三维RITSS大变形有限元方法及其在基础刺入破坏和锚板承载力问题中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
岩土工程有限元计算一般采用增量塑性本构模型来考虑材料非线性,对几何非线性即大变形问题考虑较少。而对于基础连续贯入或拔出、静力触探、边坡滑移和固结沉降等问题,土体失稳过程都是局部化变形形成和发展的结果,其累积塑性应变已超过小应变的界限,土体变形或结构位移对计算结果影响较大。对于这些问题,工程中还往往要求了解土体或结构连续变形直至破坏的灾变全过程,这就需要采用考虑几何非线性的大变形数值方法进行分析。
     近年来,一些学者分别采用TL、UL和ALE大变形有限元方法,分析了各种土工大变形问题。其中,属于ALE范畴的RITSS方法是一种简便实用的大变形有限元方法,它在小变形有限元模型的基础上通过网格重剖分和应力插值技术实现大变形分析,目前已被广泛应用于模拟基础连续变形过程并取得了很好的成果。但现有大变形数值分析相关文献多为平面应变或轴对称的二维问题,三维土工大变形分析成果报道很少。这是因为三维大变形分析有限元实现比较复杂,比如考虑几何大变形的有限元列式推导繁琐,三维计算网格自动剖分与控制、边界变形追踪困难,以及计算规模过大导致效率低下等。而一些实际工程问题用二维模拟难以得到精确解答,比如方形和矩形基础贯入问题、倾斜圆形和方形锚板的承载力问题以及三维锚板的上拔调节旋转问题等,都需要采用三维大变形数值方法进行分析。
     因此,本文在二维RITSS大变形有限元方法的基础上,提出了一种稳定可靠的三维应力插值方法,实现了三维网格的全自动剖分,从而开发了一种能在普通微机上执行的适用于土工分析的三维大变形有限元方法3D-RITSS,并采用该方法深入分析了双层地基方形基础刺入破坏和三维锚板旋转调节这两种三维土工大变形问题,以期为工程设计提供一定依据。另外,对于锚板承载力问题,多数文献都是针对均质土中的水平或竖直的锚板,研究锚板倾角和正常固结土非均质性对承载力影响的相关工作还不多,因此本文通过大量二维和三维小变形有限元计算分析了各种因素对倾斜锚板抗拔承载力的影响。本文主要工作包括:
     1)将二维RITSS大变形有限元方法推广到三维情况,主要贡献包括:对多种单元类型进行了详细的比较与分析,找到了适用于三维大变形土工分析的单元类型——20结点非结构化六面体单元,它不但适于网格自动剖分,而且在模拟饱和黏土地基(三维不可压缩材料)时能够给出较准确的极限承载力;针对该单元类型提出了一种稳定高效的应力插值方法UED;开发了一种简便的三维结点节理单元模拟基础与土的相互作用;采用B样条曲线簇拟合变形后的边界自由面,实现了大变形计算的全自动运行;最后通过算例验证了3D-RITSS方法的可靠性和稳定性。
     2)采用3D-RITSS大变形有限元法模拟了方形基础连续贯入上强下弱双层黏土地基的过程,分析了上层土厚度和上下土层强度比对基础发生刺入破坏时的临界承载力系数和临界深度的影响。贯入过程的承载力系数-沉降曲线以图表形式给出,并给出了近似公式以便于工程设计应用。给出了贯入过程中土体滑裂面形状和塑性区的发展情况,为解析和半解析计算提供一定依据。
     3)采用二维小变形有限元法分析了倾斜条形锚板在均质和正常固结黏土中的承载力,着重探讨了锚-土黏结方式(始终黏结或立即分开)、锚板倾角、土体自重以及正常固结土非均质度等因素对承载力的影响。分析了土重叠加方法对正常固结黏土中立即分开形式锚板的适用性,并给出了不同埋深和倾角情况下锚板的极限承载力系数N_c~*。分析了土体非均质度对正常固结土中锚板承载力系数N_(ck)和极限承载力系数N_(ck)~*的影响。提出了任意正常固结黏土中任意角度条形锚板承载力系数的计算步骤和公式,为工程设计提供依据。采用2D-RITSS大变形有限元方法分析了考虑土重情况下锚-土分离的条件,结果表明γH/c是决定锚-土是否分离的重要标尺。
     4)采用三维小变形有限元法分析了倾斜圆形和方形锚板在均质黏土中的承载力,探讨了倾角对承载力和土体流动机制的影响,并验证了利用已知水平和竖直锚板承载力计算任意倾斜角度锚板承载力的经验公式对圆形和方形锚板的适用性,验证了浅埋水平锚板的简化计算公式。
     5)采用3D-RITSS大变形有限元法分析了三维条形和方形锚板在正常固结黏土中的旋转调节过程,着重分析了锚板加载偏心率、上拔倾角和几何形状(长宽比)对旋转调节过程中埋深损失的影响。分析了锚板旋转调节过程中承载力和土体流动机制的变化过程。计算结果表明加载偏心率e/B对埋深损失有重要影响,上拔倾角对埋深损失也有一定影响。在旋转调节过程中,方形锚板同条形锚板的上拔过程以及最终埋深损失都十分接近。方形锚板的最大承载力系数约为条形锚板的1.10~1.19倍。
     本论文工作得到国家自然科学基金(编号:50679093,50538080,50578029)、教育部留学归国人员科研启动基金以及教育部创新团队发展计划(编号:IRT0518)的资助,在此一并表示感谢。
In soil mechanics,many incremental plasticity models have been proposed in attempts to deal with the issue of material nonlinearity.But little result has been reported regarding the effect of geometrical nonlinearity,i.e.,large deformation/displacement.However,the large deformation behaviors are involved in many geotechnical problems,such as the penetration/pullout of piles,cone penetrometer,soil slope failure,and large strain soil consolidation,et al.In these cases the soil failures may be due to the development and accumulation of localized soil deformation.The large deformation upon the overall geometry of the structure has great effect on the structure bearing capacity and should not be ignored. Moreover,the deformation or failure processes also need to be investigated for some engineering practices.Therefore,large deformation numerical procedures considering the effect of geometrical nonlinearity are required for these problems.
     In recent years,TL,UL or ALE large strain finite element methods have been ultilized to study many geotechnical problems involving large deformation.Among these large strain FE methods,RITSS is a convenient and robust one.It falls essentially within the ALE category, in which,conventional small strain FE analysis is combined with fully automatic mesh genetration and plane linear stress interpolation techniques to deal with large deformation problems in soil.RITSS method has already been applied to simulate the continuous deforming process of various foundations in soil.And many valuable results have been obtained.However,most of the available publications focus on plane strain or axisymmetric 2-D problems,and the implementations of the 3-D large deformation analyses into the problems of practical geotechnical engineering are relatively rare.The reasons may include the difficulties in deriving the 3-D large deformation FE formulations,generating and controlling the 3-D mesh automatically,tracing the deformed boundary in 3-D space,and include the unacceptable time consuming in calculation.On the other hand,2-D numerical analyses would not be accurate enough for some practical problems,such as the penetration of square/rectangular footings,the uplift resistance of the inclined circular and square anchors, and the keying behavior of 3-D anchors,et al.3-D large deformation analyses are essential for these problems.
     In order to deal with the above 3-D problems,an efficient and robust 3-D large deformation numerical method,which can be implemented on personal computers,was proposed in the present thesis.Based on the 2D-RITSS method,a convenient and robust 3-D stress interpolation method and an automatically 3-D mesh generation approach were presented.Thus a procedure of 3-D large deformation FE analysis was proposed.Furthermore, the present 3D-RITSS method was applied to investigate the behaviors of punch:through failures of square footings on double layered clays.This method was also applied to simulate the keying processes of 3-D plate anchors.Some conclusions of these two problems were obtained,which may be valuable to the engineering practice.In addition,the emphasis of most of the published researches about the anchor uplift resistance problems was on vertical or horizontal plate anchors in uniform clay,the results related to inclined anchors in normally consolidated(NC)clay were relatively rare.So in the present thesis a large amount of 2-D and 3-D small strain FE analyses were implemented to calculate the uplift resistance of inclined palte anchors in NC clay.The research work carried out in the present thesis could be summarized as follows:
     1)The 2D-RITSS approach is developed to deal with 3-D geotechnical problems.Several types of elements are tested and the unstructured 20-node hexahedral element is found to work well both for generating mesh automatically.and for predicting collapse loads accurately for 3-D undrained geotechnical problems involving material incompressibility. A convenient method named UED is proposed to interpolate the stress variables of the new elements after each remeshing.A 3-D nodal joint element is developed to simulate the soil-structure interface.Aseries of B-spline lines are used to fit the deformed surface boundary.Thus the 3-D RITSS large deformation FE procedure can be run automatically. Finally the 3-D RITSS method is proved to be efficient and robust by several numerical examples.
     2)The present 3D-RITSS method is used to simulate the continuous penetration processes of square footings into double layered clays with a strong layer overlying a weak one. The effects of the relative thickness of the top layer and the shear,strength ratio of the bottom layer to the top layer soil on the punch-through critical be,aring capacity factors and critical depths are investigated.The load-displacement curves during penetration of various cases are presented in chart form and are also fitted by approximate equations, which may be convenient for practical design.The developments of soil flow mechanisms and plastic zone distributions during penetration,which may be useful for analytical and semi-analytical calculations,are also presented:
     3)2-D small strain FE analyses are implemented to investigate the uplift resistances of strip anchors in uniform and normally consolicated clay.The effects of the soil-structure interface(attached or vented),anchor inclination,the soil self-weight,and the soil nonhomogeneity on the anchor bearing capacity are analyzed in detail.For the vented plate anchors in NC clay considering soil weight,the bearing capacity factor N_c can also be calculated from the weightless result N_(c0)plus the dimensionless parameterγH/c,but remaining not larger than the limit uplift resistance factor N_c~*.The inclination angleβhas great effect on the N_c~* for shallow anchors.The larger is theβ,the lower is the N_c~*.The effects of the soil nonhomogeneity on the bearing capacity factor N_(ck)and limit bearing capacity factor N_(ck)~* of plate anchots in NC clay are both investigated.A systematic design procedure and approximate equations are proposed for the bearing capacity factors of plate anchors with any inclinations in uniform or NC clay.The 2-D RITSS approach is used to investigate the breakaway behavior of the soil beneath,the anchor.The results show that the dimensionless parameterγH/c is an important factor which determines whether the bottom soil would break away from the anchor or,not.
     4)3-D small strain FE analyses are implemented to investigate the uplift resistances of inclined circular and square plate anchors.And the effects of anchor inclination on the uplift resistance and on the soil flow mechanisms are analyzed in detail.An equation which is to calculate the N_c of an inclined anchor from the N_c of vertical and horizontal anchors,is verified to be suitable for 3-D circular and square plate anchors.A simplified equation is proposed and is proved to be accurate for shallow horizontal anchors.
     5)The 3D-RITSS method is also used to simulate the keying processes of 3-D strip and square anchors in NC clay.The effects of loading eccentricity,pullout angle and anchor aspect ratio(length/width)on the embedment loss during keying are investigated.The developments of the uplift resistance and the soil flow mechanisms are both presented. The numerical results show that the loading eccentricity e/B has a great effect on the value of embedment loss.The pullout angle has also a little effect on the embedment loss. The keying process and embedment loss of square anchors are almost the same as those of the strip anchors.The maximum uplift resistance factors of square anchors are about 1.10 to 1.19 times of those of strip anchors.
     The work in this thesis is surported by the National Natural Science Foundation of China (Grant Nos:50679093,50538080,50578029),the Project Sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry and the Program for Changjiang Schorlars and Innovative Research Team in-University (IRT0518).These supports are gratefully acknowledged.
引文
[1]Aubeny C P,Murff J D,Roesset J M.Geotechnical Issues in Deep and Ultra Deep Waters.International Journal of Geomechanics,2001,1(2):225-247.
    [2]Ehlers C J,Young A G,Chen J H.Technology assessment of deepwater anchors.Proc.2004Offshore Technology Conf.,2004,Houston.
    [3]Bathe K J,Ramm E,Wilson E L.Finite element formulations for large deformation dynamic analysis.International Journal for Numerical Methods in Engineering,1975,9(2):353-386.
    [4]何开胜,沈珠江,彭新宣.两种Lagrangian大变形比奥固结有限元法及其与小变形法的比较.岩土工程学报,2000,22(1):30-34.
    [5]王勖成.有限单元法.北京:清华大学出版社,2003.
    [6]Shen Y P,Hasebe N,Lee L X.The finite element method of three-dimensional nonlinear viscoelastic large deformation problems.Computers & Structures,1995,55(4):659-666.
    [7]Hibbitt H D,Marcal P V,Rice J R.Finite element formulation for problems of large strain and large displacement.1970,6(8):1069-86.
    [8]Thoms R L,Arman A.Photoelastic and finite element analysis of embankments constructed over soft ground.Highway Research Record No.323.1970.71-86.
    [9]Fernandez R M,Christian J T.Finite element analysis of large strains in soils.Research Report M.I.T,1971.R71-37.
    [10]McMeeking R M,Rice J R.Finite-element formulations for problems of large elastic-plastic deformation.International Journal of Solids and Structures,1975,11(5):601-616.
