水杨酸钠通过激活caspase-3诱导豚鼠耳蜗螺旋神经节细胞凋亡的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的研究水杨酸钠(sodium salicylate, SS)诱导豚鼠耳蜗螺旋神经节细胞(spiral ganglion neuron, SGN)凋亡及凋亡的机制。
     方法40只成年花色雄性黑目豚鼠随机分为4组,每组10只。A组:空白对照组;B组:人工外淋巴液(artificial perilymph, APL)组(左耳经圆窗龛注入APL后未给SS);C组:SS(400 mg·kg~(-1)·d~(-1))+APL组(左耳经圆窗龛注入APL后经腹腔SS给药);D组:SS(400 mg·kg~(-1)·d~(-1))+zDEVD-FMK组(左耳经圆窗龛注入zDEVD-FMK后经腹腔SS给药)。所有动物均于给药前后分别进行听性脑干反应(auditory brainstem response, ABR)阈值测试。10 % SS(溶于APL配制而成)均采用腹腔注射给药方式,400 mg·kg~(-1)·d~(-1),并于连续给药10天后即时处死动物取出耳蜗,采用脱氧核糖核苷酸末端转移酶介导的缺口末端标记法(terminal-deoxynucleotidyl transferase mediated dUTP nick end labeling, TUNEL)检测耳蜗SGN凋亡细胞,免疫组织化学染色方法检测SGN内激活型caspase-3蛋白表达情况,透射电镜(transmission electron microscopy, TEM)观察SGN超微结构变化。
     结果ABR测试结果显示A、B两组动物听阈均无明显变化,C组动物给药后听阈提高,与A、B两组比较有显著性差异(p<0.01,p<0.01),D组动物听阈较C组降低(p<0.05);TUNEL标记显示A、B两组动物耳蜗中均未见SGN凋亡细胞,亦无激活型caspase-3蛋白表达,而C组则出现较多TUNEL阳性着色SGN,并伴有激活型caspase-3表达的增高,D组较C组TUNEL阳性着色SGN减少,激活型caspase-3表达亦降低,A、B两组与C、D两组比较差异均有显著统计学意义(p<0.01,p<0.01),而C、D两组比较亦有显著差别(p<0.01);透射电镜观察结果显示A、B两组SGN超微结构正常,C组SGN伴有明显细胞凋亡形态学特征,D组SGN超微结构未见明显凋亡征象。
     结论①SS可诱导豚鼠耳蜗SGN发生凋亡;②SGN凋亡与caspase-3激活有关;③zDEVD-FMK可在一定程度上拮抗caspase-3的激活,并阻断其引起的SGN凋亡。
Objective: In the present study, in vivo experiments are conducted to test efficacy of caspase-3 inhibitor zDEVD-FMK for protecting spiral ganglion neuron (SGN) from salicylate-induced apoptosis in the guinea pig cochlea.
     Methods: Forty adult guinea pigs were divided randomly into four experimental groups, each for ten, they were: Group A, served as blank control without any disposal; Group B, APL only, The animals were disposed with APL through RWN by the means of cochlear micro-injection, the left ear was implemented with an operation; Group C, APL plus salicylate. The animals were treated with APL through RWN before drug injection, with a does of 400 mg·kg~(-1)·d~(-1) i.p., for ten consecutive days; Group D, zDEVD-FMK plus sodium salicylate. The animals were treated with caspase-3 inhibitor zDEVD-FMK through RWN before drug exposure in the same way described in the Group C. All animals received ABR thresholds measurement before drug administration and after last injection; they were then sacrificed for cochleae followed by staining. Programmed cell death (PCD) executioner was evaluated with immunohistochemistry detection of activated caspase-3. Apoptosis was examined with a terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling (TUNEL) method. Transmission electron microscopy (TEM) was also used to evaluate morphological change in the auditory neuron.
     Results: Animals disposed with salicylate appeared a high elevation in response of ABR thresholds testing (p<0.01 vs. Group A and B). By contrast, for those received zDEVD-FMK in advance, their hearing improved (p<0.05 vs. Group C). Salicylate strengthened immune reaction in the fields of SGNs, which was in accordance with apoptotic auditory effectors emergence (p<0.01 vs. Group A and B). On the contrary, topical inhibitor delivery alleviated pigmentation of nuclei (p<0.01 vs. Group C), keeping pace with antigen expression decrease, but a few immunostaining could be still detected (p<0.01 vs. Group C). With TEM to SGNs, no ultrastructural change occurred in the Group A and B, while neurons obtained from Group C demonstrated obvious apoptotic changes, characterized with chromatin condensation and nucleus margination. Treatment with zDEVD-FMK prevented the salicylate-damaged SGNs by apoptosis in a highly significant manner.
