高温带压下PTA相关体系密度和汽液相平衡的测定及研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
密度数据和汽液相平衡数据是液体流动、传热和传质过程研究和工程计算中不可缺少的数据,也是PTA生产过程中所必需的数据。本论文是中国石化总公司委托项目的一部分,涉及的内容主要是PTA生产过程中相关物系的密度和汽液相平衡数据测定与研究。
     PTA的生产是在加压条件下进行的,与常压相比,高温加压下的物性数据的测定要困难得多,且高温加压下的物性数据的相关文献报道也很少。另外,在PTA相关体系中,醋酸作为溶剂是生产过程中一个重要的组分,醋酸的强腐蚀性是实验装置的设计和选型的一大难题。为此,本论文自行研制了一种可用于测量高温带压条件下液体密度的压力计式密度计并验证了该装置的可靠性。该装置主体为厚壁毛细玻璃管,可耐醋酸腐蚀并可承受最高10.0MPa的压力和573.15K的工作温度。用此密度仪测定了对二甲苯-醋酸、间二甲苯-醋酸和邻二甲苯-醋酸三个二元体系的液体密度(温度范围313.15K~473.15K,压力范围0.20~2.0MPa)。用实验所得密度数据计算出了该体系的超额摩尔体积VE,用Redlich-Kister方程分别对VE进行了回归。本论文还自行设计了一套流动法测定高温高压汽液相平衡装置并验证了该装置的可靠性。该装置主体为耐醋酸腐蚀的钛材,设计压力为10.0MPa,设计温度为573.15K。采用该装置测定了对二甲苯-醋酸、间二甲苯-醋酸和邻二甲苯-醋酸三个二元体系的汽液相平衡数据(温度范围433.15K~473.15K)。为PTA的工程设计提供了充足可靠的基础数据。
     分别选用CPA状态方程、HBT模型和ISH2模型对实验条件范围内二甲苯-醋酸体系的密度数据进行了计算或估算。对HBT模型和ISH2模型进行了修正,使用修正后的模型对实验条件范围内二甲苯-醋酸体系的密度数据进行了估算,结果表明,修正后的m-HBT模型和m-ISH2模型的估算精度均好于原有模型,其中m-HBT模型估算精度提高明显。
     采用Wilson和NRTL活度系数模型方程对二甲苯-醋酸体系的汽液平衡实验数据进行了关联计算,得到了各个体系的模型参数。由关联结果可以看出,对于二甲苯-醋酸体系,Wilson模型方程和NRTL模型方程都能得到很好的关联结果,且两模型的关联精度相当。
     利用本论文实验所得二甲苯-醋酸体系的汽液平衡数据回归了A-UNIFAC缔合模型的ACCH2基团与CH2基团的交互作用参数以及ACCH2基团与COOH基团的交互作用参数。在A-UNIFAC缔合模型的基础上,提出了mA-UNIFAC缔合模型,根据文献数据回归了mA-UNIFAC模型所需的模型参数。分别使用A-UNIFAC模型和mA-UNIFAC模型对实验所得VLE数据进行了计算或估算,结果表明本论文提出的mA-UNIFAC法的计算精度与A-UNIFAC缔合模型计算精度相当,在对汽相组成的预测上mA-UNIFAC模型好于A-UNIFAC模型。
Liquid densities and vapor-liquid phase equilibrium data of pure compound and their mixtures are needed for the design of chemical processes involving heat and mass transfers or fluid mechanics, and are indispensable for PTA process. This thesis is partially supported by Chinese Petroleum Chemical Engineering Company. It includes the measurement and research of density and vapor-liquid phase equilibrium data related to the production of PTA.