    [11]Davidson H L,Chen W F.Elastic-plastic,large deformation response of soft clay to footing load.Int.Symposium on Soft Clay,Bangkok,1977,Bangkok,Thailand.
    [12]Carter J P,Booker J R,Davis E H.Finite deformation of an elasto-plastic soil.Int.J.Numer.Analy.Methods Geomech.,1977,1:25-43.
    [13]Banerjee P K,Fathallah R C.An Eulerian formulation of the finite element method for predicting the stresses and pore water pressures around a driven pile.Proc.3rd Int.Conf.on Numer.Meth.Geomech.,1979,Aachen.
    [14]Desai C S,Phan H V,Perumpral J V.Mechanics of three-dimensional soil-stucture interaction.J.Eng.Mech.Div.,ASCE,1982,108(EM5):731-747.
    [15]Kiousis P D,Voyiadjis G Z,Tumay M T.A large strain theory and its application in the analysis of the cone penetration mechanism.Int.J.Numer.Anal.Meth.Geomech.,1988,12:45-60.
    [16]Chopra M B,Dargush G F.Finite element analysis of time-dependent large deformation problems.Int.J.Num.Analy.Methods Geomech.,1992,16:101-130.
    [17]Zienkiewicz O C.Basic formulation of static and dynamic behaviour of soil and other porous media.Numerical Methods in Geomechanics,1982,Norwell,MA:D.Reidel.
    [18]Zienkiewicz O C,Shiomi T.Static and dynamic behaviour of saturated porous media:the generalized Biot formulation and its numerical solution.Int.J.Num.Analy.Meth.Geomech.,1984,8:71-96.
    [19]周正明.饱和土体大变形固结有限元分析.水利水运工程学报,1992,1:105-110.
    [20]Advani S H,Lee T S,Lee J H 等.Hygrothermomechanical evaluation of porous media under finite deformation.Part Ⅰ:Finite element formulations.Int.J.Num.Methods Eng.,1993,36:147-160.
    [21]谢永利,潘秋元.物质描述的大变形固结理论及有限元法.浙江大学学报:自然科学版,1995,29(4):476-485.
    [22]谢新宇,朱向荣.饱和土体一维大变形固结理论新进展.岩土工程学报,1997,19(4):30-38.
    [23]蒋明镜,沈珠江.饱和软土的弹塑性大变形有限元平面固结分析.河海大学学报:自然科学版,1998,26(1):73-77.
    [24]Meroi E A,Schrefler B A,Zienkiewicz O C.Large strain static and dynamic semisaturated soil behaviour.Int.J.Num.Analy.Meth.Geomech.,1995,19:81-106.
    [25]陈铁林,沈珠江,周成.用大变形有限元对土体静力触探的数值模拟.水利水运工程学报,2004(2):1-6.
    [26]戚科骏,宰金珉,王旭东等.静力压桩的拉格朗日法模拟与桩周土体固结分析.南京工业大学学报:自然科学版,2005,27(3):8-11.
    [27]张永生,梁立孚,周健生.条形基础稳定性弹塑性大变形有限元分析.哈尔滨工程大学学报,2005,26(2):205-209.
    [28]张永生,刘庆华.大变形有限元法计算水闸地基稳定性(Ⅱ)—数值算例.东北农业大学学报,2006,37(4):500-502.
    [29]张永生,刘庆华.大变形有限元法计算水闸地基稳定性(Ⅰ)-基本原理.东北农业大学学报,2006,37(2):232-234.
    [30]丁洲祥,龚晓南,李韬等.三维大变形固结本构方程的矩阵表述.地基处理,2004,15(4):21-33.
    [31]蒋鹏,李荣强.强夯大变形冲击碰撞数值分析.岩土工程学报,2000,22(2):222-226.
    [32]高广运,顾中华,周群利.强夯加固地基大变形动力有限元数值模拟.地下空间,2004,24(2):143-147.
    [33]蔡袁强,陈仁伟,徐长节.强夯加固机理的大变形数值分析.浙江大学学报:工学版,2005,39(1):65-69.
    [34]施斌,村上裕.边坡大变形弹塑性有限元分析[Ⅱ].水文地质工程地质,1999,26(2):24-26.
    [35]周翠英,刘祚秋,董立国等.边坡变形破坏过程的大变形有限元分析.岩土力学,2003,24(4):644-647,652.
    [36]谭晓慧,王建国,张洪涛.边坡稳定的大变形有限元可靠度分析.岩石力学与工程学报,2005,24(A02):5308-5312.
    [37]Liu W K,Belytschko T,Chang H.An arbitrary lagrangian-eulerian finite element method for path-dependent materials.Computer Methods in Applied Mechanics and Engineering,1986,58(2):227-245.
    [38]Zienkiewicz O C.Flow formulation for numerical solution of forming process.Numerical Analysis of Forming Processes,1984,New York:Wiley.
    [39]Cheng J H,Kikuchi N.A mesh rezoning technique for finite element simulations of metal forming processes.Int.J.Num.Methods Eng.,1986,23:219-228.
    [40]Wang C X.Large deformation and non-tension analysis of selected problems in soil mechanics:(博士学位论文).Sydney:the University of Sydney,2001.
    [41]张雄,陆明万.任意拉格朗日—欧拉描述法研究进展.计算力学学报,1997,14(1):91-102.
    [42]Noh W F.A t ime-dependent two-space-dimensional coupled Eulerian-Lagrangian code,.Methods in Computational Physics,1964,New York:Academic press.
    [43]Liu W K,Chang H,Chen J-S 等.Arbitrary lagrangian-eulerian petrov-galerkin finite elements for nonlinear continua.Computer Methods in Applied Mechanics and Engineering,1988,68(3):259-310.
    [44]Haber R B.A mixed Eulerian-Lagrangian displacement model for large deformation analysis in solid mechanics.Comp.Methods Appl.Mech.Eng.,1984,43:277-292.
    [45]Huetink J,van der Lugt J,Vreede P T.A mixed Euler-Lagrangian finite element method for simulation of thermo-mechanical processes.Modelling of Metal Forming Processes,1988:Kluwer Academic Publishers.
    [46]Ghosh S.Finite element simulation of some extrusion processes using the arbitrary Lagrangian-Eulerian description.Journal of Materials Shaping Technology,1990,8(1):53-64.
    [47]Ghosh S.Arbitrary Lagrangian-Eulerian finite element analysis of large deformation in contacting bodies.International Journal for Numerical Methods in Engineering,1992,33(9):1891-1925.
    [48]Ghosh S,Kikuchi N.An arbitrary Lagrangian-Eulerian finite element method for large deformation analysis of elastic-viscoplastic solids.Computer Methods in Applied Mechanics and Engineering,1991,86(2):127-188.
    [49]刘开富.若干土工问题工程性状的大变形有限元分析:(博士学位论文).杭州:浙江大学,2006.
    [50]van den Berg P.Numerical model for cone penetration.Proc.Int.Conf.on Computer Methods and Advances in Geomech.,1991.
    [51]van den Berg P,Teunissen J A M,Huetink J.Cone penetraion in layered media,an ALE finite element formulation.Proc.Int.Conf.on Computer Methods and Advances in Geomech.,1991.
    [52]Hu Y,Randolph M F.H-adaptive FE analysis of elasto-plastic non-homogeneous soil with large deformation.Computers and Geotechnics,1998,23(1-2):61-83.
    [53]Hu Y,Randolph M F.A practical numerical approach for large deformation problems in soil.International Journal for Numerical and Analytical Methods in Geomechanics,1998,22(5):327-350.
    [54]Wang C X,Carter J P.Deep Penetration of Strip and Circular Footings into Layered Clays.International Journal of Geomechanics,2002,2(2):205-232.
    [55] Hu Y, Randolph M F. Deep penetration of shallow foundations on non-homogeneous soil. Soils and foundations, 1998, 38(1): 241-246.
    
