外源NO与蔗糖对盐胁迫下番茄幼苗生理特性及抗逆基因的调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本实验以番茄(Lycopersicon esculentum Mill)为材料,运用盆栽土培试验,结合生物化学和分子生物学的方法,分别用不同浓度的蔗糖(Sucrose)、外源NO供体硝普钠(Sodium Nitropresside, SNP)及其组合(V:V=1:1)处理材料,对盐胁迫下NO与蔗糖诱导番茄抗逆基因和幼苗生长及抗盐性的作用机制开展了较为深入的研究。并获得以下主要结果:
     1.用0.1、0.5和1.0 mmol/L的SNP处理番茄幼苗,均能缓解盐胁迫对番茄幼苗造成的氧化损伤,提高超氧化物酶歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)和抗坏血酸过氧化物酶(APX)活性,其中0.1 mmol/LSNP处理效果最好,尤其能显著诱导APX和POD活性的增高;不同浓度的蔗糖对番茄体内的保护酶也具有不同的诱导作用,和SNP诱导一样具有剂量效应,其中3.0 mmol/L的蔗糖能显著提高酶活性,胁迫24 h各种酶活性均达到最大值,随着胁迫时间的延长开始下降,表明蔗糖对酶活性的诱导也有一定的调控范围。
     2.盐分胁迫下,番茄种子的萌发受到了抑制,72 h才开始萌发,而使用NO、蔗糖及其互作处理番茄种子的发芽率、发芽势、发芽指数及活力指数都显著高于100 mmol/LNaCl单独处理,NO、蔗糖及其互作处理番茄种子的最终发芽率分别为68.33 %、66.67 %,81.67 %,其中组合处理缓解盐胁迫的效果显著,与单盐处理之间差异显著。
     3.组合处理与SNP和蔗糖单独处理相比,对缓解盐胁迫下番茄幼苗的氧化损伤存在正协同效应,主要表现在进一步增强了番茄幼苗抗氧化酶的活性;提高脯氨酸(Pro)的含量,同时膜脂过氧化产物丙二醛(MDA)含量显著降低。采用聚丙烯酰胺凝胶电泳对盐胁迫24 h和48 h材料的POD同功酶研究表明,当NaCl单独处理时,番茄幼苗叶片POD同功酶第V条带缺失,其它谱带酶量减少,抑制了POD同功酶的表达;SNP和蔗糖单独处理能够保护盐胁迫(24、48 h)所导致的POD同功酶条带的完整;而NO、蔗糖及组合处理均能诱导番茄叶片POD同功酶活性,尤其组合处理对POD同功酶诱导效果最好,胁迫48 h各处理POD同功酶表达量较24 h减少。说明SNP和蔗糖组合处理能够更有效地缓解盐胁迫对番茄幼苗植株造成的氧化损伤。
     4.利用实时荧光定量RT-PCR技术,检测了抗逆相关基因NP24和PR-5在mRNA水平上的表达量。胁迫12 h SNP、蔗糖及组合处理均诱导了幼苗中NP24基因的表达量,与单盐处理相比分别提高了38.44﹪、24.48﹪和74.51﹪,其中组合处理中NP24基因的表达量最高。24 h单盐处理的幼苗PR-5基因达到最大值,而SNP、蔗糖及两者组合处理在胁迫36 h均达到各自的最大值,与单盐处理苗相比,PR-5基因的表达量分别提高了46.53﹪,43.20﹪和65.02﹪,其中组合处理的诱导效果最明显。
Mainly by using pot culture methodology and started with the systematic analysis of plant biology and physiological responses on salt stress, studies on regulation of different concentrations of exogenous nitric oxide and sucrose to tomato seedlings resistance genes and physiological characteristics were carried out in present thesis, including mechanism of plant salt resistance under salt stress, regulation effects of exogenous nitric oxide and sucrose induced expressing their preexistent genetic information for tolerance under salt stress in seedlings. The major results are presented as follows:
     1. Under 100 mmol/L NaCl stress condition, the different concentrations at 0.1, 0.5 and 1.0 mmol/L SNP could alleviation of NaCl stress damage and increase activities of antioxidant enzymes (including SOD, CAT, POD and APX) in leaves, the best effect was observed in the treatment of 0.1 mmol/L SNP. The same dosage effect of sucrose existed on the alleviation of NaCl stress in tomato seedlings were observed, 3.0 mmol/L increase activities of antioxidant enzymes at 24 h significantly, with the tolerance time, the activities of antioxidant enzymes were decreased.