     PTA is manufactured under pressure condition. Comparing to the atmospheric pressure, it is more difficult to measure the physical properties at high temperature and pressure. The data that related to the high temperature and pressure are even scarce. In addition, as the solvent, acetic acid is an important component in the PTA process. The strong corrosion of the acetic acid makes it difficult to select and design the measurement apparatus. In this paper, a new piezometric densimeter was designed and manufactured by ourselves. The main part of this densimeter is a thick-walled glass capillary, which can resist corrosion and can bear up to 10.0MPa in pressure and 573.15K in temperature. With the densimeter, the reliability of it was confirmed with literature data. The liquid densities of p-xylene-acetic acid, o-xylene-acetic acid, and m-xylene-acetic acid were measured by this densimeter at T from 313.15K to 473.15K and p from 0.20 to 2.0MPa. Excess molar volumes were calculated by the measurement results and being fitted by the Redlich-Kister equation. A flow-type apparatus for measuring vapor-liquid phase equilibrium under high pressures was also set up. The main part of this apparatus is made by titanium, which has good corrosion resistence. The design working pressure and temperature are 10.0MPa and 573.15K. The reliable and accurate of this apparatus were also proved. The VLE data of p-xylene-acetic acid, o-xylene-acetic acid, and m-xylene-acetic acid were measured by this apparatus at T from 433.15K to 473.15K. These results provide adequate and reliable data for PTA engineering design.
     CPA-EOS, HBT model and ISH2 model were selected to calculate and estimated the liquid densities of xylenes-acetic acid binary mixtures under experimental conditions. The HBT model and ISH2 model were modified and used to estimate the liquid densities of xylenes-acetic acid binary mixtures. Compared to the original models, the estimation results of the two modified models are both better than the original models, especially the m-HBT model.
     Wilson and NRTL models were used to correlate the VLE experimental data, and the corresponding model parameters were regressed also. It can be found from the correlation results that both models can get good correlation accuracy.
     Interaction parameters of the A-UNIFAC model corresponding to the ACCH2-CH2 groups and ACCH2-COOH groups were obtained by fitting the experimental data. A mA-UNIFAC model was proposed based on A-UNIFAC model. The interaction parameters of the mA-UNIFAC model were also obtained by fitting the literature data. The experimental VLE data were calculated and estimated by A-UNIFAC and mA-UNIFAC models. The results show that mA-UNIFAC model has the similar calculation accuracy as A-UNIFAC model. In the aspect of predicting vapor phase compositions the accuracy of mA-UNIFAC model is better.
引文
[1]韩凤山,林克芝.世界芳烃生产技术的发展趋势.当代石油石化,2006,14:30-35
    [2]姜迎娟,况宗华.精对苯二甲酸生产工艺综述.应用化工,2006,35:300-304
    [3]蒋士成,吴剑南.2010年中国聚酯产业链发展展望和建议.当代石油石化,2005,13:1-11
    [4]徐兆瑜,精对苯二甲酸生产工艺新进展.江苏化工.2005,33:19-21
    [5]姜迎娟,况宗华.精对苯二甲酸生产工艺综述.应用化工,2006,35:300-304
    [6]王勤波,李希,王丽军.PX氧化反应段工艺条件的优化研究.聚酯工业,2003,16:12-17
    [7] Tekac V, Cibulka I, Holub R. PVT properties of liquids and liquid mixtures: A review of the experimental methods and the literature data. Fluid Phase Equilibria, 1985, 19: 33-149
    [8] Lee L S, Chung M L. Excess volumes of cyclohexane with 2-propanone, 2-butanont systems. J. Chem. Eng. Data, 1997, 42: 850-853
    [9] JoséT, Concepcion D. Densities and tefractive indices for 1-hexene + o-xylene + m-xylene + p-xylene and + ethylbenzene. J. Chem. Eng. Data, 1995, 40: 96-98.
    [10]张淑云,曹汇川,马沛生.烃类物质液体密度的关联.天然气化工,1996,21:47-52.
