黄瓜CsMAPK基因的植物病毒载体构建及长春花种质资源多样性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用简并引物PCR和RACE技术,从黄瓜中克隆到CsMAPK cDNA的保守序列,运用NCBI中Blastx进行氨基酸同源比对结果表明,克隆的这个保守区序列与其他植物的MAPK基因有很高的同源性(>80%),其中与拟南芥ATMPK20基因同源性最高(90%)。同源性比对结果表明已成功克隆到了黄瓜CsMAPK保守序列。另外,利用软件做出的一个保守区同源进化树,同样说明克隆到了黄瓜CsMAPK保守序列。为进一步验证该序列的功能,基于病毒诱导基因沉默的原理,将构建烟草花叶病毒载体,建立黄瓜RNA干扰体系,对该基因进行功能验证。
     由于长春花具有很强的观赏价值,开花时期长,品种多样,花色鲜艳,将广泛应用于2010年上海市世博会。本文利用分子标记分析了长春花种质资源遗传多样性,为长春花的遗传育种研究提供一定参考。本论文优化了长春花ISSR-PCR体系,并利用ISSR分子标记技术对40个长春花种质资源进行了遗传关系分析,多态性PCR扩增结果表明:在115个位点,其中多态位点78个,多态位点百分率为67.8%,多态性较高;POPGENE32软件计算结果表明,40个长春花品种平均有效等位基因数为1.6384, Nei遗传多样性指数平均为0.3735,平均Shannon信息指数为0.5546;应用NCSYS软件计算得到品种间的遗传相似系数介于0.150~0.900,平均为0.584。通过聚类分析将这40个长春花种质分成7组,该聚类结果与以前根据形态进行的分类结果有极大的相似性。该研究将为长春花品种鉴定和品种保护提供依据,为长春花种质资源亲缘关系的确定及杂交育种提供理论依据。
The conserved cDNA domain of CsMAPK was obtained in cucumber (Cucumis sativus L.) by using degenerate primer and RACE. Bioinformatic analysis showed show that this conserved domains sequence with the MAPK gene of the other plants has high homology (> 80%), which with the Arabidopsis genes ATMPK20 highest homology (90%). The results show that we have been successfully obtained conserved domains of CsMAPK gene in cucumber. In addition, the homology evolutionary tree showed the sequence is conserved domain of CsMAPK gene in cucumber.Further, to verify the functions of sequence, we will construct tobacco mosaic virus expresstion vector based on the principle of virus-induced gene silencing pre-built, and set up the transient expression system for verifying the function of gene sequence.
     Because Catharanthus roseus has strong ornamental value, flowering period long, varieties diverse, will be used in 2010 Shanghai EXPO extensively. This research analyzes the genetic diversity of germplasm resources in Catharanthus roseus by molecular markers. It provides a reference for genetic breeding in Catharanthus roseus.
     Genetic relationships between forty varieties of Catharanthus roseus which are suitably cultivated in Shanghai were analyzed by ISSR (inter-simple sequence repeat) markers. Genetic diversity and similarity were analyzed in molecular level and the purpose of this study is further perfecting the evaluation of species resource in Catharanthus roseus. The result showed that a total of 115 bands based on 20 primers were detected, out of which 78 were polymorphic (67.8%). As analyzed by POPGENE32, the average value of effective number of alleles, Nei’s gene diversity and Shannon’s information index were 1.6384, 0.3735, 0.5546, respectively. As analyzed by NCSYS, the Nei’s genetic similarity coefficient between cultivars ranged from 0.150 and 0.900, mean is 0.584. Clustering analysis showed that the 40 varieties of C. roseus could be distinctively classified into 7 groups. This is in accord with previous result made by morphological study. The study will provide a basis for Catharanthus roseus varieties identify and species protection, and supply a theoretical basis for determining the genetic relationship and crossbreeding of Catharanthus roseus germplasm resources.
