [158]GOTTSCHALK S, LIN M C, MANOCHA D. OBBTree:a hierarchical structure for rapid interference detection, F,1996 [C]. ACM.
    [159]BAREQUET G, CHAZELLE B, GUIBAS L J, et al. BOXTREE:A hierarchical representation for surfaces in 3D, F,1996 [C]. Wiley Online Library.
    [160]KLOSOWSKI J T, HELD M, MITCHELL J S B, et al. Efficient collision detection using bounding volume hierarchies of k-DOPs [J]. Visualization and Computer Graphics, IEEE Transactions on,1998,4(1):21-36.
    [161]FUNFZIG C, FELLNER D W. Easy realignment of k-DOP bounding volumes, F,2003 [C]. Citeseer.
    [162]ZACHMANN G. Rapid collision detection by dynamically aligned DOP-trees, F,1998 [C]. IEEE.
    [163]ERICSON C. Real-time collision detection [M]. Morgan Kaufmann,2005.
    [164]C O' SULLIVAN C, DINGLIANA J. Real-time collision detection and response using sphere-trees, F,1999 [C].
    [165]PALMER I J, GRIMSDALE R L. Collision Detection for Animation using Sphere Trees, F, 1995 [C]. Wiley Online Library.
    [166]KIM D J, GUIBAS L J, SHIN S Y. Fast collision detection among multiple moving spheres [J]. Visualization and Computer Graphics, IEEE Transactions on,1998,4(3):230-42.
    [167]HUBBARD P M. Collision detection for interactive graphics applications [J]. Visualization and Computer Graphics,1995,218-30.
    [168]HUBBARD P M. Approximating polyhedra with spheres for time-critical collision detection [J]. ACM Transactions on Graphics (TOG),1996,15(3):179-210.
    [169]HUBBARD P M. Interactive collision detection; proceedings of the Proeeedings of the IEEE Symposium Research Frontiers, Virtual reality, F,1993 [C]. IEEE.
    [170]PAULY M, GROSS M. Spectral processing of point-sampled geometry, F,2001 [C]. ACM.
    [171]LANGE C, POLTHIER K. Anisotropic smoothing of point sets [J]. Computer Aided Geometric Design,2005,22(7):680-92.
    [172]ALEXA M, BEHR J, COHEN-OR D, et al. Point set surfaces, F,2001 [C]. IEEE Computer Society.
    [173]CAMERON S, CULLEY R. Determining the minimum translational distance between two convex polyhedra, F,1986 [C]. IEEE.
    [174]MIRTICH B, CANNY J. Impulse-based simulation of rigid bodies, F,1995 [C]. ACM.
    [175]LIN M C. Effcient Collision Detection for Animation and Robotics [D]; University of California,1993.
    [176]CANNY J. The complexity of robot motion planning [M]. The MIT Press,1988.
    [177]LATOMBE J C. Robot Motion Planning [M]. Kluwer Academic Publishers,1991.
    [178]GEIGER B. Real-time collision detection and response for complex environments, F,2000 [C]. IEEE.
    [179]LIN M C, MANOCHA D. Fast interference detection between geometric models [J]. The Visual Computer,1995,11(10):542-61.
    [180]HAMADA K, HORI Y. Octree-based approach to real-time collision-free path planning for robot manipulator; proceedings of the ACM96-MIE, F,1996 [C]. IEEE.
    [181]MOORE M, WILHELMS J. Collision detection and response for computer animation, F, 1988 [C]. ACM.
    [182]P D W, S X Y, K. L S. A Fast Algorithm for Collision Detection Based on Bounding Volume Hierarchies of Octree [J]. Journal of System Simulation,2003,15):158-60.
    [183]THIBAULT W C, NAYLOR B F. Set operations on polyhedra using binary space partitioning trees [J]. ACM SIGGRAPH Computer Graphics,1987,21(4):153-62.
    [184]NAYLOR B, AMANATIDES J, THIBAULT W. Merging BSP trees yields polyhedral set operations [J]. ACM SIGGRAPH Computer Graphics,1990,24(4):115-24.
    [185]AR S, CHAZELLE B, TAL A. Self-customized BSP trees for collision detection [J]. Computational Geometry,2000,15(1-3):91-102.
    [186]HELD M, KLOSOWSKI J T, MITCHELL J S B. Evaluation of collision detection methods for virtual reality fly-throughs, F,1995 [C].
    [187]GARCIA-ALONSO A, SERRANO N, FLAQUER J. Solving the collision detection problem [J]. IEEE Computer Graphics and Applications,1994,36-43.
    [188]HAYWARD V. Fast collision detection scheme by recursive decomposition of a manipulator workspace; proceedings of the IEEE International Conference on Robotics and Automation, F,1986 [C]. IEEE.
    [189]HERMAN M. Fast, three-dimensional, collision-free motion planning; proceedings of the Proceedlngs of the IEEE hitemational Conference on Robotics and Automation, F,1986 [C]. IEEE.
    [190]BOYSE J W. Interference detection among solids and surfaces [J]. Communications of the ACM,1979,22(1):3-9.