    [11] Benedict M, Webb G B, Rubin L C. An empirical equation for thermodynamics properties of light hydrocarbons and their mixture. J. Chem. Phys., 1940, 8: 334-345
    [12] Lee B I, Kesler M G. A generalized thermodynamic correlation based on three-parameter corresponding states. AIChE J., 1975, 21: 510-527
    [13] Martin J J. Hou Y C. Development of an equation of state for gases. AIChE J., 1955, 1: 142~149
    [14]侯虞钧,张彬,唐宏青.马丁-侯状态方程向液相发展.化工学报,1981,32: 1- 10
    [15] Starling K E, Han M S. Thermo data refined for LPG. Part 14, Mixture. Hydrocarbon Processing, 1972, 51: 129-132
    [16] Martin J J, Kapoor R M, Nevers N D. An improved equation of state for gases. AIChE J., 1959, 5:159-160
    [17] Poling B E, Prausnitz J M, O'Connell J P. The properties of gases and liquids, Fifth edition. McGraw-Hill, 2001
    [18] Redlich O, Kwong J. On the thermodynamics of solution: An equation of state.Fugacities of gaseous solution. Chem. Rev., 1949, 44: 233 - 240
    [19] Soave G. Equilibrium constants from a modified Redlich-Kwong equation of state. Chem. Eng. Sci., 1972, 27: 1197-1203
    [20] Peng D Y, Robinson D B. A new two-constant equation of state. Ind. Eng. Chem. Fundam., 1976. 15: 59-64
    [21] Huron M J, Vidal J. New mixing rules in simple equations of state for representing vapour-liquid equilibria of strongly non-ideal mixtures. Fluid Phase Equilibria, 1979, 3: 255-271
    [22] Tsonopoulos C., Heidman J. L.. High-pressure vapor-liquid equilibria with cubic equations of state. Fluid Phase Equilibria. 1986.29: 391-414
    [23] Kabadi V N, Danner R P. A modified Soave-Redlich-Kwong. equation of state for water-hydrocarbon phase equilibria. Ind. Eng. Chem. Proc. Des. Dev., 1985, 24: 537-641
    [24] Michel S, Hooper H, Prausnitz J M. Mutual solubilities of water and hydrocarbons from an equation of state. Need for an unconventional mixing rule. Fluid Phase Equilibria, 1989, 45: 173-189
    [25] Chapman W G, Gubbins K E, Jackson G, et al. New reference equation of state for associating liquids. Ind.Eng.Chem.Res., 1990, 29: 1709-1721
    [26] Huang S H, Radosz M. Equation of state for small, large, polydisperse, and associating molecules. Ind. Eng. Chem. Res., 1990, 29: 2284-2294
    [27] Huang S H, Radosz M. Equation of state for small, large, polydisperse, and associating molecules: extension to fluid mixtures. Ind. Eng. Chem. Res., 1991, 30: 1994-2005
    [28] Ikonomou G D, Donohue M D. Extension of the associated perturbed anisotropic chain theory to mixtures with more than one associating component. Fluid Phase Equilibria, 1988, 39: 129-159
    [29] Economou I G, Ikonomou G D, Vimalchand P, et al. Thermodynamics of Lewis Acid-Base Mixtures. AIChE J., 1990, 36: 1851-1864
    [30] Anderko A. A simple equation of state incorporating association. Fluid Phase Equilibria, 1989, 45: 39-67
    [31] Anderko A. Extension of the AEOS model to systems containing any number of associating and inert components. Fluid Phase Equilibria, 1989, 50: 21-52
    [32] Suresh S, Elliot J. Multiphase equilibrium analysis via a generalized equation of state for associating mixtures. Ind. Eng. Chem. Res., 1992, 31: 2783– 2794
    [33] Ikonomou G D, Donohue M D. Thermodynamics of Hydrogen-Bonded Molecules: The Associated Perturbed Anisotropic Chain Theory. AIChE J., 1986, 32: 1716-1725
    [34] Chapman W G, Gubbins K E, Jackson G, et al. SAFT: equation-of-state solutionmodel for associating fluids. Fluid Phase Equilibria, 1989, 52: 31-38