引文
[1] Asai T, Tena G, Plotnikova J, Willmann MR, et al. MAP kinase signalling cascade in Arabidopsis innate immunity, Nature,2002,415: 977-983
    [2] Stefan Kiegerl, Francesca Cardinale, Christine Siligan, et al. SIMKK, a Mitogen-Activated Protein Kinase (MAPK) Kinase, Is a Specific Activator of the Salt Stress-Induced MAPK, SIMK, The Plant Cell, 2000, 12: 2247-2258
    [3] Yong Hwa Cheong, Byeong Cheol Moon, Jong Kyong Kim,et al. BWMK1, a Rice Mitogen-Activated Protein Kinase, Locates in the Nucleus and Mediates Pathogenesis-Related Gene Expression by Activation of a Transcription Factor, Plant Physiol, 2003,132: 1961-1972
    [4] Lizhong Xiong, Yinong Yang. Disease Resistance and Abiotic Stress Tolerance in Rice Are Inversely Modulated by an Abscisic Acid-Inducible Mitogen-Activated Pr, The Plant Cell, 2003, 15: 745-759
    [5] Chun-Peng Song, Manu Agarwal, Masaru Ohta, et al. Role of an Arabidopsis AP2/EREBP-Type Transcriptional Repressor in Abscisic Acid and Drought Stress Responses ,The Plant Cell, 2005, 17: 2384-2396
    [6] MAPK group, Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends in Plant Science, 2002, 7:301-308
    [7] Jonak C, Okresz L, B ?gre L, Hirt H, Complexity, cross talk and integration of plant MAP kinase signaling. Current Opinion in Plant Biology, 2002, 5: 415-424
    [8] Jonak C, Ligterink W, Hirt H, MAP kinase in plant signal transduction.Cellular and Molecular Life Science, 1999, 55: 204-213
    [9] Edward C. Burnett, Radhika Desikan, Rosita C. Moser, et al. ABA activation of an MBP kinase in Pisum sativum epidermal peels correlates with stomatal responses to ABA, J Exp Bot, 2000,51:195-205
    [10] Yuhko Kobayashi, Shuhei Yamamoto, Hideyuki Minami, et al. Differential Activation of the Rice Sucrose Nonfermenting1-Related Protein Kinase2 Family byHyperosmotic Stress and Abscisic Acid, The Plant Cell, 2004, 16:1163-1177
    [11] Shinpei Katou, Eri Karita, Hiromoto Yamakawa, et al., Catalytic Activation of the Plant MAPK Phosphatase NtMKP1 by Its Physiological Substrate Salicylic Acid-induced Protein Kinase but Not by Calmodulins*, J Biol Chem, 2005,280: 39569-39581
    [12] Hammond S, Caudy A, Hannon G, Post-transcriptional gene silencing by double-stranded RNA. Nature Reviews Genetics, 2001, 2:110-119
    [13] Xiong L, Yang Y, Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. The Plant Cell, 2003, 15:745-759
    [14] van Kammen A, Virus-induced gene silencing in infected and transgenic plants, Trends Plant Sci, , 1997, 2:409-411
    [15] Baulcombe DC, Fast forward genetics based on virus-induced gene silencing, Curr Opin Plant Biol, 1999, 2:109-113
    [16] Ruiz MT, Voinnet O, Baulcombe DC, Initiation and maintenance of virus-induced gene silencing, Plant Cell, 1998,10:937-946
    [17] Kumagai MH, Donson J, Della-Cioppa G, Harvey D, Hanley K, Grill LK, Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived RNA, Proc Natl Acad Sci USA, 1995, 92:1679-1683
    [18] Ratcliff F, Martin-Hernandez AM, Baulcombe DC, Tobacco rattle virus as a vector for analysis of gene function by silencing, Plant J, 2001, 25:237-245
    [19] Hull R, Matthews’plant virology, 4th edn. Academic, New York, 2002
    [20] Liu Y, Schiff M, Dinesh-Kumar SP, Virus-induced gene silencing in tomato, Plant J, 2002a, 31:777-786
    [21] Liu Y, Schiff M, Marathe R, Dinesh-Kumar SP, Tobacco Rar1, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus, Plant J, 2002b, 30:415-429
    [22] Ekengren SK, Liu Y, Schiff M, Dinesh-Kumar SP, Martin GB, Two MAPK cascades, NPR1, and TGA transcription factors play a role in Pto-mediated disease resistance in tomato, Plant J, 2003, 36:905-917
    [23] Pogue GP, Lindbo JA, Garger SJ, Fitzmaurice WP, Making an ally from an enemy: plant virology and the new agriculture, Annu. Rev. Phytopathol., 40:45-74
    [24] Timmermans M, Das O, Messing J, 1994, Geminivirus and their uses as extrachromosomeal replicons, Annu. Plant Physiol., 2002, 45:79-112