    [191]LIN M C, CANNY J F. A fast algorithm for incremental distance calculation, F,1991 [C]. IEEE.
    [192]CHAZELLE B. Convex partitions of polyhedra:a lower bound and worst-case optimal algorithm [J]. SIAM Journal on Computing,1984,13(488.
    [193]BAJAJ C, DEY T K. Convex decomposition of polyhedra and robustness [J].1990,
    [194]A G M, P I B. Dynamic Collision Detection Using space Partition [J]. Joumal of Meehanieal Design,1993,115(1):150-5.
    [195]CULLEY R, KEMPF K. A collision detection algorithm based on velocity and distance bounds, F,1986 [C]. IEEE.
    [196]CAMERON S. A study of the clash detection problem in robotics, F,1985 [C]. IEEE.
    [197]GILBERT E, HONG S. A new algorithm for detecting the collision of moving objects; proceedings of the Proceedings of the IEEE International Conference on Robotics and Automation, F,1989 [C]. IEEE.
    [198]BROOKS R A. Solving the find-path problem by good representation of free space [J]. IEEE Transactions on Systems, Man, and Cybernetics(ISSN 0018-9472),1983,13(190-7).
    [199]FOISY A, HAYWARD V. A safe swept volume method for collision detection; proceedings of the The Sixth International Symposium of Robotics Research, F,1994 [C].
    [200]WANG W, WANG K. Geometric modeling for swept volume of moving solids [J]. Computer Graphics and Applications, IEEE,1986,6(12):8-17.
    [201]CHU C C, MO J, GADH R. A quantitative analysis on virtual reality-based computer aided design system interfaces [J]. Journal of Computing and Information Science in Engineering, 2002,2(4):216-23.
    [202]POULIQUEN M, BERNARD A, MARSOT J, et al. Virtual hands and virtual reality multimodal platform to design safer industrial systems [J]. Computers in Industry,2007, 58(1):46-56.
    [203]ROSENMAN M, SMITH G, MAHER M, et al. Multidisciplinary collaborative design in virtual environments [J]. Automation in Construction,2007,16(1):37-44.
    [204]GABBERT U, NESTOROVIC T, WUCHATSCH J. Methods and possibilities of a virtual design for actively controlled smart systems [J]. Computers & Structures,2008,86(3-5): 240-50.
    [205]LEE H U, CHO D W. An intelligent feedrate scheduling based on virtual machining [J]. The International Journal of Advanced Manufacturing Technology,2003,22(11):873-82.
    [206]WEYRICH M, DREWS P. An interactive environment for virtual manufacturing:the virtual workbench [J]. Computers in Industry,1999,38(1):5-15.
    [207]RAMASWAMY S, YAN Y. Interactive modeling and simulation of virtual manufacturing assemblies:An agent-based approach* [J]. Journal of Intelligent Manufacturing,1999, 10(6):503-18.
    [208]JAYARAM S, CONNACHER H I, LYONS K W. Virtual assembly using virtual reality techniques [J]. Computer-Aided Design,1997,29(8):575-84.
    [209]YANG R D, FAN X M, WU D L, et al. Virtual assembly technologies based on constraint and DOF analysis [J]. Robotics and Computer-Integrated Manufacturing,2007,23(4): 447-56.
    [210]REDON S. Fast continuous collision detection and handling for desktop virtual prototyping [J]. Virtual Reality,2004,8(1):63-70.
    [211]WANG G G. Definition and review of virtual prototyping [J]. Journal of Computing and Information Science in Engineering(Transactions of the ASME),2002,2(3):232-6.
    [212]HUANG T, KONG C, GUO H, et al. A virtual prototyping system for simulating construction processes [J]. Automation in Construction,2007,16(5):576-85.
    [213]CHOI S, CHEUNG H. A multi-material virtual prototyping system [J]. Computer-Aided Design,2005,37(1):123-36.
    [214]CHOI S, CHAN A. A layer-based virtual prototyping system for product development [J]. Computers in Industry,2003,51(3):237-56.
    [215]叶宗茂.浅谈我国汽车行业检测水平状况[J].机械工人冷加工,2003,7):16-9.
    [216]黄菊花,揭小平.E2S4000—MB型机械压力机振动传播及现场实测[J].锻压技术,1999,2):33-5.
    [217]邓雪漫.提高三坐标测量机光学测头性能的研究[D].四川;四川大学,2006.
    [218]张国雄.三坐标测量机[M].天津:天津大学出版社,1998.
    [219]杨武成,张武刚.数控铣床虚拟装配建模及其加工仿真研究[J].机床与液压,2009,05):176-8.
    [220]李广宇.基于UG和ADAMS平台下汽车焊装夹具干涉的分析与解决[J].机床与液压,2008,36(11):
    [221]何康.汽车冲压件在线检测设备设计及特性研究[D].南昌;南昌大学,2010.
    [222]张旭.飞机大部件对接装配过程中的干涉检测技术研究[D].南昌;浙江大学,2008.
    [223]何康.基于ADAMS的导轨副振动特性比较与改进[J].南昌大学学报:工科版,2010,(1):25-28