    [35] Wertheim M S. Fluids with highly directional attractive forces. I. Statistical thermodynamics. J. Stat. Phys., 1984a, 35: 19-34
    [36] Wertheim M S. Fluids with highly directional attractive forces. II. Thermodynamics perturbation theory and integral equation. J. Stat. Phys., 1984b, 35: 35-47
    [37] Wertheim M S. Fluids with highly directional attractive forces. III. Multiple attraction sites. J. Stat. Phys., 1986a, 45: 459-476
    [38] Wertheim M S. Fluids with highly directional attractive forces. IV. Equilibrium polymerization. J. Stat. Phys., 1986b, 42: 477-492
    [39] Kontogeorgis G M, Voutsas E C, Yakoumis I V, et al. An equation of state for associating fluids. Ind. Eng. Chem. Res., 1996, 35: 4310-4318
    [40] Heidemann R A, Prausnitz J M. A van der Waals type equation of state for fluids for associating molecules. Proc. Natl. Acad. Sci. U.S.A., 1976, 73: 1773–1776
    [41] Panayiotou C, Sanchez I C. Hydrogen bonding in fluids: an equation-of-state approach. J. Phys. Chem., 1991,95: 10090-10097
    [42] Peschel F C, Wenzel H. Equation of state predictions of phase equilibria at elevated pressures in mixtures containing methanol.Ber. Bunsen-Ges. Phys. Chem., 1984, 88: 807
    [43] Yen L C. Woods S S. A generalizede equation for computer calculation of liquid densities. AIChE. J., 1966, 12: 95-99
    [44] Hankinson R, Thomson G. A new correlation for saturated densities of liquids and their mixtures. AIChE. J., 1979, 25: 653-663
    [45] Spencer C, Danner R. Improved equation for prediction of saturated liquid density. J. Chem. Eng. Data, 1972, 17(2): 236-241
    [46] Shaver R, Robinson R, Gasem K. A framework for the prediction of saturation properties: liquid densities. Fluid Phase Equilibria, 1992, 78: 81-98
    [47] Campbell S W, Thodos G. Saturated liquid densities of polar and nonpolar pure substances. Ind. Eng. Chem. Fundam., 1984, 23: 500-510
    [48] Thomson G, Brobst K, Hankinson R. An improved correlation for densities of compressed liquids and liquid mixtures. AIChE. J., 1982, 28: 671-676
    [49] Chang C H, Zhao X M. A new generalized equation for predcting volumes of copressed liquids. Fluid Phase Equilibria, 1990, 58: 231-238
    [50] Aalto M, Keskinen K I, Aittamaa J, et al. An improved correlation for compressed liquid densities of hydrocarbons. Part 1, Pure compound. Fluid Phase Equillibria, 1996, 114: 1-19
    [51] Aalto M, Keskinen K I, Aittamaa J, et al. An improved correlation for compressed liquid densities of hydrocarbons. Part 2, Mixtures. Fluid PhaseEquillibria, 1996, 114: 21-35.
    [52] Aalto M, Keskinen K I, Liquid densities at high pressures. Fluid Phase Equillibria, 1999, 166: 183-205
    [53] Iglesias-Silva G A, Hall K R. A saturated liquid density equation for refrigerants. Fluid Phase Equilibria, 1997, 131: 97–105
    [54] Nasrifar K H, Ayatollahi Sh, Moshfeghian M. An extended saturated liquid density equation. Fluid Phase Equilibria, 1999, 166: 163-181
    [55] Eslami H, Azin R. Corresponding-states correlation for compressed liquid densities. Fluid Phase Equilibria, 2003, 209: 245-254
    [56] Eslami H, Azin R. Corresponding-states correlation for compressed liquid density of mixtures. Fluid Phase Equilibria, 2004, 26: 103-107
    [57] Tait P. G Physics and Chemistry of the Voyage of H.M.S. Challenger Vol. 2, Part 4. HMSO, London: 1888
    [58]刘光永.化工开发实验技术.天津:天津大学出版社,1994.40-44
    [59]邱祖民.汽液相平衡测定的研究进展.江西科学,,1996,4:254-258
    [60]马沛生主编.化工热力学(通用型).北京:化学工业出版社,2005.129
    [61] Wilson G M, A New Expression for the excess free energy of mixing. J.Am.Chem.Soc., 1964, 86: 127-130
