两亲性树枝状聚酯的合成及其在药物释放中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,生物可降解高分子药物载体是一大研究热点。生物可降解高分子药物载体可以通过在体内降解成小分子然后通过新陈代谢排除体外,同时可以通过控制材料的降解速率来控制药物释放速度。以两亲性嵌段共聚物胶束作为药物载体可以增加抗肿瘤药物的溶解性,减少其毒副作用。本文设计合成了两亲性树枝状聚酯作为为药物载体,来实现对药物进行控制释放,其具体内容如下:
     1.首先合成了结构精确的羟基乙酸齐聚物以及羟基乙酸乳酸交替齐聚物,其中以溴为羟基封端取代基团,以叔丁基作为羧基保护基团。通过质子核磁共振(1H NMR)对其结构进行表征。
     2.以四氢呋喃为溶剂,碳酸氢钾存在下,DMPA与齐聚物反应,得到支化单体。并通过质子核磁共振(~1H NMR)对其结构进行表征。
     3.支化单体与4-苯甲氧基-4-氧代丁酸通过醇酸缩合反应将支化单元的末端保护,在三氟乙酸(TFA)的存在下脱去叔丁基,使其带有活性的羧基,然后通过收敛法合成树枝状大分子,并采用质子核磁共振(~1H NMR)对其结构进行了表征。
     4.得到的树枝状大分子与聚乙二醇单甲醚进行缩合得到两亲性树枝状聚合物,并采用质子核磁共振(~1H NMR),MALDI-TOF MS以及凝胶色谱仪(GPC)对其进行表征。
     5.对两亲性树枝状聚合物的胶束化进行研究,并通过荧光分光光度计,DLS,TEM对其进行表征;将两亲性树枝状聚酯作为抗肿瘤药物紫杉醇的载体,并通过DLS,TEM对其进行了表征,通过紫外分光光度计对其降解行为进行研究。
Recently, the study of the biodegradable polymer drug delivery attracts more people’s attention. The biodegradable polymer using as drug delivery can be degraded into water and carbon dioxide which were excreted body by metabolism; meantime, through control the degradation of the polymer materials, we can control the release of drugs. Polymer micelles can be formed through self-assemble of amphiphilic copolymer in aqueous environments. Polymer micelles as drug delivery can solubilize poorly water-soluble drugs in their inner core, decrease side effect. This article is focused on the synthesis and characterization of a novel biodegradable and amphiphilic dendritic polyester and using it as drug carrier. The research was mainly concerned with the following aspects:
     1. First, the glycolic acid oligomer and glycolic acid-lactic acid alternate oligomer were synthesized; the carboxyl group of the oligomer was protected by tert-butyl group. The structure was characterized by 1H NMR.
     2. In the presence of potassium bicarbonate in tetrahydrofuran, DMPA reacted with oligomer to synthesize the growing unit. The structure was characterized by 1H NMR.
     3. The growing units reacted with 4-Benzyloxy-4-oxobutanoic acid in order to protect the hydroxyl of DMPA. The carboxyl of the growing units was activated in the presence of TFA. The dendrimer was synthesized through convergence method, and their structures were confirmed by 1H NMR.
     4. The amphiphilic dendritic polymer was synthesized by condensation reaction of dendrimer and MPEG. The structure was characterized by 1H NMR, MALDI-TOF and GPC.
     5. Micelle with core-shell structure was prepared in aqueous solution from the amphiphilic block copolymers, and characterized by 1H NMR, TEM, DLS and fluorescence. The block copolymer micelle was loaded with the water-fast anticancer drug; paclitaxel was also characterized by TEM and DLS. The release of paclitaxel from mPEG5000-G3-Bn was monitored by UV-Vis which showed that the release was controlled by a combined degradation-diffusion mechanism.
引文
[1] Aetusrson, Edmna P, Laukso P, Characterization of polyacryl starch microparticles as carriers for proteins and drugs[J]. J. Pharm. Sci., 1984, 73(11): 1507-1513.
    [2] Takeuehi, Yamamoto H, Kawashilna H Y, Mucoadhensive nanoparticulate systems for peptide drug delivery[J]. Adv. Drug Deliv. Rev., 2001. 47(1): 39-54.
    [3] H Q Mao, Troung-Le K, Janes V L, Chitosan-DNA Nanpoartieels as Gene Carriesr: Synthesis, characterization and transfection efficiency[J]. J. Control. Release, 2001, 70(3): 399-421.
    [4] Nsgamaoto, Hattori T, Tkaayam Y, Novel Chiotsan Partieles and Chiostna-coated emulsions inducing immune responses via intranasal vaccine delivery[J]. Pharm. Res., 2004, 21(4): 671-674.