    [25] Allen SM, Baulcombe DC, Technical advance: potato virus X amplicon-mediated silencing of nuclear genes, Plant J., 1999, 20:357-62
    [26] MacFarlane SA, Popovich AH, Efficient expression of foreign proteins in roots from tobravirus vectors, Virology, 2000, 267: 29-35
    [27] Mallory AC, Parks G, Endres MW, Baulcombe D, Bowman LH, et al., The amplicon-plus system for high-level expression of transgenes in plants, Nat. Biotechnol, 2002, 20:622-25
    [28] Anandalakshmi R, Pruss GJ, Ge X, Marathe R, Mallory AC, et al., A viral suppressor of gene silencing in plants, Proc. Natl. Acad. Sci. USA, 1998, 95:13079-84
    [29] Kasschau KD, Carrington JC, A counter defensive strategy of plant viruses: suppression of posttranscriptional gene silencing, Cell, 1998, 95:461-70
    [30] Palmer KE, Rybicki EP, Investigation of the potential of maize streak virus to act as an infectious gene vector in maize plants, Arch. Virol., 2001, 146:1089-104
    [31] Teycheney PY, Tepfer M, Virus-specific spatial differences in the interference with silencing of the chs-A gene in non-transgenic petunia, J. Gen. Virol., 2001, 82:1239-43
    [32] Peele C, Jordan CV, Muangsan N, Turnage M, Egelkrout E, Eagle P, Hanley-Bowdoin L, Robertson D, Silencing of a meristematic gene using geminivirus-derived vectors, Plant J, 2001, 27:357-366
    [33] Kjemtrup S, Sampson KS, Peele CG, Nguyen LV, Conkling MA, Gene silencing from plant DNA carried by a geminivirus, Plant J, 1998, 14:91-100
    [34] Palmer KE, Thomson JA, Rybicki EP, Generation of maize cell lines containing autonomously replicating maize streak virus-based gene vectors, Arch. Virol, 1999, 144:1345-60
    [35] Lacomme C, Hrubikova K, Hein I, Enhancement of virus-induced gene silencing through viral-based production of inverted-repeats, Plant J, 2003, 34:543-553
    [36] Matzeit V, Schaefer S, Kammann M, Schalk HJ, Schell J, Gronenbom B, Wheat dwarf virus vectors replicate and express foreign genes in cells of monocotyledonous plants, Plant Cell, 1991, 3:247-258
    [37] Ding XS, Schneider WL, Chaluvadi SR, Rouf Mian RM, Nelson RS, Characterization of a Brome mosaic virus strain and its use as a vector for gene silencing in monocotyledonous hosts, Mol Plant Microbe Interact, 2006, 19:1229-1239
    [38] Gossele VV, Fache II, Meulewaeter F, Cornelissen M, Metzlaff M, SVISS-a novel transient gene silencing system for gene function discovery and validation in tobacco, Plant J, 2002, 32:859-866
    [39] Tao X, Zhou X, A modified viral satellite DNA that suppresses gene expression in plants, Plant J, 2004, 38:850-860
    [40] Fofana IB, Sangare A, Collier R, Taylor C, Fauquet CM, A geminivirus-induced gene silencing system for gene function validation in cassava, Plant Mol Biol, 2004, 56:613-624
    [41] Turnage MA, Muangsan N, Peele CG, Robertson D, Geminivirus- based vectors for gene silencing in Arabidopsis, Plant J, 2002, 30:107-117
    [42] Muangsan N, Robertson D, Geminivirus vectors for transient gene silencing in plants, Methods Mol Biol, 2004, 265:101-115
    [43] Lu R, Martin-Hernandez AM, Peart JR, Malcuit I, Baulcombe DC, Virus-induced gene silencing in plants, Methods , 2003b, 30:296-303
    [44] Burch-Smith TM, Anderson JC, Martin GB, Dinesh-Kumar SP, Applications and advantages of virus-induced gene silencing for gene function studies in plants, Plant J, 2004, 39:734-746
    [45] Burch-Smith TM, Schiff M, Liu Y, Dinesh-Kumar SP, Efficient virus-induced gene silencing in Arabidopsis, Plant Physiol, 2006, 142:21-27
    [46] Chung E, Seong E, Kim YC, Chung EJ, Oh SK, Lee S, Park JM, Joung YH, Choi D, A method of high frequency virus induced gene silencing in chili pepper(Capsicum annuum L. cv. Bukang), Mol Cell, 2004, 17:377-380
    [47] Hileman LC, Drea S, Martino G, Litt A, Irish VF, Virus-induced gene silencing is an effective tool for assaying gene function in the basal eudicot species Papaversomniferum (opium poppy), Plant J, 2005, 44:334-341