    [62] Renon H, Prausnitz J M. Local compositions in thermodynamic excess function for liquid mixtures. AIChE J., 1968, 14:135- 144
    [63] Abrams D S, Prausnjtz J M. Statistical thermodynamics of liquid mixtures: A new expression for the excess Gibbs energy of partly or completely miscible systems. AIChE J., 1975, 21: 116-128
    [64]阿格·弗雷登斯隆德,于根?格麦林,彼特?拉斯穆.UNIFAC功能团法推算汽-液平衡.北京:化学工业出版社,1982.14-22
    [65] Fredenslund A, Jones R L, Prausnitz J M. Group contribution estimation of activity coefficients in nonideal liquid mixtures. AIChE J., 1975, 21: 1086-1099
    [66] Larsen B L, Rasmussen P, Fredenslund A. A modified UNIFAC group -contribution model for prediction of phase equilibria and heats of mixing. Ind. Eng. Chem. Res., 1987, 26: 2274~2286
    [67] Gmehling J, Li J, Schiller M. A modified UNIFAC model. 2. Present parameter matrix and results for different thermodynamic properties. Ind. Eng. Chem. Res., 1993, 32: 178~193
    [68] Dahlhoff G, Sbresny A, H?lderich W F. Solubilities, densities, and vapor-liquid equilibria for the system EtOH +cyclohexanone oxime. J. Chem. Eng. Data, 2001, 46: 838~841
    [69] Wittig R, Lohmann J, Gmehling J. Vapor-liquid equilibria by UNIFAC groupcontribution. 6. Revision and extension. Ind. Eng. Chem. Res., 2003, 42: 183~188
    [70] Maeda K, Rousseau R W, Teja A S. Liquid-liquid and solid-liquid equilibria in systems containing n-eicosane, n-tetracosane, ethanol, and water. J. Chem. Eng. Data, 2002, 47: 106~109
    [71] Balslev K, Abildskov J. UNIFAC parameters for four new groups. Ind. Eng. Chem. Res., 2002, 41: 2047~2057
    [72] Tsavas P, Voutsas E, Magoulas K, et al. Phase equilibrium calculations in aqueous and nonaqueous mixtures of sugars and sugar derivatives with a group-contribution model. Ind. Eng. Chem. Res., 2004, 43: 8391~8399
    [73] http://134.106.215.86/UNIFAC/UNIFAC%20Matrix.htm
    [74] http://134.106.215.86/UNIFAC/Main%20Objectives.htm
    [75]高进.高温下不稳定物质临界性质的测定及估算方法的研究:[硕士学位论文] .天津;天津大学,2002
    [76]梁英华,马沛生,张红彦.瞬时法测定不稳定化合物的临界温度和临界压力.化工学报,2000,51:243-247
    [77] Yang Ch, Ma P, Tang D. Excess molar volume, viscosity and heat capacity for the binary mixture of p-xylene and acetic acid at different temperatures. Chinese J. Chem. Eng., 2002, 10: 604-609
    [78]殷绚,阙子龙,吕效平等.超声波声强及处理时间对污泥结合水的影响.化工进展,2005,24:307-310,314
    [79] Release on the IAPWS Formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use, Fredericia, Denmark, 1996
    [80] Treszczanowiczb A J, Kiyoharac O, Benson G C. Excess volumes for n-alkanols +n-alkanes IV. Binary mixtures of decan-1-ol +n-pentane, +n-hexane, +n-octane, +n-decane, and +n-hexadecane. J. Chem. Thermodyn. 1981, 13: 253-260
    [81] Redlich O, Kister A T. Algebric representation of thermodynamic properties and classification of solutions. Ind. Eng. Chem. 1948, 40: 345-348
    [82]邸志国.高温带压下PTA体系黏度和密度的测定及其相关基础研究: [硕士学位论文] .天津;天津大学,2006
    [83] Campbell S W, Thodos G. Saturated liquid densities of polar and nonpolar pure substances. Ind. Eng. Chem. Fundam., 1984, 23: 500-510
    [84] Gmehling J, Onken U. Vapor-liquid equilibrium data collection. pt. 7, aromatic hydrocarbons. Frankfurt Main:DECHEMA, 1980
    [85] Shimoyama Y, Iwai Y, Yamada K, et al. Measurement and correlation of vapor-liquid equilibria for water + 2-propanol, water + 2-butanol, and water + 2-pentanol systems at high temperatures and pressures. J. Chem. Eng. Data, 2006,51:51-55
    [86] Wisniewska B, Gregorowicz J, Malanowski S. Development of a vapour-liquid equilibrium apparatus to work at pressures up to 3 MPa. Fluid Phase Equilibria, 1993, 86: 173-186