    [56] Hu Y, Randolph M F, Watson P G. Bearing Response of Skirted Foundation on Nonhomogeneous Soil. Journal of Geoteehnical and Geoenvironmental Engineering, 1999, 125(11): 924-935.
    
    [57] Lu Q, Randolph M F, Hu Y 等. A numerical study of cone penetration in clay. Geotechnique, 2004, 54(4): 257-267.
    
    [58] Randolph M F, Andersen K H. Numerical Analysis of T-Bar Penetration in Soft Clay. International Journal of Geomechanics, 2006, 6(6): 411-420.
    
    [59] Zhou H, Randolph M F. ComputationalTechniques and Shear Band Development for Cylindrical and Spherical Penetrometers in Strain-Softening Clay. International Journal of Geomechanics, 2007, 7(4): 287-295:
    
    [60] Liu J, Hu Y X, Kong X J. Deep penetration of spudcan foundation into double layered soils. China Ocean Engineering, 2005, 19(2): 309-324.
    
    [61] Hossain M S, Hu Y, Randolph M F等. Limiting cavity depth for spudcan foundations penetrating clay. Geotechnique, 2005, 55(9): 679-690.
    
    [62] Hossain M S, Hu Y, Randolph M F等. Punch-through of spudcan foundations in two-layer clay. International Symposium on Frontiers in Offshore Geotechnics, 2005, Perth, Australia: A.A: Balkema.
    
    [63] Hossain M S, Randolph M F, Hu Y 等. Cavity Stability and Bearing Capacity of Spudcan Foundations on Clay, the 2006 Offshore Technology Conference, 2006, Houston, Texas, U.S.A.
    
    [64] Song Z, Hu Y, Gaudin C. The influence of disturbed zone on capacity of suction embedded plate anchors. Proceedings of the 17th International Offshore and-Polar Engineering Conference, 2007, Lisbon, Portugal.
    
    [65] Liu J, Wu L, Hu Y. Pullout capacity of circular plate anchors in NC clay. Journal of Dalian University of Technology, 2006,46(5): 712-719.
    
    [66] Mehryar Z, Hu Y, Randolph M F. Pullout capacity of circular plate anchor in clay-FE analysis. International Symposium on Numerical Models in Geomechanics - NUMOG VIII, 2002, Rome, Italy.
    