     2. Germination of tomato seed is reduced at relatively low NaCl concentrations and lengthening the time needed to complete germination. During the germination process in tomato, Applying the 0.1 mmol/L SNP, 1.0 mmol/Lsucrose and the mix-solution of SNP and sucrose increased the seed germination rate、germination potential、germination index and activity index of tomato, the mix solution of SNP and sucrose could largely promote germination rate, which was 81.67%, the germination rate was 56.67% under single salt stress.
     3. The results indicated that there were protective function to tomato seedling leaves from NaCl oxidative damage when applications of SNP, sucrose and their mix solutions. However, their mix solutions showed a much better protective impact than the treatments of SNP and sucrose as it could significantly increase activities of antioxidant enzymes and content of proline,while largely decrease MDA content in tomato seedling leaves under salt stress. Moreover, the effect of salt stress on the peroxidase enzyme expression in tomato leaves was further analyzed by using polyacrylamide concentration gradient gel electrophoresis technique. The results showed that salt stress could inhibit the expression of small molecule POD isoenzymes. The mix of SNP and sucrose could largely promote POD isoenzyme activity and protective them from hydrolyzation than single application of either SNP or sucrose solutions. Irrespective of solution, the POD isoenzymes expression was higher at 24 h than 48 h salt stress. The mix solution of SNP and sucrose could have a big potential for reduction of oxidative damage to tomato seedling leaves under salt stress.
     4. The resistance gene NP24 and PR-5 expression were assayed by QRT-PCR at mRNA level in tomato plants treated with SNP, sucrose and the mix solution of SNP under salt stress. They could induce NP24 gene expression at 12 h. compared to single stress, NP24 gene relative expression level increased respectively 38.44﹪、24.48﹪and 74.51﹪.There has the maximum expression of PR-5 under single salt stress at 12 h, the expression level decreased along with the time extending. Compared to single salt stress, PR-5 gene relative expression level increased respectively 46.53﹪, 43.20﹪and 65.02﹪. It was suggested that the mix solution of SNP and sucrose treatment induced the strong expression of NP24 and PR-5.
引文
[1]刘旭,史娟,张学勇,等.小麦耐盐种质的筛选和耐盐基因的标记,植物学报, 2001, 43(9): 948-954
    [2]王春裕.土壤盐渍化的生态防治.生态学杂志,1997,16(6):67-71
    [3] Xu Y L, et al. Energy consumption in adaptability to salt stress of plant. Phant PhysiolCommum, 1990, 26(6):54-55.
    [4] Leonova T G, Goncharova E A, Khodrenko A V, et al. Characteristics of salt-tolerant and salt-susceptible cultivars of barley Russ. Plant Physiol, 2005, 52(6):774-778
    [5]藏壮旺.保护地土壤的综合治理.现代农业,2002,(9):16-17
    [6]藏壮旺.蔬菜保护地土壤的变化障碍及综合治理.吉林蔬菜,2002,(5):22-23
    [7]王遵亲.中国盐渍土[M].北京:科学出版社.
    [8] Adriano D C, Werber J. Effect of high rates of coal fly ash on soil turfgrass and ground water quality.Water, Air and Soil pollution. 2002, 139:1-4, 365-384
    [9] Barrios, Sandstorm, Eger Quality and Yield Response of Four Warm Season Lawngrasses to Shade Conditiond .Agronomy Journal VOL. 1986, (11):270-274
    [10]殷立娟,祝玲.野大麦苗期抗盐碱性的研究,草地学报,1991,1(1): 142-148
    [11]石海仙.周期性NaCl胁迫处理对番茄苗期生长发育及营养吸收的影响.江苏农业科学,2001,(3),55-58.