     Conclusion: These findings suggest that long-term administration of high-dose salicylate can activate caspase-3 pathway to induce SGN apoptosis.
引文
1. Ramesh G, Reeves WB. Salicylate reduces cisplatin nephrotoxicity by inhibition of tumor necrosis factor-alpha. Kidney Int 2004, 65:490-499.
    2. Moon C, Ahn M, Jee Y, etc. Sodium salicylate-induced amelioration of experimental autoimmune encephalomyelitis in Lewis rats is associated with the suppression of inducible nitric oxide synthase and cyclooxygenases. Neurosci Lett 2004, 356:123-126.
    3. Dieler R, Shehata-Dieler WE, Brownell WE. Concomitant salicylate-induced alterations of outer hair cell subsurface cisternae and electromotility. Neurocytol 1991, 20:637-653.
    4. Ramsden RT, Latif A, O’Malley S. Electrococh1eographic changes in acute salicylate overdosage. J Laryngol Otol 1985, 99:1269-1273.
    5. Martin WH, Schwegler JW, Scheibel-Hoffer J, etc. Salicylate-induced changes in cat auditory nerve activity. Laryngoscope 1993, 103:600-604.
    6. Manabe Y, Saito T, Saito H. Effects of lidocaine on salicylate-induced discharge of auditory neurons in the inferior colliculus of the guinea pig. Nippon Jibiinkoka Gakkai Kaiho 1998, 101:807-8l3.
    7. Mirz F, Pedersen CB, Ishizu K, etc. Positron emission tomography of cortical centers of tinnitus. Hear Res 1999, 134:133-144.
    8. Salih SG, Housley GD, Raybould NP, etc. ATP-gated ion channel expressionin primary auditory neurons. Neuroreport 1999, 10:2579-2586.
    9. Liu Y, Li X. Effects of salicylate on voltage-gated sodium channels in rat inferior colliculus neurons. Hear Res 2004, 193:68-74.
    10. Liu Y, Li X. Effects of salicylate on transient outward and delayed rectifier potassium channels in rat inferior colliculus neurons. Neurosci Lett 2004, 369:115-120.
    11. Jiang M, Zhang M, Tang DG, etc. KCNE2 protein is expressed in ventricles of different species, and changes in its expression contribute to electrical remodeling in diseased hearts. Circulation 2004, 109:1783-1788.
    12. Morishita Y, Sakube Y, Sasaki S, etc. Molecular mechanisms and drug development in aquaporin water channel diseases: aquaporin superfamily (superaquaporins): expansion of aquaporins restricted to multicellular organisms. J Pharmacol Sci 2004, 96:276-279.
    13. Liu Y, Li X, Ma C, etc. Salicylate blocks L-type calcium channels in rat inferior colliculus neurons. Hear Res 2005, 205:271-276.
    14. So HS, Park C, Kim HJ, etc. Protective effect of T-type calcium channel blocker flunarizine on cisplatin-induced death of auditory cells. Hear Res 2005, 204:127-139.
    15. Peng BG, Chen S, Lin X. Aspirin selectively augmented N-methyl-D-aspartate types of glutamate responses in cultured spiral ganglion neurons of mice. Neurosci Lett 2003, 343:21-24.
    16. Guitton MJ, Caston J, Ruel J, etc. Salicylate induces tinnitus through activation of cochlear NMDA receptors. J Neurosci 2003, 23:3944-3952.
    17. Niedzielski AS, Wenthold RJ. Expression of AMPA, kainate and NMDA receptor subunits in cochlear and vestibular ganglia. J Neurosci 1995, 15:2338- 2353.
    18. Merchan-Perez A, Gil-Loyzaga P, Eybalin M. Ontogeny of glutamate decarboxylase and gamma-aminobutyric acid immunoreactivities in the rat cochlea. Eur Arch Otorhinolaryngol 1990, 248:4-7.
    19. Bauer CA, Brozoski TJ, Holder TM. Effects of chronic salicylate on GABAergic activity in rat inferior colliculus. Hear Res 2000, 147:175-182.
    20. Xu H, Gong N, Chen L, etc. Sodium salicylate reduces gamma aminobutyric acid- induced current in rat spinal dorsal horn neurons. Neuroreport 2005, 16: 813-816.
    21. Im GJ, Jung HH, Chae SW, etc. Differential gene expression profiles in salicylate ototoxicity of the mouse. Acta Otolaryngol 2007, 127:459-469.