    [48] Gould B, Kramer EM, Virus-induced gene silencing as a tool for functional analyses in the emerging model plant Aquilegia (columbine, Ranunculaceae), BMC Plant Methods, 2007, 3:6
    [49] Fu DQ, Zhu BZ, Zhu HL, Jiang WB, Luo YB, Virus-induced gene silencing in tomato fruit, Plant J, 2005, 43:299-308
    [50] Chen JC, Jiang CZ, Reid MS, Silencing a prohibitin alters plant development and senescence, Plant J, 2005, 44:16-24
    [51] Spitzer B., Zvi M.M., Ovadis M., Marhevka E., Barkai O., Edelbaum O., Marton I., Masci T., Alon M., Morin S., Rogachev I., Aharoni A., and Vainstein A., Reverse genetics of floral scent: application of tobacco rattle virus-based gene silencing in Petunia, Plant Physiol., 2007, 145(4): 1241-1250
    [52] Cai XZ, Xu QF, Wang CC, Zheng Z, Development of a virus induced gene-silencing system for functional analysis of the RPS2-dependent resistance signaling pathway in Arabidopsis, Plant Mol Biol, 2006, 62:223-232
    [53] Kim M, Lim JH, Ahn CS, Park K, Kim GT, Kim WT, Pai HS, Mitochondria-associated hexokinases play a role in the control of programmed cell death in N. benthamiana, Plant Cell, 2006, 18:2341-2355
    [54] Moeder W, Del Pozo O, Navarre DA, Martin GB, Klessig DF, Aconitase plays a role in regulating resistance to oxidative stress and cell death in Arabidopsis and N benthamiana, Plant Mol Biol, 2007, 63:273-287
    [55] He X, Anderson JC, del Pozo O, Gu YQ, Tang X, Martin GB, Silencing of subfamily I of protein phosphatase 2A catalytic subunits results in activation of plant defense responses and localized cell death, Plant J, 2004, 38:563-577
    [56] Nasir KH, Takahashi Y, Ito A, Saitoh H, Matsumura H, Kanzaki H, Shimizu T, Ito M, Fujisawa S, Sharma PC, Ohme-Takagi M, Kamoun S, Terauchi R, High-throughput in planta expression screening identifies a class II ethylene-responsive element binding factor-like protein that regulates plant cell death and non-host resistance, Plant J, 2005, 43:49-505
    [57] Scofield SR, Huang L, Brandt AS, Gill BS, Development of a virus-induced genesilencing system for hexaploid wheat and its use in functional analysis of the Lr21-mediated leaf rust resistance pathway, Plant Physiol, 2005, 138:2165-2173
    [58] Hein I, Barciszewska-Pacak M, Hrubikova K, Williamson S, Dinesen M, Soenderby IE, Sundar S, Jarmolowski A, Shirasu K, Lacomme C, Virus-induced gene silencing-based functional characterization of genes associated with powdery mildew resistance in barley, Plant Physiol, 2005, 38:2155-2164
    [59] Lin S.S., Hou R.F., and Yeh S.D., Construction of in vitro and in vivo infectious transcripts of a Taiwan strain of Zucchini yellow mosaic virus, Bot. Bull. Acad. Sin., 2002, 43: 261-269
    [60] Lin MK, Belanger H, Lee YJ, Varkonyi-Gasic E, Taoka KI, Miura, E, Xoconostle-Cázares B, Gendler K, Jorgensen RA, Phinney B, Lough TJ, and Lucas WJ , FLOWERING LOCUS T protein may act as the long-distance florigenic signal in the cucurbits, Plant Cell, 2007, 19: 1488-1506
    [61] Chen J.C., Jiang C.Z., Gookin T.E., Hunter D.A., Clark D.G., and Reid M.S., Chalcone synthase as a reporter in virus-induced gene silencing studies of flower senescence, Plant Mol. Biol., 2004, 55(4): 521-530
    [62] Abbott JC, Barakate A, Pincon G, Legrand M, Lapierre C, Mila I, Schuch W, Halpin C, Simultaneous suppression of multiple genes by single transgenes. Down-regulation of three unrelated lignin biosynthetic genes in tobacco, Plant Physiol, 2002,128:844-853
    [63] Fu DQ, Zhu BZ, Zhu HL, Zhang HX, Xie YH, Jiang WB, Zhao XD, Luo KB, Enhancement of virus-induced gene silencing in tomato by low temperature and low humidity, Mol Cell, 2006, 21:153-160
    [64] Mizoguchi T, Lchimura K, Shinozaki K. Environmental stress response in plants:the role of mitogen-activated protein kinase[J].Tibtech, 1997, 15(1): 15-19.