    [5] Jung D E, Kim T K, Shin S S, Prparation of cellulose nanoparticles loaded vilamin E aceatate. Polymer.Korea 2004, 28(2): 128-134.
    [6] Mukherji, Murthy G, Miglnai R S, Prparation and evaluation of celluosle nanospheres containing 5-fluorouracil[J]. Int. J. Pharm., 1990, 65: l-5.
    [7] Trimaille, Piehot T, Delair C, Suarface functionalization of Poy(D,L-lactic acid) nanoparticles with poly(ethylenimine) and plasmid DNA by the layer-by-layer approach[J]. Colloid and Surfaces A: Physicohem. Eng. Aspects., 2003, 221: 39-48.
    [8] Prabha, Labhasetwar S, Critical determinants in PLGA/PLA nanoparticles-mediated gene expression[J]. Pharm. Res., 2004, 21(2): 354-364.
    [9] Kumar M N, Nano and Micropartciels as Controlled Drug Delivery Devices[J]. J. Pharm. Pharmaceut. Sci., 2000, 3 (2):234-258.
    [10] Stainmesse, Oreeehioni S, Nkaache A M, Puisieux E, Formation and stabilization of a biodegradable polymeric collidal suspension of nanoparticles[J]. Colloid Polym. Sci., 1995, 27(3):505-511.
    [11] Stolnik, Garnett S, Davies M C, Illum M C, The colloidal properties of surfactant-free biodegradable nanosperes from poly(lactic acid-co-glycolide)[J]. Colloids Surf. A: Physicochem. Eng. Aspects., 1995, 97(3): 235-245.
    [12] Masson, Maurin V, Devissaguet F, Fessi J P, Stability of poly(ε-caproactone) nanospheres in sterile aqueous media[J]. Int. J. Pharm., 1996, 139:113-123.
    [13] Quintanar-Guerroro, Allemann D, Doelker E, E. Colloid polym. Sci., 1997, 275: 640.
    [14] Kwon, Naito G S, Yokoyama M, Okano M, Sakurai T, Physical entrapment of adriamycin in AB block copolymer micelles[J]. Pharm. Res., 1995, 12(2): 192-195.
    [15] Yokoyma, Lnoue M, S. Kataoka, K. Yui, N. Skauari, Y. Preparation of adriamycin-conjugated poly(ethylene glycol)-poly(aspartic acid) block copolymer[J]. Macromol. Chem. Rapid Commun., 1987, 8 (9):431-435.
    [16] Kwon, G S Suwa, S Yokoyama, M Okano, T Sakurai, Enhanced tumor accumulation and prolonged circulation times of micelle-forming poly(ethylene oxide-aspartate) block copolymer-adriamycin conjugates[J]. J. Control. Release., 1994, 29: 17-23.
    [17] Christine Dufès, Ijeoma F Uchegbu, Andreas G. Sch?tzlein. Dendrimers in gene delivery[J]. Advanced Drug Delivery Reviews, 2005, 57: 2177-2202.
    [18] Marie Morille, Catherine Passirani, Anne Clavreul, Jean-Pierre Benoit, Progress in developing cationic vectors for non-viral systemic gene therapy against cancer[J]. Biomaterials, 2008, 29:3 477-3496.
    [19] Zimmerman S C, Y. Wang, P Bharathi, Moore J S, Analysis of amidinium guest complexation by comparison of two classes of dendrimer hosts containing a hydrogen bonding unit at the core[J]. J. Am. Chem. Soc., 1998, 120:2172-2173.
    [20] F Zeng, Zimmerman S C, Dendrimers in supramolecular chemistry: from molecularre cognition to self-assembly[J]. Chem. Rev., 1997, 97:1681-1712.
    [21] Dykes G M, Smith D K, Supramolecular dendrimer chemistry: using dendritic crown ethers to reversibly generate functional assemblies[J]. Tetrahedron, 2003, 59:3999-4009.
    [22] Guillon D, Deschenaux R, Liquid-crystalline dendrimers[J]. Cur. Open. Solid State & Mater. Sci., 2002, 6:515-525.
    [23] K Esumi, A Suzuki, N Aihara, K Usui, K Torigoe, Preparation of gold Colloids with UV irradiation using dendrimers as stabilizer[J]. Langmuir, 1997, 14:3157-3161.
    [24] M Zhao, Cooks R M, Perparation of Cu nanoclusters with in dendrimer Templates[J]. J. Am. Chem. Soc., 1998, 120:4877-3878.
    [25] Losada J, Cuadrado L, Alonso B, Barranco M, Ferrocenyl silicon-based dendrimers as mediators in amperometric biosensors[J]. Anal. Chim. Acta., 1997, 338:191-198.