    [12] Lu Y F. Effect of NaCl stress on water and photosynthetic exchange spinach leaves.Plant Physiology Communications,1999, 35(4):59-62
    [13]朱新广,张其德. NaCl对小麦光合功能的伤害主要是由离子效应造成的.植物学通报,2000,17(4):360-365
    [14]张新春,庄炳昌,李自超.植物耐盐性研究进展.玉米科学. 2002,10(1): 50-56.
    [15] Cha-um S, Slipaibulwatana K. Water relation, photosynthetic ability and growth of Thaijasmine rice to salt stress by application of exogenous glycinebetaine and choline. Agron. Crop Sci, 2006, 192(1):25-36.
    [16]郝治安,吕有俊.植物耐盐机制研究进展.河南农业科学,2004,11: 30-33
    [17]陈洁,林栖凤.植物耐盐生理及耐盐机理研究进展.海南大学学报(自然科学版),2003,21(2):177-182
    [18]郭房庆,黄昊,汤章城. NaCl胁迫下小麦突变体和野生型叶片中一些有机溶质累积和基因表达差异.植物生理学报,1999,25(4):395-400
    [19]王宝山,李明亮,张宝泽,等.盐胁迫下外源脯氨酸和丙二醛对冰叶松叶菊愈伤组织中离子和脯氨酸含量的影响.植物生理学通讯,1993,29(3):182-184
    [20]章文华,陈亚华,刘友良.钙在植物细胞盐胁迫信号转导中的作用.植物生理学通讯,2000,36(2):146-153
    [21]汪良菊,刘友良,马凯.钙在无花果细胞盐诱导脯氨酸积累中的作用.植物生理报,1999,25(1): 38-42
    [22]潘瑞炽,董愚得.植物生理学[M]:北京:高等教育出版社,1995,320-322
    [23]蒋明义,郭绍川,张学明. OH胁迫下稻苗体内脯氨酸积累及其抗性氧化作用.科学通报,1997,42(6): 646-649
    [24]宗会,刘娥娥,郭振飞,等.干旱、盐胁迫下LaCl3和CPZ对稻苗脯氨酸积累的影响.作物学报,2001,27(2):173-177
    [25] Delledonne M, Xia Y J, Dixon R A. Nitric oxide functions as a signal in plant disease resistance. Nature, 1998, 394: 585-588.
    [26] Durner J, Wendehemme D, Klessig D F. Defense gene induction in tobacco by nitric oxide, cyclic GMP and cyclic ADP-ribose. Proceedings of the National Academy of Sciences of USA, 1998, 95:10328~10333
    [27] Caro A, Puntarulo S. Nitric oxide generation by soybean embryonic axes.Possible effect on mitochondrial function. Free Radic Res, 1999, 31(Sup): 205~212
    [28] Beligni M V. Lamattina L. Nitric oxide stimulates seed germination and de-etiolationand inhibitshypocotyl elongation, three light-inducible responses inplants. Planta, 2000, 210:215~221
    [29] Leshem YY. Nitric oxide in biological systems. Plant Growth Regul, 1996, 18(3):155~159
    [30] Ribeiro Ea Jr, Cunha F Q, Tamashiro WMSC et al.Growth phase-dependent subcellular localization of nitric oxide synthase in maize cells. FEBS Lett, 1999, 445:283~286
    [31] Leshem YY, Willis RBH, Ku VV-V. Evidence for the function of the free radical gas-nitric oxide(NO)-as an endogenous maturation and senescence regulating factor in higher plants.Plant physiol Biochem, 1998, 36:825~833
    [32]屠洁,沈文飚,徐朗莱.一氧化氮对小麦叶片老化过程的调节.植物学报, 2003, 45 (9): 1055~1062.