    [65] Yu S W, Tang K X, MAP Kinase Cascades Responding to Environmental Stress in Plants [J].植物学通报, 2004 ,46 (2):127-136
    [66] Davies WJ, Zhang J., Root Signals and the Regulation of Growth and Development of Plants in Drying Soil, Annu Rev Plant Physiol Plant Mol Biol, 1991, 42: 55-76
    [67]夏兰,李静,陈晓梅,长春花及其在景观和药学方面的应用[J],南方农业(园林花卉版), 2008, 1: 50-53
    [68]李咏梅,长春花的药用价值及栽培,特种经济动植物, 2002, 5(8): 24-25
    [69]云青柳,长春花的栽培及观赏利用,热带林业, 2005, 33(4): 45-46
    [70] I G Zhou, G Z Zheng, Studies on technology of mass cell culture of Panax Quinque lium[J], Bio Engineer.1997, 2(3):230-234
    [71] Z Zheng.A nisodus acutangulus:Production of Scopolamine and Hyoscyamine in cell culture[J].Biotechnology in Agriculture and Forestry, 1989.7:23-46
    [72]郑光植,王世林,三七愈伤组织的培养[J],云南植物研究, l989,1l(3): 255-262
    [73] ZHAO J(赵剑),ZHU W H(朱蔚华).Progress of studies on regulation enzymes and genes involved in biosynthetic pathway and production of indole alkaloids in Catharanthus roseus[J].Plant Physiology Communication(植物生理学通讯),1999, 35(1): 60-68(in Chinese)
    [74] MERILLON J M, LIU D, HUGUET F, et a1. Effects of calcium entry blockers and calmodulin inhibitors on cytokine-enhanced alkaloid ticcumulation in Catharanthus roseus cell cultures[J]. Plant Physio1. Biochem., 1991, 29: 289-296
    [75]张琳,祖元刚,牛卉颖等,长春花(Catharanthus roseus)中吲哚类生物碱含量的比较,植物研究, 2008, 8(2): 240-244
    [76]唐中华,焦琰,张学科等,高温对长春花生活史型形成和生理代谢的影响,生态学报,2006, 26(11): 3641-3647
    [77]唐中华,郭晓瑞于景华等,弱光对长春花幼苗中可溶性糖、生物碱及激素含量的影响,生态学报, 2007, 27(11): 4419-4425
    [78]段传人,王伯初,徐世荣,环境应力对植物次生代谢产物形成的作用.重庆大学学报, 2003, 26(10): 67-71
    [79]王景艳等, NaCl胁迫对长春花幼苗离子分布和光合作用的影响生态学杂志Chinese Journal of Ecology, 2008, 27(10): 1680-1684
    [80]张海英,许勇,王永健,分子标记技术概述(上),长江蔬菜, 2001, (3): 4-6
    [81]刘世荣,蒋有绪,中国暖温带森林生物多样性研究,北京:中国科学技术出社,1998
    [82]郑成木,植物分子标记原理与方法,长沙,湖南科学技术出版社, 2003
    [83]郑敏,罗玉萍,真核生物基因组多态性分析的DNA指纹技术,生物技术, 1999, 9: 35-38
    [84]贺林主编,解码生命——人类基因组计划和后基因组计划,北京:科学科学社, 2000
    [85] Zietkiewicz E, Rafalski A, Labuda D,Genome finger printing by simple sequence repeat (SSR) anchored polymerase chain reaction amplification,Genomics,1994,20:176-183
    [86] Godwin I D,Aiken E A B,Smith L W,Application of inter simple sequence repeat(ISSR)markers to plant genetics,Electrophoresis,1997,18:1524-1528
    [87] Condit R, Hubbell S P, Abundance and DNA sequence of two-base repeat region in tropical tree genomes.Genome,1991,34:66-71
    [88] Caldeira R L,Vidigal T H D A,Simpson A J G and Carvalho O S, Genetic variability in Brazilian populations of Biomphalaria straminea complex detected by simple sequence repeat anchored polymerase chain reaction amplification,Mem Ins Oswaldo Cruz, 2001, 96(4):535-544
    [89]胡绍庆,邱英雄,吴光洪等,桂花品种的ISSR-PCR分析,南京林业大学学报(自然科学版), 2004, 28: 71-75
    [90]郭丁丁,马逾英,唐琳,陈要臻,白芷ISSR-PCR反应体系的建立和优化成都中医药大学学报, 2008, 3l, (2): 45-48.