    [67] Song Z, Hu Y. Vertical pullout behaviour of inclined plate anchors in uniform clay. Proc. Int. Symp. on Frotiers in Offshore Geotechnics, IS-FOG05,2005, Perth.
    
    [68] Song Z, Hu Y, Randolph M F. Pullout behaviour of inclined plate anchors in uniform clay. Proc. 11th Int. Conf. of International Association of Computer methods and Advances in Geomechanics, 2005, Turin.
    
    [69] Song Z, Hu Y, Wang D 等. Pullout capacity and rotational behaviour of square anchors. Proc. Int. Conf. on Physical Modelling in Geotechnics, 2006, Hong Kong.
    
    [70] Thorne C P, Wang C X, Carter J P. Uplift capacity of rapidly loaded strip anchors in uniform strength clay. Geotechnique, 2004, 54(8): 507-517.
    
    [71] Wang D, Hu Y, Jin X. Two-dimensional large deformation finite element analysis for the pulling-up of plate anchor. China Ocean Engineering, 2006,20(2): 269-278.
    [72]刘开富,陈阶亮,谢新宇等.基坑放坡开挖破坏性状大变形有限元分析.2006,28(B11):1406-1410.
    [73]Nazem M,Sheng D,Carter J P.Stress integration and mesh refinement for large deformation in geomechanics.International Journal for Numerical Methods in Engineering,2006,65(7):1002-1027.
    [74]Di Y,Yang J,Sato T.An operator-split ALE model for large deformation analysis of geomaterials.International Journal for Numerical and Analytical Methods in Geomechanics,2007,31(12):1375-1399.
    [75]丁峻宏,金先龙,郭毅之等.土壤切削大变形的三维数值仿真.农业机械学报,2007,38(4):118-121.
    [76]汤华,金先龙,丁峻宏等.基于任意拉格朗日-欧拉法的盾构刀盘土体切削仿真.上海交通大学学报,2007,40(12):2177-2181.
    [77]卜勇力,刘才.H型钢轧制过程三维弹塑性大变形有限元模拟.钢铁研究学报,1999,11(4):22-25.
    [78]Guo X X,Liu J S.The adaptive finite element remeshing in large deformation of metal forming.Acta Metallurgica Sinica(English Letters),2004,17(3):323-326.
    [79]韩先洪,李锡夔.成型充填过程的ALE有限元模拟.应用力学学报,2005,22(3):440-444.
    [80]段庆林,李锡夔.成形充填过程的任意拉格朗日—欧拉有限元与无网格自适应耦合模拟.机械工程学报,2007,43(7):120-127.
    [81]唐志涛,刘战强,艾兴等.金属切削加工热弹塑性大变形有限元理论及关键技术研究.中国机械工程,2007,18(6):746-751.
    [82]陈章华,韩明芬,马晓兵.金属成型特殊非协调大变形有限元数据模拟.北京科技大学学报,2002,24(4):436-440.
    [83]寇淑清,傅沛福.三维大变形弹塑性有限元分析与边界条件的处理.塑性工程学报,1998,5(4):65-70.
    [84]徐树成,刘才.弹塑性大变形有限元分析槽钢成型过程的位移场和速度场.塑性工程学报,1999,6(3):69-73.
    [85]詹先义,刘道伦.齿轮精密锻造三维有限元分析.计算力学学报,2002,19(2):236-239.
    [86]杨果林.含软弱下卧层的双层地基工程特性试验研究.工程勘察,1998(1):1-5.
    [87]Dier A,Carroll B,Abolfathi S.Guidelines for jack-up rigs with particular reference to foundation integrity.MSL Engineering Limited,2004.
    [88]陈祖煜.土力学经典问题的极限分析上、下限解.岩土工程学报,2002,24(1):1-11.
    [89]黄志荣.关于地基土承载力计算问题的探讨.西部探矿工程,2003,90(11):202-203.
    [90]李广信,张在明.关于桩基软弱下卧层验算的几点认识.岩土工程技术,2007,21(3):109-112.
    [91]蒋洪胜.浅基础地基承载力的若干问题.建筑技术,2000,31(3):152-155.
    [92]孔位学,郑颖人,赵尚毅等.地基承载力的有限元计算及其在桥基中的应用.土木工程学报,2005,38(4):97-102.
    [93]Prandtl L.Eindringungsfestigkeit und Festigkeit von Schneiden.Zeit Angew.Math.Mech.,1921,1(15).
    [94]Terzaghi K.Theoretical Soil Mechanics.New York:John Wiley,1943.
    [95]钱家欢,殷宗泽.土工原理与计算(第二版).北京:中国水利水电出版社,1996.
    [96]Manjriker G.the Foundation Engineering Handbook.CRC Press,Taylor & Francis Group,LLC,2006.
    [97]Skempton A W.The bearing capacity of clays.Proceedings of Building Research Congress,Division 1,Part 3,London,1951:180-189.
    [98]Meyerhof G G.the ultimate bearing capacity of foundations.Geotechnique,1951,2:301-332.
    [99]Hansen J B.A revised and extended formula for bearing capacity.No.28.the Danish Geotechnical Institute Bulletin 1970.
    [100]李广信.高等土力学.清华大学土木工程系列教材.北京:清华大学出版社,2004.
    [101]Brown J D,Meyerhof G G.Experimental study of bearing capacity in layered clays.Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering,1969,Mexico.
    [102]Meyerhof G G.Ultimate bearing capacity of footings on sand layer overlying clay.Canadian Geotechnical Journal,1974,11(2):223-229.
    [103]Meyerhof G G,Hanna A M.Ultimate bearing capacity of foundations on layered soils under inclined load.Canadian Geotechnical Journal,1978,15(4):565-572.
    [104]程季达,董振泰.具有软弱下卧层的地基极限承载力的计算.岩土工程学报,1984,6(2):59-71.
    [105]Reddy A S,Srinivasan R J.Bearing capacity of footings on layered clays.Journal of soil mechanics and foundation division,ASCE,1967,93(2):83-99.
    [106]Young A G,Remmes B D,Meyer B J.Foundation Performance of offshore jack-up Drilling Rigs.Journal of Geotechnical Engineering,ASCE,1984,110(7):841-859.
    [107]Georgiadis M,Michalopoulos A P.Bearing capacity of gravity bases on layered soil.Journal of Geotechnical Engineering,1985,111(6):712-729.
    [108]栾茂田,金崇磐,林皋.非均质地基上浅基础的极限承载力.岩土工程学报,1988,10(1):14-27.
    [109]栾茂田,金崇磐,林皋.非均质土体稳定性分析的广义极限平衡法及其应用.大连理工大学学报,1991,31(4):463-472.
    [110]徐超,高大钊,凯霞.双层地基承载力问题的研究.工程勘察,1999(5):13-16.
    [111]黄传志,张敬,孙万禾等.非均质土地基承载力的计算方法.中国港湾建设,2000(5):38-43.
    [112]袁凡凡,闫澍旺,孙万禾.关于成层土地基极限承载力的计算方法.水利学报,2001(3):41-45.