    [33] Wojtaszek P. Nitric oxide in plants: to NO or not. Phytochemistry, 2000, 54: 1~4
    [34] Neill S J, Desikan R, Hancock J T.Nitric oxide signaling in plants. New Phytologist, 2003, 159: 11~35
    [35] Furchgott R F. Special topic: nitric oxide. Annals Review of Physiology, 1995, 57: 659-682
    [36] Ninnemann H, Maier J.Indication for the occurrence of nitric oxide synthase in fungi and plantsand the involvement in photoconidiation of Neurospora crassa. Photochemistry and Photobiology, 1996, 64: 393~398
    [37] Garces H, Durzan D, Pedroso MC.Mechanical stress elicits nitric oxide formation and DNA fragmentation in Arabidopsis thaliana.Annals of Botany, 2001, 87:567~574
    [38] Rockel P, Strube F, Rockel A, Wildt J, Kaiser W M.Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro. Journal of Experimental Botany, 2002, 53: 103~110
    [39] Clarke A D, esikan R, Hurst R D, et al. NO way back: nitric oxide and programmed cell death in Arabidopsis thaliana suspension cultures.The Plant Journal, 2000, 24: 667~677
    [40] Sakihama Y, Nakamura S, Yamasaki H.Nitric oxide production mediated by nitrate reductase in the green alga Chlamydomonas reinhardtii: an alternative NO production pathway in photosynthesis organisms. Plant and Cell Physiology, 2002, 43:290~297
    [41] Yamasaki H, Sakihama Y. Simultaneous production of nitric oxide and peroxynitrite by plant nitrate reductase:in vitro evidence for the NR-dependentformation. FEBS Letters, 2000, 468: 89~92
    [42] Weitzberg E, Lundberg J O N. Nonenzymatic nitric oxide production in humans. Nitric oxide, 1998, 2:1~7
    [43] Bethke P C, Badger M R, Jones R L.Apoplastic synthesis of nitric oxide by plant tissues. The Plant Cell, 2004, 16: 332~341
    [44] Wendehenne D, Durner J, Klessig D F.Nitric oxide: a new player in plant signaling and defence response. Current Opinion in Plant Biology, 2004, 7: 449~455
    [45] Pedroso M C, Magalhaes J R, Durzan D. A nitric oxide burst precedes apoptosis in angiosperm and gymnospermcallus cells and foliar tissues. Exp Bot , 2000, 51:1027~1036
    [46] Veronica M, Lamattina L L. Nitric oxide counteracts cytotoxic processes mediated by reactive oxygen species in plant tissues.Planta, 1999, 208: 337-334
    [47] Mata C G, Lamattina L. Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress. Plant Physiology, 2001, 126:1196~1204
    [48] Beligni M V, Lamattina L. Is nitric oxide toxic or protective? Trends in Plant Science, 1999, 4:299~300
    [49]阮海华,沈文飚,叶茂炳,等.一氧化氮对盐胁迫下小麦叶片氧化损伤的保护效应[J].科学通报, 2001, 46 (23):1993~1997.
    [50]阮海华,沈文飚,徐朗莱.一氧化氮调节盐胁迫下小麦根部质膜H+-ATPase和焦磷酸活性提高耐盐性.植物学报, 2004, 46(4): 415-422
    [51]陈明,沈文飚,阮海华,等.一氧化氮对盐胁迫下小麦幼苗根生长和氧化俗尚的影响.植物生理与分子生物学学报, 2004, 30(5): 569-576
    [52]张艳艳,刘俊,刘友良.一氧化氮缓解盐胁迫对玉米生长的抑制作用.植物生理与分子生物学学报,2004,30: 455-459
    [53] Uchida A, Jagendorf A T, Hibino T et al. Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Sci, 2002, 163: 515~523
    [54] Tun N N, Holk A, Scherer G F E. Rapid increase of NO release in plant cell cultures induced by cytokinin. FEBS Letters, 2001, 509: 174~176
    [55] Price J, Li T C, Kang S G, Na J K, Jang J C .Mechanisma of glucose signaling during germination of Arabidopsis. Plant Physiol, 2003, 132:1424-1438
    [56] Rolland F, Moore B, Sheen J. Sugar sensing and signaling in plants.PlantCell,2002,14:S185-S205