    [91]王淼,于恒秀,龚志云等,芍药栽培品种ISSR反应体系的优化和应用,扬州大学学报(农业与生命科学版), 28(2)L: 78-82.
    [92]索志立等,牡丹品种鉴定用ISSR引物的筛选与开发,生物技术通报, 2006年增刊: 342-346.
    [93] Fang D Q,Krueger R R,Roose M L.Phylogenetic relationships among selected Citrus germplasm accessions revealed by inter-simple sequence repeat (ISSR) markers, J Am Soc Hort Sci, 1998, 123, 612-617.
    [94] Escandon Alejandro,SEscandon,Alejandro S,et al.Molecular identification of newvarieties of Nierembergia linariaefolia(Graham),a native Argentinean ornamental plant, J Appl Genet, 2007, 48 (2):115-123.
    [95]缪恒彬,陈发棣,赵宏波, 85个大菊品种遗传关系的ISSR分析,园艺学报, 2007, 34(5): 1243-1248
    [96] Drewlow L W, Ascher P D, Widme R E., Rapid method of determining pollen incompatibility in Chrysanthemum morifolium RAMAT. Euphytiea, 1975, 24 (1): 29-32
    [97] Gronald W, Ascher P D, Efects of high temperature treatments on seed yield and self incompatibility in Chrysanthemum. Euphytica, 1975, 24(2):317-322
    [98]姜福星,百合种质资源遗传多样性ISSR分析,南京林业大学,硕士学位论文
    [99]罗晓莹,庄雪影,杨跃生,杜鹃红山茶遗传多样性的ISSR分析,亚热带植物学报, 2007, 15(2): 93-100
    [100]宾晓芸,唐绍清,周俊亚等,金花茶遗传多样性的ISSR分析,武汉植物学研究, 2005, 23(1): 20-26
    [101]金则新,李钧敏,顾奇萍,云锦杜鹃自然居群遗传多样性的ISSR分析,园艺学报, 2006, 33(6): 1263-1267
    [102] Xue D W, Ge X J, Hao G, et al., High genetic diversity in a rare,narrowly endemic primrose species: Primulamula interjacens by ISSR analysis, Acta Botanica Sinica, 46(10): 1163-1169
    [103]赵谦,杜虹,庄东红等, 14个蝴蝶兰品种遗传关系的ISSR分析,植物研究, 2008,28(2): 227-231
    [104]索志立,周世良,张会金等,杨山牡丹与牡丹种间杂交后代的DNA分子证据,林业科学研究, 2004, 17(6): 700-705
    [105]索志立,张会金,张治明等,紫斑牡丹与牡丹种间杂交后代的DNA分子证据,云南植物研究, 2005, 27(1): 42-48
    [106]林加涵,魏文玲,彭宣宪,现代生物学实验(下册),北京:高等教育出版社, 2003: 100-102
    [107] F奥斯伯, R布伦特等,精编分子生物学实验指南,严子颖,王海林译,北京:科学出版社,1999
    [108] Proberki S L, Bailey G, Baum R B.Modification of a CTAB extraction protocol for plant containing high polysaccharide and polyphenol components, Plant Mol Rep, 1997(12): 8-15
    [109]彭瑜,王劲,胡进耀,柚ISSR-PCR反应体系的建立与优化,西华师范大学学报(自然科学版), 2007, 28(3): 225-228
    [110]彭海,张静,张梁,长豇豆品种ISSR-PCR最佳退火温度的筛选,长江蔬菜, 2007, 9: 49-51
    [111] Yeh FC, Boyle TJB, Population genetic analysis of co-dominant and dominant markers and quantitative traits[J], Belgian Journal of Botany, 1997, 129: 157
    [112] Rohlf, F. J. NTSYS-pc Version 2.10. Applied Biostatistics Inc., New York. 1994
    [113]黄建安,李家贤,黄意欢等,茶树品种资源遗传多样性的AFLP研究[J],园艺学报, 2006, 33(2): 317-322
    [114] http://www.huajiancao.com/huajc/viewthread.php?tid=2836