    [26] Valerio C, Guittard J, Astruc D, The dendritic effect in molecular recognition: ferrocene dendrimers and their use as supramolecular Redox sensors for the recognition of small in organicanions[J]. J. Am. Chem. Soc., 1997, 119:2588-2589.
    [27] Fréchet J M J, Dendrimers and other dendritic macromolecules: from building blocks to functional assemblies in nanoscience and nanotechnology[J]. J. Polym. Sci. Part A Polym. Chem. 2003, 41:3713-3725.
    [28] Y Zhang, T Wada, A new hyperbranched polymer with polar chromophores for nonlinearopitcs[J]. Polymer, 1997, 38:2893-2897.
    [29] F Wang, Rauh R D, Rose T L, An electrically conducting star polymer[J]. J. Am. Chem. Soc., 1997, 119:11106-11107.
    [30] Miller L L, Tully D C, Tomalia D A, Electrically conducting Dendrimers[J]. J. Am. Chem. Soc., 1997, 119:1005-1010.
    [31] Yamago S, Furukawa M, Yoshida J, Synthesis of optically active dendritic binaphthols and their metal complexes for asymmetric catalysis[J]. Tetrahedron Lett., 1998, 39:3783-3786.
    [32] Kollner C, Pugin B, Togni A, Dendrimers containing chiral ferrocenyl diphosphine ligands for asymmetric catalysis[J]. J. Am. Chem. Soc., 1998, 120:10274-10275.
    [33] Jansen, J. F. G. A. et al. Encapsulation of guest molecules into a dendritic box[J]. Science., 1994, 266, 1226–1229.
    [34] Jansen, J. F. G. A. et al. The dendritic box: shape-selective liberation of encapsulated guests[J].. J. Am. Chem. Soc., 1995, 117, 4417–4418.
    [35] Newkome G R, et al. Chemistry of micelles. 13. Unimolecular micelles[J]. Angew. Chem. Int. Ed. Engl., 1991, 30, 1178–1180.
    [36] Hawker C J, et al. Unimolecular micelles and globular amphiphiles: dendritic macromolecules as novel recyclable solubilization agents[J]. J. Chem. Soc. Perkin Trans., 1993, 1, 1287–1297.
    [37] Kojima C, et al. Synthesis of polyamidoamine dendrimers having poly(ethylene glycol) grafts and their ability to encapsulate anticancer drugs[J]. Bioconjug. Chem., 2000, 11, 910–917.
    [38] Bhadra D, et al. A PEGylated dendritic nanoparticle carrier of fluorouracil[J]. Int. J. Pharm., 2003, 257, 111–124.
    [39] Gillies E R, et al. Stimuli-responsive supramolecular assemblies of linear-dendritic copolymers[J]. J. Am. Chem. Soc., 2004, 126, 11936–11943.
    [40] Malik N, et al. Dendrimer–platinate: a novel approach to cancer chemotherapy[J]. Anticancer Drugs , 1999, 10, 767–776.
    [41] Duncan R, Malik N, Dendrimers: biocompatibility and potential for delivery of anticancer agents[J]. Proc. Int. Symp. Control. Release Bioact. Mater., 1996, 23, 105–106.
    [42] Padilla De Jesús O L, et al. Polyester dendritic systems for drug delivery applications: in vitro and in vivo evaluation[J]. Bioconjug. Chem., 2002, 13, 453–461.
    [43] Kono K, et al. Design of dendritic macromolecules containing folate or methotrexate residues[J]. Bioconjug. Chem., 1999, 10, 1115–1121.
    [44] Barth R F, et al. Boronated starburst dendrimer– monoclonal antibody immunoconjugates: evaluation as a potential delivery system for neutron capture therapy[J]. Bioconjug. Chem., 1994, 5, 58–66.
    [45] Skukla S, et al. Synthesis and biological evaluation of folate receptor-targeted boronated PAMAM dendrimers as potential agents for neutron capture therapy[J]. Bioconjug. Chem., 2003, 14, 158–167.
    [46] Battah S H, et al. Synthesis and biological studies of 5-aminolevulinic acidcontaining dendrimers for photodynamic therapy[J]. Bioconjug. Chem., 2001, 12, 980–988.
    [47] By David, N. Nguyen, Jordan, J. Green, Robert Langer, and Daniel G. Anderson. Polymeric Materials for Gene Delivery and DNA Vaccination[J]. Adv. Mater., 2009, 21: 847-867.
    [48] Shah D S, Sakthivel T, Toth L, Wilderspin A F, DNA transfection and transfected cell viability using amphipathic asymmetric dendrimers[J]. Int. J. Pharm., 2000, 208: 41-48.