    [57] Neill S J, Desikan R, Clarke A, Hancock J T. Nitric oxide is a novel component of abscisic acid signaling in stomatal guard cells. Plant Physiology, 2002a, 128:13~16
    [58] Desikan R, Griffiths R, Hancock J, Neill S. A new role for an old enzyme nitrate reducrase mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of USA, 2002, 99:16314~16318
    [59] Garcia-Mata C, Lamattina L. Nitric oxide and abscisic acid cross talk in guard cells. Plant Physiology, 2002, 128: 790~792
    [60]贾文锁,何芳莲,张大鹏.蚕豆叶片中水分胁迫诱导ABA积累的触发机制.中国科学(C辑),2001,31: 213~219
    [61] Pagnussat C G, SimontacchiM, Puntarub S, et al. Nitric oxide is required for root organogenesis. Plant Physiol, 2002, (7):954-956
    [62] Cueto M, Hernandez P O, Mart N R, Presence of nitric oxide ynthase activity in roots and nodules of upinus albus .Febs Lett,1996, 398:159-164
    [63]魏小红(2005),NO诱导植物抗性及调节氮代谢的信号传导机理.博士论文
    [64] Wildt J, Kley D, Rockel A et al. Emission of NO from higher plant species. J Geo Res , 1997, 102:5919~5927
    [65] Jiang M, Zhang J. Abscisic acid and antioxidant defense in plant cells.Acta Bot.Sci, 2002, 215:1022-1030
    [66] Zhao Z, Chen G, Zhan G C, Interation between reactive oxygen species and nitric oxide in drought-induced abscisic synthesis in foot tipsof wheat seedlings. Plant Physio, 2001, 28:1055-1061
    [67] Scherer G F E, Hol K A, No donors mimic and NO inhibitor inhibit cytokinin action betalain acculationin Amoranthus candatus.Plant Growth Regul, 2000, 32:345-350
    [68] Sheen J, Zhou L, Jang J C. Sugars as signling molecules.Curr Opin Plant Biology, 1999, (2): 410-418
    [69] Pego J V, Weisbeek PJ, Smeekens S C M. Mechanisms inhibits Arabidopsis germination via a hexokinase mediated step. Plant Physiol, 1999, 119:1017-1023
    [70] Koch K E. Carbohydrate-modulated gene expression in plant. Annu Rev Plant Physiol Plant Mol Biol, 1996, 47:509-540
    [71] Yu S M, Lee Y C, Fang S C. Sugars act as signal molecules and osmotic to regulate the expression of a-amylase gene and metabolic activities in germinating cereal grains. Plant Mol Biol, 1996, 30:1277-1289
    [72] Ho S L, Chao Y C, Tong W F, et al. Sugar coordinately and differently regulates growth and stress-related gene expression via a complex signal transduction network and multiple control mechanism. Plant Physiol, 2001, 125:877-8905
    [73] Smeekens S. Sugar-induced signal transduction in plants. Annu Rev Plant Physiol Plant Mol Biol, 2000, 51: 49-81
    [74] Sheen J,C4 gene expression .Annu Rev Plant Physiol Mol Biol,1999,50:187-217
    [75] Koch K E, Ying Z, Wu Y, et al. Multiple paths of sugar-sensing and sugar/oxygen overlap for genes of sucrose and ethanol metabolism. Exp Bot, 2000, 51: 417-427
    [76] Bhalero R P, Salchert K, Bako L, et al. Regulatory interaction of PRL1 WD protein with Arabidopsis SNP-like protein kinase. Proc Natl Acad Sci USA, 1999, 96: 5322-5327
    [77] Ehness R, Ecker M, Godt D E, et al. Glucose and stress independently regulate source and sink metabolism and defense mechanisms via signal transduction pathways involving protein phosphorylation. Plant Cell, 1997, 9:1825-1841
    [78] Ohto M A, Nakamura K. Sugar-induced increase of calciumdependent protein kinase associated with the plasms membrane in leaf tissues of tobacco. Plant Physiol, 1995, 109: 973-981