    22. Schwenger P, Bellosta P, Vietor I, etc. Sodium salicylate induces apoptosis via p38 mitogen-activated protein kinase but inhibits tumor necrosis factor-induced c-Jun Nterminal kinase/stress-activated protein kinase activation. Proc Natl Acad Sci USA 1997, 94:2869-2873.
    23. Schwenger P, Skolnik EY, Vilcek J. Inhibition of tumor necrosisfactor- induced p42/p44 mitogen activated protein kinase activation by sodiumsalicylate. J Biol Chem 1996, 271:8089-8094.
    24. Huang C, Ma WY, Hanenberger D, etc. Inhibition of ultraviolet B-induced activator protein-1 (AP-1) activity by aspirin in AP-1-luciferase transgenic mice. J Biol Chem 1997, 272:26325-26331.
    25. Bauer CA. Mechanisms of tinnitus generation. Curr Opin Otolaryngol Head Neck Surg 2004, 12:413-417.
    26. Lue AJ, Brownell WE. Salicylate induced changes in outer hair cell lateral wall stiffness. Hear Res 1999, 135:163-168.
    27. Cazals Y. Auditory sensori-neural alterations induced by salicylate. Prog Neurobiol 2000, 62:583-631.
    28. Wecker H, Laubert A. Reversible hearing loss in acute salicylate intoxication. HNO 2004, 52:347-351.
    29. Schuknecht HF. Auditory and cytocochlear correlates of inner ear disorders. Otolaryngol Head Neck Surg. 1994, 110:530-538.
    30. Starr A, Picton TW, Sininger Y, etc. Auditory neuropathy. Brain 1996, 119: 741-753.
    31. Housley GD, Kanjhan R, Raybould NP, etc. Expression of the P2X(2) receptor subunit of the ATP-gated ion channel in the cochlea: implications for sound transduction and auditory neurotransmission. J Neurosci 1999, 19:8377- 8388.
    32. Guitton MJ, Caston J, Ruei J, etc. Salicylate induces tinnitus throughactivation of cochlear NMDA receptors. J Neurosci 2003, 23:3944-3952.
    33. Labbe D, Teranishi MA, Hess A, etc. Activation of caspase-3 is associated with oxidative stress in the hydropic guinea pig cochlea. Hear Res 2005, 202: 21-27.
    34. Hu BH, Henderson D, Nicotera TM. Involvement of apoptosis in progression of cochlear lesion following exposure to intense noise. Hear Res 2002, 166:62-71.
    35.许丽娟,龚树生,汪吉宝,等。内耳免疫反应中细胞凋亡及caspase-3表达的研究。中国医师杂志,2005,7:l78-l80。
    36. Mittl PR, Di Marco S, Krebs JF, etc. Structure of recombinant human CPP32 in complex with the tetrapeptide acety1-Asp-Va1-Asp fluoromethyl ketone. J Biol Chem 1997, 272:6539-6547.
    37. Matsui JI, Haque A, Huss D, etc. Caspase inhibitors promote vestibular hair cell survival and function after aminoglycoside treatment in vivo. J Neurosci 2003, 23:6111-6122.
    38. Matsui JI, Ogilvie JM, Warchol ME. Inhibition of caspases prevents ototoxic and ongoing hair cell death. J Neurosci 2002, 22:1218-1227.
    39. Liu W, Staecker H, Stupak H, etc. Caspase inhibitors prevent cisplatin- induced apoptosis of auditory sensory cells. Neuroreport 1998, 9:2609-2614.
    [1] Kerr JF, Winterford CM, Harmon BV. Apoptosis: Its significance in cancer and cancer therapy. Cancer 1994, 73 (8): 2013-2026.
    [2] Christopher D, Heinrich T. Metabolic aspects of programmed cell survival and cell death in the heart. Cardiovasc Res 2000, 45 (3): 538-548.
    [3] Finkel E. The mitechondrion: Is it central to apoptosis? Science 2001, 292 (5517): 624-626.
    [4] Desagher S, Martinou JC. Mitochondria as the central control point of apoptosis. Trends Cell Biol 2000, 10 (9): 369-377.
    [5] Raft M. Cell suicide for beginners. Nature 1998, 396 (6707): 119-122.
    [6] Jiang H, Ding D, Qi W, et al. Cisplatin-induced changes in apoptotic gene expression in sensory versus neural subdivisions of rat cochlear cultures. Abstr Assoc Res Otolaryngol.
    [7] Eric L, Boubaker O, Francine BC. The role of PKCζin amikacin-induced apoptosisin the cochlea: Prevention by aspirin. Apoptosis 2007, 12(2): 333-342.