    [49] Vijay, P Taori, Yemin Liu, Theresa M. Reineke, DNA delivery in vitro via surface release from multilayer assemblies with poly(glycoamidoamine)s[J]. Acta Biomaterialia, 2009, 5: 925-933.
    [50] Christine Dufès, Ijeoma, Uchegbu F, Andreas, G Sch?tzlein, Dendrimers in gene delivery[J]. Advanced Drug Delivery Reviews, 2005, 57: 2177-2202.
    [51] R X Zhuo, B Du, Z R Lu, In vitro release of 5-fluorouracil with cyclic core dendirtic polymer[J]. J. Controlled Release, 1999, 57: 249-257.
    [52] Meredith, Mintzer A, Eric E Simanek, Nonviral Vectors for Gene Delivery[J]. Chem. Rev., 2009, 109 (2): 259-302.
    [53] Dass C R, Vehicles for oligonucleotide deilvery to tumours[J]. J. Pharm. Pharmacol., 2002, 54, 3-27.
    [54] M X Tang, Szoka E C, The influence of polymer structure on the interactions of cationic polymers with DNA and morphology of the resulting complexes[J]. Gene Ther., 1997, 4: 823-832.
    [55] Dennig J, Duncan E, Gene transfer into eukaryotic cells using activated Polyamidoamine dendirmers[J]. Rev. Mol. Biotechnol., 2002, 90: 339-347.
    [56] Thetesa M, Reineke, Poly(glycoamidoamine)s: Cationic Glycopolymers for DNA Delivery[J]. Journal of Polymer Science: Part A: Polymer Chemistry, 2006, 44: 6895-6908.
    [57]吴镭,平其能,药剂学发展与展望[M].北京:化学工业出版社,2002.
    [58] Singh B N, Kim K H. Floating drug delivery systems:an approach to oral controlled drug deliveryvia gastric retention[J]. J. Controlled Release, 2000, 63: 235-259.
    [59] Yoo H S, Park T G, Floate receptor targeted biodegradable polymeric doxorubicin micelles[J]. Journal of Controlled Release, 2004, 96(2):273–283.
    [60] Yamamoto Y, Nagasaki Y, Kato Y, et al. Long-circulating poly(ethylene glycol) -poly(d,l-lactide) block copolymer micelles with modulated surface charge[J]. Journal of Controlled Release, 2001, 77(1):27–38.
    [61] Lee E S, Na K, Bae Y H, Doxorubicin loaded pH-sensitive polymeric micelles for several of resistant MCF-7 tumor[J]. Journal of Controlled Release, 2005, 103(2): 405–418.
    [62] Hu Y, Jiang X, Ding Y, et al. Preparation and drug release behaviors of nimodipine-loaded poly(caprolactone)-poly(ethylene oxide)-polylactide amphiphilic copolymer nanoparticles[J]. Biomaterials, 2003, 24(13): 2395–2404.
    [63]Allen, Maysinger C, Eisenberg D, A. Nano-engineering block copolymer aggregates for drug delivery[J]. Colloids surface B: Biointerface, 1999, 16(1): 3–27.
    [64] Yakoyama, Fukushima M S, Uehara R, et al. Characterization of physical entrapment and chemical conjugation of adriamycin in polymeric micelles and their design for in vivo delivery to a solid tumor[J]. Journal of Controlled Release, 1998, 50(1): 79–92.
    [65] Lee J, Cho E C, Cho K, Incorporation and release behavior of hydrophobic drug in functionalized poly(D,L-lactide)-block-poly(ethylene oxide) micelles[J]. Journal of Controlled Release, 2004, 94(2/3): 323–335.
    [66] Govender T, Riley T, Ehtezazi T, et al.Defining the drug incorporation properties of PLA-PEG nanoparticles[J]. International Journal of Pharmaceutics, 2000, 199(1): 95–110.
    [67] Adams M L, Kwon G S, Relative aggregation state and hemolytic activity of amphotericin B encapsulated by poly(ethylene oxide)-block–poly(N-hexyl-l-aspartamide)-acyl conjugate micelles: effects of acyl chain length[J]. Journal of Controlled Release, 2003, 87(1): 23–32.
    [68] La S B, Okano T, Kataoka K, Preparation and characterization of the micelle-forming polymeric drug indomethacin-incorporated poly(ethylene oxide)-poly (benzyl L-aspartate)block copolymer micelles[J]. Journal of Pharmaceutical Sciences, 1996, 85(1): 85–90.
    [69] Wakebayashi D, Nishiyama N, Yamasaki Y, et al. Lactose-conjugated polyion complex micelles incorporating plasmid DNA as a targetable gene vector system: their preparation and gene transfecting efficiency against cultured HepG2 cells[J]. Journal of Controlled Release, 2004, 95(3): 653–664.