    [113]蔡江东.双层地基中软弱土层变形性状分析.四川建筑,2003,23(6):25-26.
    [114]徐洋,谢康和,刘干斌等.复合双层地基的极限承载力计算.土木工程学报,2004,37(4):82-86.
    [115]邹广电,蒋婉莹.复杂地基极限承载力的数值模拟.工程力学,2005,22(2):224-231.
    [116]Chen W F,Davidson H L.Bearing capacity determination by limit analysis.American Society of Civil Engineers,Journal of the Soil Mechanics and Foundations Division,1973,99(SM6):433-449.
    [117]Florkiewicz A.Limit analysis for cracked and layered soils,1989,Rio de Janeiro,Br:Publ by A.A.Balkema,Rotterdam,Neth.
    [118]Florkiewicz A.Upper bound to bearing capacity of layered soils.Canadian Geotechnical Journal,1989,26(4):730-736.
    [119]Michalowski R L,Shi L.Bearing capacity of footings over two-layer foundation soils.Journal of Geotechnical Engineering,1995,121(5):421-428.
    [120]Merifield R S,Sloan S W,Yu H S.Rigorous plasticity solutions for the bearing capacity of two-layered clays.Geotechnique,1999,49(4):471-490.
    [121]Chen W F.Limit analysis and soil plastisity.Amsterdam:Elsevier,1975.
    [122]金问鲁,谢德贵.双层地基承载力的计算及其在天然软土地基中的应用.岩土工程学报,1987,9(1):61-71.
    [123]Reddy A S,Dutt H H,Jagannath S V.Bearing capacity of circular footing in two-layered soil.Indian Geotechnical Journal,1989,19(2):167-180.
    [124]阮怀宁.复杂地基极限承载力半解析解.岩土工程学报,1994,16(1):44-53.
    [125]杨永新,高建红,冯玉芹.双层地基承载力的一种近似算法(一).包头钢铁学院学报,2004,23(1):86-88.
    [126]杨永新,高建红,冯玉芹.双层地基承载力的一种近似算法(二).包头钢铁学院学报,2004,23(2):174-178.
    [127]高建红,杨永新,王海燕.双层地基临界深度的数值分析.包头钢铁学院学报,2005,24(1):37-40.
    [128]费涵昌,王广欣,曹来发等.双层地基的变形与沉降.同济大学学报(自然科学版),1995,23(3):288-293.
    [129]Burd H J,Frydman S.Bearing capacity of plane-strain footings on layered soils.Canadian Geotechnical Journal,1996,34(2):241-253.
    [130]Kellezi L,Stromann H.FEM analysis of jack-up spudcan penetration for multi-layered critical soil conditions,2003,Dundee,United Kingdom:Thomas Telford Services Ltd,London,United Kingdom.
    [131]孙翔,刘新荣,张永兴.上硬下软双层地基有限元分析.重庆建筑大学学报,2004,26(4):41-44.
    [132]Edwards D,Potts D,Zdravkovic L.Paper:The bearing capacity of a circular footing under 'punch-through' failure.Ground Engineering,2006,39(10):42-44.
    [133]Zhu M,Michalowski R L.Bearing capacity of rectangular footings on two-layer clay,in Proceedings of the 16th International Conference on Soil Mechanics and Geotechnical Engineering,Vols 1-5-Geotechnology in Harmony with the Global Environment.2005.997-1000.
    [134]李阿池,陈福全,刘毓氚.不排水双层粘土地基承载力的强度折减有限元分析.福州大学学报(自然科学版),2006,34(4):589-593.
    [135]袁凡凡.非均质介质地基破坏机制及极限承载力分析研究:(博士学位论文).天津:天津大学建筑工程学院,2002.
    [136]梁永辉.上覆硬壳层软土地基的工程特性试验研究及数值分析:(硕士学位论文).中国上海:同济大学,2007.
    [137]李月健,陈云敏,凌道盛.静力压桩临界深度和最小厚度探讨.岩土工程学报,2001,23(5):584-587.
    [138]张明义,邓安福,干腾君.静力压桩数值模拟的位移贯入法.岩土力学,2003,24(1):113-117.
    [139]张明义.静力压入桩的研究与应用.北京:中国建材工业出版社,2004.
    [140]徐建平,周健,许朝阳等.沉桩挤土效应的数值模拟.工业建筑,2000,30(7):1-6,22.
    [141]李平政.世界深水石油勘探开发概况及初步认识.中国海洋平台,2007,22(4):1-6.
    [142]廖谟圣.2000-2005年国外深水和超深水钻井采油平台简况与思考.中国海洋平台,2006,21(3):1-8.
    [143]GOMR.Gulf of Mexico region Minerals Management Service.2007,http://www.gomr.mms.gov.
    [144]廖谟圣.国外超深水钻采平台的发展给我们的启迪.中国海洋平台,2003,18(5):1-5.
    [145]Howes A S.An investigation into the behaviour and pullout capacity of plate anchors,Final year civil engineering project.2003,Curtin University of Technology:Perth,Australia.
    [146]张建红,林小静.深海海洋平台基础简介.岩土工程界,2004,7(12):19-22.
    [147]徐蓉,何炎平,谭家华.几种新型深海锚泊形式概念.中国海洋平台,2005,20(2).
    [148]Spread mooring systems and components for floadting units(Poster).Offshore,2002,62(11).
    [149]Dove P,Treu H,Wilde B.Suction embedded plate anchor(SEPLA):a new anchoring solution for ultra-deepwater mooring.Proc.DOT Conf.,1998,New Orleans.
    [150]NEMO.Nemo Engineering As.2007,http://www.nemo-engineering.com/.
    [151]Caqout A,Kerisel J.Table for the calculation of passive pressure,active pressure,and bearing capacity of foundations,1948,Paris:Gauthier-Villars.
    [152]刘华强,殷宗泽.水平锚板极限抗拔力的一种算法.郑州大学学报(工学版),2006,27(4):22-24.
    [153]Mors H.The behaviour of mast foundations subjected to tensile forces.Bautechnik,1959,36(10):367-378.
    [154]Balla A.The resistance to breaking out of mushroom foundation for pylons.Proceedings of the 5th International Conference on SM and FE,1961,Paris.
    [155]Matsuo M.Study of uplift resistance of footing[Ⅰ].Soils and foundations,1967,7(4):1-37.
    [156]Matsuo M.Study of uplift resistance of footing[Ⅱ].Soils and foundations,1968,8(1):25-47.
    [157]Meyerhof G G,Adams J I.The ultimate uplift capacity of foundations.Canadian Geotechnical Journal,1968,5(4):225-244.
    [158] Meyerhof G G, Adams J I. Uplift resistance of inclined anchors and piles. Proceedings of 8th International Conference on Soil Mechanics and Foundation Engineering, 1973, Moscow: USSR.
    