    [87] Dykyj J, Svoboda J. Wilhoit RC, Frenkel M, et al. Landolt-Bornstein numerical data and functional relationships in science and technology, New Series, Group IV, Vol 20, Subvolume A, Vapor pressure and Antoine constants for hydrocarbon, and sulfur, selenium, tellurium, and halogen containing organic compounds. Berlin: Springer, 1999
    [88] Gmehling J, Menke J, Krafczyk J, et al. Azeotropic Data pt1. Weinheim: Wiley-VCH, c2004
    [89] Hayden J G, O’Connell JP. A generalized method for predicting second virial coefficients. Ind. Eng. Chem. Process Des. Dev., 1975, 14: 209-216
    [90]马沛生主编.化工热力学(通用型).北京:化学工业出版社,2005.155-157
    [91] Nagata I, Kawamura Y. Thermodynamics of alcohol-unassociated active component liquid mixtures. Chem. Eng.Sci., 1979, 34: 601
    [92] Brandani V. A Continuous linear association model for determining the enthalpy of hydrogen-bond formation and the equilibrium association constant for pure hydrogen-bonded liquids. Fluid Phase Equilibria, 1983, 12: 87-104
    [93] Brandani V, Evangelista F. The UNIQUAC associated-solution theory: vapor-liquid equilibria of binary systems containing one associating and one inert or active component. Fluid Phase Equilibria, 1984, 17: 281-302
    [94] Stathis P J, Tassios D P. Prediction of enthalpies of mixing for systems containing alcohols with a UNIFAC association model. Ind. Eng. Chem. Process Des. Dev., 1985, 24: 701-707
    [95] Fu Y H, Stanley S I,Orbey H. A modified UNIQUAC model that includes hydrogen bonding. Ind. Eng. Chem. Res., 1995, 34: 4351-4363
    [96] Fu Y H, Orbey H, Stanley S I. Prediction of vapor-liquid equilibria of associating mixtures with UNIFAC models that include association. Ind. Eng. Chem. Res., 1996, 35: 4656-4666
    [97] Mengarelli A C, Brignole E A, Bottini S B. Activity coefficients of associating mixtures by group contribution. Fluid Phase Equilibria, 1999, 63: 195-207
    [98] Gros H, Zabaloy M, Bottini S, et al. Proc. 3rd International symposium on supercritical fluids, France: Strasbourg , 1994. 113–118
    [99] Gros H, Bottini S, Brignole E. A group contribution equation of state for associating mixtures. Fluid Phase Equilibria, 1996, 116: 537–544
    [100] Ferrira O, Macedo E A, Bottini S B. Extension of the A-UNIFAC model to mixtures of cross- and self-associating compounds. Fluid Phase Equilib.1996,227, 537–544.
    [101] Chapman W, Gubbins K, Jackson J, et al. SAFT: Equation-of-state solution model for associating fluids. Fluid Phase Equilibria, 1989, 52: 31–38
    [102] Suresh S, Elliot J. Multiphase equilibrium analysis via a generalized equation of state for associating mixtures. Ind. Eng. Chem. Res., 1992, 31: 2783–2794
    [103] Wormald C J. Intermolecular forces between hydrocarbons and ethers, ketones, or alcohols. Fluid Phase Equilibria, 1997, 133: 1-10
    [104] Brinkley R L, Gupta R B. Hydrogen bonding with aromatic rings. AIChE J., 2001, 47: 948-953
    [105] Tarakeshwar P, Choi H S, Lee S J, et al. A theoretical investigation of the nature of the -H interaction in ethene-H2O, benzene-H2O, and benzene-(H2O)2. Chem. Phys., 1999, 111: 5838-5850
    [106] Folas G K, Kontogeorgis G M, Michelsen M L, et al. Application of the Cubic-Plus-Association (CPA) equation of state to complex mixtures with aromatic hydrocarbons. Ind. Eng. Chem. Res., 2006, 45: 1527-1538
    [107] Nelder J A, Mead R. A simplex method for function minimization. Comput. J., 1975, 18: 308~313