    [79] Hardie D G, Carling D, Carlson M.TheAMP-activated/SNF:proteinkinasesubfamily:metabolic sensors of the eukaryotic cell. Annu Rev Biochem,1998, 67:821-855
    [80] Halford N G, Purcell P C, Grahame H D. Is hexokinase really a sugar sensor in plants? Trends Plant Sci, 1999, 4:117-120
    [81] Gibson S I, Graham I A. Another player joins complex field of sugar-regulated gene expression in plants. Proc Natl Acad Sci USA, 1999, 96: 4746-4748
    [82] Coruzzi G M, Zhou L. Carbon and nitrogen sensing and signaling in plants :emerging‘matrix effects’.Curropin Plant Biol, 2001, 4: 247-253
    [83] Chiou T J, Bush D R. Sucrose is a signal molecule in assimilates partitioning. Proc Natl Acad Sci USA, 95: 4784-4788
    [84] Rook F, Gerrits N, Kortstee A, et al. Sucrose specific signaling represses the translation of the Arabidopsis ATB2 Bzip transcription factor gene, Plant, 1998, 15: 253-263
    [85] Fu H, Park W D. Sink and vascular associated sucrose synthase function are encoded by different gene clasters in potato. Plant Cell, 1995, 7: 1369-1385
    [86] Zhou N, Tootle T L, Tsui F, et al. PAD4 function upstreamfrom salicylic acid control defense responses in Arabidopsis. Plant Cell, 1998, 10: 1021-1030
    [87] Finkelstein R R, Gibson S I. ABA and sugar interactions regulating development: cross-talk or voices in a crowd? Curr Opin Plant Biol, 2001, 5: 26-32
    [88]凌腾芳,宣伟,沈文飚,等.外源葡萄糖、果糖和NO供体(SNP)对盐胁迫下水稻种子萌发的影响.植物生理与分子生物学学报,2005,31(2):205-212.
    [89]赵其国,周健民.为21世纪土壤科学的创新发展作出的贡献-参加第17届国际土壤学大会综述.土壤,2002,34(5): 237-246
    [90]杨劲松.作物对不同盐胁迫和调控条件的响应特征与抗盐性调控研究.博士论文,南京农业大学,2006.
    [91] Yamaguchi T, Blumwald B. Developing salt-tolerant crop plants: Challenges and opportunities. Trends in Plant Science, 2005, 10(12): 615-620
    [92] O,Connell M, Young J, Kingwell R. The economic value of salt-land pastutes in a mixed farming system in Western Australia. Agriculture Systems, 2006, 89(2/3): 371-389
    [93] Flowers T J. Improving crop salt tolerance. Exp. Bot, 2004, 55: 307-319
    [94] Chinnusamy V. Understanding and improving salt tolerance in plants. Crop Sci, 2005, 45: 437-448
    [95] Van Loon L C, Van Kammen A. Polyacrylamide disc eletrophoresis of the soluble leaf proteins from Nicotiana tabacum var‘samsun’and‘Samsun NN.II. Changes in protein constitution after infection with tobacco mosaic virus. Virology, 1970, 40: 199-211
    [96]萨其拉,李文彬,孙勇如.植物相关蛋白的表达调控. High Technol Lett(高科技通讯),2001,(1):100-103
    [97] Pierpoint W S, Tatham A S, Pappin D J. Identification of the virus induced a protein tobacco leaf that resembles the sweet-tasting protein thaumatin. Phsiol MOL.1987, 31: 291-296
    [98] Datta S K, Muthukrishnan S. Pathogennsis-Related protein in Plants.1999, USA, CRC Press.
    [99] Jia Y, Martin G B. Rapid tanscript accumulation of pathogenesis-related genes during an incompatible interaction bacterial speck disease-resistant tomato plant. Plant Mol Biol, 1999, 40(3)
    [100] Woloshuk C P, Meulenhoff J S, Sela-Buurlage M, et al. Pathogen-induced proteins with inhibitory activity toward phytophora infestans. Plant Cell, 1991, 3: 619-628.
    [101] Russell P. Two isoforms of NP24: a thaumatin-like protein in tomato fruit. Phyto chemistry, 1997, 44: 1241-1245.