    [159] Sutherland H B. Model studies for shaft raising through cohesionless soils. Proceedings of the Sixth International Conference on Soil Mechanics and Foundation Engineering, 1965, Montreal, Canada.
    
    [160] Vesic A S. Break-out resistance of objects embedment in ocean bottom. Journal of the Soil Mechanics and Foundations Division, ASCE, 1971, 97(9): 1183-1205.
    
    [161] Rowe R K, Davis E H. The behaviour of anchor plates in clay. Geotechnique, 1982,32(1): 9-23.
    
    [162] Rowe R K, Davis E H. The behaviour of anchor plates in sand. Geotechnique, 1982, 32(1): 25-41.
    
    [163] Das B M. MODEL TESTS FOR UPLIFT CAPACITY OF FOUNDATIONS IN CLAY. Soils and foundations, 1978, 18(2): 17-24.
    
    [164] Das B M. A Procedure for estimation of ultimate capacity of foundations in clay. Soils and foundations, 1980, 20(1): 77-82.
    
    [165] Das B M, Moreno R, Dallo K F. ULTIMATE PULLOUT CAPACITY OF SHALLOW VERTICAL ANCHORS IN CLAY. Soils and foundations, 1985,25(2): 148-152.
    
    [166] Das B M, Puri V K. Holding capacity of inclined square plate anchors in clay. Soils and foundations, 1989,29(3): 138-144.
    
    [167] Das B M, Shin E C, Dass R N 等. Suction force below plate anchors in soft clay. Marine Georesources and Geotechnology, 1994,12(1): 71-81.
    
    [168] Das B M, Tarquin A J, Moreno R. MODEL TESTS FOR PULLOUT RESISTANCE OF VERTICAL ANCHORS IN CLAY. Civil Engineering for Practicing and Design Engineers, 1985,4(2):191-209.
    
    [169] Das B M. shallow foundations: bearing capacity and settlement. Boca Raton London New York Washington, DC: CRC press LLC, 1999.
    
    [170] Dickin E A. Uplift behavior of horizontal anchor plates in sand. Journal of Geotechnical Engineering, ASCE, 1988,114(11): 1300-1316.
    
    [171] Merifield R S, Lyamin A V, Sloan S W. Stability of inclined strip anchors in purely cohesive soil. Journal of Geotechnical and Geoenvironmental Engineering, 2005,131(6): 792-799.
    
    [172] Merifield R S, Lyamin A V, Sloan S W. Three-dimensional lower-bound solutions for the stability of plate anchors in sand. Geotechnique, 2006, 56(2): 123-132.
    
    [173] Merifield R S, Lyamin A V, Sloan S W 等. Three-dimensional lower bound solutions for stability of plate anchors in clay. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2003,129(3): 243-253.
    
    [174] Merifield R S, Sloan S W. The ultimate pullout capacity of anchors in frictional soils. Canadian Geotechnical Journal, 2006,43(8): 852-868.
    