    [8] Yamashita D, Miller JM, Jiang H-Y, et al. AIF and EndoG in noise-induced hearing loss. NeuroReport, 2004, 15 (18): 2719-2722.
    [9] Jiang H, Sha S-H, Forge A, et al. Caspase-independent pathways of hair cell death induced by kanamycin in vivo. Cell Death Differ 2006, 13 (1): 20-30.
    [10] Han WJ, Shi XR, Alfred N. ssDNA production and EndoG translocation in noise exposure induced hair cell death. Chin J Oto 2008, 6 (2): 209-215.
    [11] Elisa C, Irene I, Dalian D, et al. Minocycline attenuates gentamicin induced hair celI loss in neonatal cochlear cultures. Hear Res 2004, 197 (1-2): l1-18.
    [12] Nakagawa T, Zhu H, Morishima N, et al. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloidbeta. Nature 2000, 403 (6765): 98-103.
    [13] Nakagawa T, Yuan J. Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. J Cell Biol 2000, 150 (4): 887- 894.
    [14] Yoneda T, Imaizumi K, Oono K, et al. Activation of caspase-12,an endoplastic reticulum (ER)resident caspase,through tumor necrosis factor receptor-associated factor 2-dependent mechanism in response to the ER stress. J Biol Chem 2001, 276 (17): 13935-13940.
    [15] Rao RV, Hermel E, Castro OS, et a1. Coupling endoplasmic reticulum stress to the cell death program.Mechanism of caspase activation. J Biol Chem 2001, 276 (36): 33869-33874.
    [16] Rao RV, Peel A, Logvinova A, et a1. Coupling endoplasmic reticulum stress to the cell death program: role of the ER chaperone GRP78. FEBS Lett 2002, 514 (2-3): 122-128.
    [17] Chen AG, Huang T, Salvi A, et a1. Calpain inhibitors protect auditory sensory cells from hypoxia and neurotrophin-withdrawal induced apoptosis.Brain Res 1999, 850(1-2): 234-243.
    [18] Ding D, Stracher A, Salvi RJ. Leupeptin protects cochlear and vestibular hair ceils from gentamicin ototoxicity. Hear Res 2002, 164 (1-2): 115-126.
    [19] Ding DL, Qi WD, Qu Y, et al. Carboplatin and its ototoxicity. Chin J Oto 2008, 6 (2): 134-144.
    [20] Wang P, Du B, Du BD. Calpain activity and inner ear cells apoptosis. Int J Otolaryngol Head Neck Surg 2006, 30 (6): 354-356.
    [21] Xie J, Luo LH, Xue QH, et al. Endoplasmic reticulum stress-related apoptosis in the cochlear of aged rats. Chin Arch Otolary-Head and Neck Surg, 2008, 15 (10): 569-572.
    [22] Cifone MG, De Maria R, Roncaioli P, et al. Apoptotic signaling through CD95 (Fas/Apo-I) activates an acidic sphingomyelinase. J Exp Med 1994, 180: 1547-1552.
    [23] MacEwan DJ. TNF receptor subtype signalling: differences and cellular consequences. Cell Signal 2002, 14 (6): 477-492.
    [24] Pan G, Ni J, Wei YF, et al. An antagonist decoy receptorand a death domain-containing receptorfor TRAIL. Science 1997, 277 (5327): 815-818.
    [25] Bae WY, Kim LS, Hur DY, et al. Secondary Apoptosis of Spiral Ganglion Cells Induced by Aminoglycoside: Fas-Fas Ligand Signaling Pathway. Laryngoscope 2008, 118 (9): 1659-1668.
    [26] Bodmer D, Brors D, Pak P, et al. Gentamicin-induced hair cell death isnot dependent on the apoptosis receptor Fas. Laryngoscope 2003, 113 (3): 452- 455.
    [27] Bodmer D, Brors D, Bodmer M, et al. Fas ligand expression in the organ of Corti. Audiol Neurootol, 2003, 8 (5): 243-249.
    [28] Xu LJ, Gong SS, Wang JB, et al. The relation between apoptosis and Fas, FasL expression induced by immune response of inner ear. Chin J Hist Cyto 2005, 11(6): 629-634.
    [29] Ding D, Jiang H, Wang P, et al. Cell death after co-administration of cisplatin and ethacrynic acid. Hear Res 2007, 226 (1-2): 129-139.
    [30] Breckenridge DG, Nguyen M, Kuppig S, et al. The procaspase-8 isoform, procaspase-8L, recruited to the BAP31 complex at the endoplasmic reticulum. Proc Nati Acad Sci 2002, 99 (7): 4331-4336.