    [102] Keeley J E, Fotheringham C J. Trance gas emissions and smoke-induced seed germination .Science, 1997, 276:1248-1250
    [103] Clark D, Durner J, Navarre D A1 Nitric oxide inhibition of tobacco catalase and ascobate peroxidase Mol Plant2Microbe Interact, 2000, 13: 1380-1384
    [104] Chander M S. Enzymic associations with resistance to rust and powdey mildew in pea. Indian Journal of Horticulture, 1990, 47(3): 341-345.
    [105]王韶唐主编.植物生理学实验指导[M].西安:陕西科学技术出版社.
    [106] Dhindsa R S, Plumb-Dhindsa P, Thorpe T A. Leaf senescence correlated with increased levels of membrane permeability and lipid peroxidation and decreased leavels dismutase and catalase. J Exp Bot, 1982, 32: 91-101.
    [107] Clark D, Durner J, Navarre D A1 Nitric oxide inhibition of tobacco catalase and ascobate peroxidase MolPlant Microbe Interact, 2000, 13: 1380-1384
    [108]赵福庚,刘友良.大麦幼苗多胺合成比脯氨酸合成对盐胁迫更敏感.植物生理学报,2000,26(4):243-349
    [109]林栖凤.耐盐植物研究[M].北京:科学出版社
    [110] Lin C C, Kao C H. NaCl stress in rice seedlings: starch mobilization and the influence of gibberellic acid on seedling growth. Bot BullAcad Sin, 1995, 36: 169-173
    [111]王宪叶,沈文飚,徐朗莱.一氧化氮对渗透胁迫下小麦叶片膜脂过氧化的缓解作用.植物生理与分子学学报,30(2):195-200
    [112]马向丽,魏小红,龙瑞军,等.外源一氧化氮提高一年生黑麦草抗冷机制.生态学报,.2005,25(6):1269-1274.
    [113]赵福庚,刘友良.大麦幼苗多胺合成比脯氨酸合成对盐胁迫更敏感.植物生理学报,2000,26(4):243-349
    [114] Stamler J S, Singel D J, Loscalzo J. Biochemistry of nitric oxide and its redox-activated form. Scinece, 1992, 258: 1898~1901.
    [115] Galwez A F, Gulick P J and Dvorak J. Characterization of the earley stages of genetic salt stress responses in salt tolerant Lophopyrum elongatum, salt sensitive weat, and their amphiploid, Plant Physiol, 1993, 103: 257-265.
    [116] O’Brien S J, Nelson G W. Human genes that limit AIDS. Nat Genet, 2004, 36(6): 565~574.
    [117]张驰宇,张高红,杨敏,等.四步法消除SYBR GreenⅠ实时定量RT-PCR中引物二聚体的影响.中国生物化学与分子生物学学报,2004,20 (3): 387~392.
    [118] Liu W, Saint D A. A new quantitative method of real time reverse transcription polymerase chain reaction assay based on simulation of polymerase chain reaction kinetics. Anal Biochem, 2002, 302(1): 52~59.
    [119] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(Delta Delta C (T)) Method. Methods, 2001, 25(4): 402~408.
    [120] Winer J, Jung C K, Shackel I, et al. Development and validation of real-time quantitative reverse transcriptase-polymerase chain reaction formonitoring gene expression in cardiac myocytes in vitro. Anal Biochem, 1999, 270(1): 41-49
    [121]张驰宇,徐顺高,黄新祥.一种新颖简便的荧光实时RT-PCR相对定量方法的建立.生物化学与生物物理进展, 2005, 33(9): 883-888.
    [122] Cheng W H, Endo A, Zhou L et al. A unique short-chain dehydrogenase/reductase in Arabidopsis abscisic acid biosynthesis and glucose signaling. Plant Cell, 2002, 14: 2723-2743.
    [123] Ghassemian M, Nambara E, Cutler S, et al. Regulation of abscisic acid signaling by the ethylene response pathway in Arabidopsis. Plant Cell, 2000, 12: 1117-1126.
    [124]夏立忠,杨林章.大棚番茄优化施肥与土壤养分和盐害的变化特征..中国蔬菜,2003,(2):4-7.