    [175] Merifield R S, Sloan S W, Lyamin A V. The stability of inclined plate anchors in purely cohesive soil. Faculty of Engineering & Surveying, 2003.
    [176]Merifield R S,Sloan S W,Yu H S.Stability of plate anchors in undrained clay.Geotechnique,2001,51(2):141-153.
    [177]Martin C M,Randolph M F.Application of the lower bound and the upper bound theorems of plasticity to collapse of circular foundations.Proc.10th Int.Conf Int.Association of Computer Methods and Advances in Geomechanics,2001,Tucson.
    [178]茜平一,刘祖德,刘一亮.浅埋斜拔锚板板周土体的变形破坏特征.岩土工程学报,1992,14(1):62-66.
    [179]朱长歧,初晓锋.钙质砂中锚定板的极限抗拔力计算.岩土力学,2003,24 Supp.:153-158.
    [180]初晓锋,李志刚,汪稔等.钙质砂中锚定物锚固性能的试验研究.岩土力学,2002,23(3):368-371.
    [181]丁佩民,肖志斌,张其林等.砂土中锚板抗拔承载力研究.建筑结构学报,2003,24(5):82-92.
    [182]丁佩民,张其林,肖志斌.砂土中锚板荷载-位移特性研究及上拔位移计算.土木工程学报,2004,37(6):52-59.
    [183]何思明.抗拔锚板基础承载力研究.地下空间,2002,22(2):145-148.
    [184]何思明,张小刚,朱平一.水平荷载作用下深埋锚板变形分析.岩石力学与工程学报,2004,23(1):159-163.
    [185]NGI/COFS.Shear Strength Parameters Determined by In situ Tests for Deep Water Soft Soils.Norwegian Geotechnical Institute/Centre for Offshore Foundation Systems,2006.
    [186]NCEL.Handbook for marine geotechnical engineering.Port Hueneme:CA:US Naval Civil Enginnering Laboratory,1985.
    [187]Wilde B,Treu H,Fulton T.Field testing of suction embedded plate anchors.Proc.11th International Offshore and Polar Engng Conf.,2001,Stavanger:544-551.
    [188]O'Loughlin C D,Lowmass A,Gaudin C 等.Physical modelling to assess keying characteristics of plate anchors.International Conference on Physical Modelling in Geotechnics,2006,Hong Kong.
    [189]Gaudin C,O'Loughlin C D,Randolph M F 等.Influence of the installation process on the performance of suction embedded plate anchors.Geotechnique,2006,56(6):381-391.
    [190]ANSYS 8.1 Documentation.ANSYS,Inc,2004.
    [191]Carter J P,Balaam N P.AFENA users manual.1995.
    [192]Herrmann L R.Finite element analysis of contact problems.ASCE J Eng Mech Div,1978,104(5):1043-1057.
    [193]Hughes T J R.Equivalence of finite elements for nearly incompressible elasticity.Journal of Applied Mechanics,Transactions ASME,1977,44 Ser E(1):181-183.
    [194]Malkus D S,Hughes T J R.Mixed finite element methods-Reduced and selective integration techniques:A unification of concepts.Computer Methods in Applied Mechanics and Engineering,1978,15(1):63-81.
    [195]Oden J T,Carey G F.Finite Elements(Vol:Ⅴ).NJ:Prent ice-Hall,1981.
    [196]史守峡,白若阳.非线性不可压缩橡胶柱体的大变形罚有限元分析.世界地震工程,1998,14(1):51-57.
    [197]Cheung Y K,Chen W.Hybrid element method for incompressible and nearly incompressible materials.International Journal of Solids and Structures,1989,25(5):483-495.
    [198]陈万吉,冀宾,赵杰.弹性近不可压缩问题的精化元法.大连理工大学学报,2007,47(4):479-482.
    [199]Sloan S.W,Randolph M F.Numerical prediction of collapse loads using finite element methods.International Journal for Numerical and Analytical Methods in Geomechanics,1982,6(1):47-76.
    [200]Bell R W,Houlsby G T,Burd H J.Suitability of three-dimensional finite elements for modelling material incompressibility using exact integration.Communications in Numerical Methods in Engineering,1993,9(4):313-329.
    [201]Lo S H,Ling C.Improvement on the 10-node tetrahedral element for three-dimensional problems.Computer Methods in Applied Mechanics and Engineering,2000,189(3):961-974.
    [202]Taiebat H H,Carter J P.Three-dimensional non-comforming elements.Research report No.R808,The University of Sydney,2001.
    [203]Alves M L,Fernandes J L M,Rodrigues J M C等.Finite element remeshing in metal forming using hexahedral elements.Journal of Materials Processing Technology,2003,141(3):395-403.
    [204]Cox A D,Eason G,Hopkins H G.Axially symmetric plastic deformation in soils.Philosophical Transactions of the Royal Society of London,1961.
    [205]Peric D,Hochard C,Dutko M等.Transfer operators for evolving meshes in small strain elasto-plasticity.Computer Methods in Applied Mechanics and Engineering,1996,137(3-4):331-344.
    [206]Peric D,Vaz M,Jr.,Owen D R J.On adaptive strategies for large deformations of elasto-plastic solids at finite strains:Computational issues and industrial applications.Computer Methods in Applied Mechanics and Engineering,1999,176(1-4):279-312.
    [207]Tecplot User's Manual Version 9.0.Bellevue,Washington:Amtec Engineering,Inc.,2001.
    [208]Zienkiewicz O C,Zhu J Z.The Superconvergent Patch Recovery and a Posteriori Error Estimates,Part 1:The Recovery Technique.the International Journal for Numerical Methods in Engineering,1992,33:1331-1364.
    [209]Randolph M F,Cassidy M J,Gourvenec S M 等.Challenges of offshore geotechnical engineering.Proc.16th Int.Conf.Soil Mech.Geotech.Engng,2005,Osaka.
    [210]Houlsby G T,Wroth C P.Calculation of stresses on shallow penetrometers and footings.Proc.IUTAM/IUGG Seabed Mechanics,1983,Newcastle:Graham & Trotman.
    [211]Gourvenec S,Randolph M,Kingsnorth O.Undrained Bearing Capacity of Square and Rectangular Footings.International Journal of Geomechanics,2006,6(3):147-157.
    [212]Salgado R,Lyamin A V,Sloan S W 等.Two- and three-dimensional bearing capacity of foundations in clay.Geotechnique,2004,54(5):297-306.
    [213]Michalowski R L.Upper-bound load estimates on square and rectangular footings.Geotechnique,2001,51(9):787-798.
    [214] Matyas E L, Davis J B. Prediction of vertical earth loads on rigid pipes. Journal of Geotechnical Engineering, 1983,109(2): 190-201.
    
    [215] Song Z, Hu Y, Randolph M F. Numetical simulation of vertical pullout of plate anchors in clay. Journal of Geotechnical and Geoenvironmental Engineering, Acepted in 2007.