大豆异黄酮含量的影响因素分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以异黄酮含量不同的4个品种为试材,连续3年在5个地点种植,分析了种植年份、地点和基因型对大豆异黄酮含量的影响。用异黄酮含量不同的2个大豆品种进行了砂培试验,分析氮素和磷素对大豆异黄酮含量的影响及大豆叶片、籽粒中异黄酮含量的积累动态,同时分析了叶片中异黄酮含量变化的分子机制。在哈尔滨地区2007-2008年采用7个品种设置不同种植密度和施氮量试验,分析了农艺措施对大豆异黄酮含量的影响。研究结果如下:
     1不同基因型大豆籽粒异黄酮含量生态差异研究
     1.1生态条件对大豆籽粒大豆黄素含量的影响
     不同种植年份对大豆黄素含量有极显著的影响。2005-2007年不同种植地点对大豆黄素含量每年都有极显著的影响,对3年结果进行联合方差分析后发现,不同种植地点对大豆黄素含量有显著的影响,高纬度有利于大豆黄素生成。2005-2007年不同基因型在每年对大豆黄素含量都有极显著的影响。互作效应对大豆黄素含量有较大影响,通过对基因型与种植地点的互作效应分析发现,不同品种对种植地点有较强的选择性。影响大豆黄素含量的各因素效应大小顺序为:年份>基因型×年份×地点>地点>年份×地点。
     1.2不同生态条件对大豆籽粒黄豆黄素含量的影响
     不同种植年份对黄豆黄素含量有显著影响。2005-2007年,每年的不同种植地点对黄豆黄素含量都有极显著的影响,高纬度也有利于黄豆黄素生成。试验中每年不同基因型对黄豆黄素含量都有极显著的影响。互作效应对黄豆黄素含量有较大影响,通过对基因型与种植地点的互作效应分析发现,不同品种对种植地点有较强的选择性。影响黄豆黄素含量的各项因素效应大小顺序为:基因型×年份×地点>年份>年份×地点>基因型。
     1.3不同生态条件对大豆籽粒染料木素含量的影响
     不同种植年份对染料木素含量没有显著的影响。试验中每年不同种植地点对染料木素含量都有极显著的影响,高纬度有利于染料木素生成。每年不同基因型都对染料木素含量有极显著的影响,3年结果联合方差分析中,基因型对染料木素含量有显著影响。互作效应对黄豆黄素含量有较大影响,通过对基因型与种植地点的互作效应分析发现,不同品种对种植地点有较强的选择性。影响染料木素含量的各项因素效应大小顺序为:年份×地点>地点>年份>基因型×年份×地点>基因型。
     1.4不同生态条件对大豆籽粒大豆异黄酮总含量的影响
     不同种植年份对大豆异黄酮总含量有极显著的影响。每年不同种植地点对大豆异黄酮总含量都有极显著的影响,对3年结果进行联合方差分析后发现,种植地点对大豆异黄酮总含量有显著影响,高纬度有利于大豆异黄酮生成。不同基因型对大豆异黄酮总含量有极显著影响。互作效应对大豆异黄酮总含量有较大影响,通过对基因型与种植地点的互作效应分析发现,不同品种对种植地点有较强的选择性。影响大豆异黄酮总含量的各项因素效应大小顺序为:年份>地点>年份×地点>基因型×年份×地点>基因型。
     2.栽培措施对大豆籽粒异黄酮含量的影响
     2.1盆栽条件下氮素和磷素对大豆籽粒异黄酮总含量的影响
     低氮素处理条件下,大豆籽粒异黄酮总含量显著高于中氮、高氮和空白处理条件下的异黄酮总含量。不同磷素处理条件大豆籽粒异黄酮总含量的变化规律存在品种间差异。低磷处理对东农51和垦鉴27的大豆籽粒异黄酮总含量均有提高的效果。在高磷处理条件下,垦鉴27大豆籽粒异黄酮总含量与中磷处理无显著差异,且其平均值还较中磷处理低;东农51在高磷处理下异黄酮总含量显著高于中磷与空白处理。
     不同年份大豆籽粒异黄酮总含量对肥料处理的反应不同。低氮处理具有促进提高大豆籽异黄酮总含量的作用。但是,不同年份低氮处理较其他处理增加幅度不同。年际间大豆籽粒异黄酮总含量对磷素反应不同,2007年低磷、中磷和高磷处理条件下大豆籽粒异黄酮总含量间无显著差异,三者均显著高于空白对照。2008年低磷处理异黄酮总含量显著高于中磷、高磷和空白对照,而中磷、高磷和空白对照的异黄酮总含量间无显著差异。
     2.2大田条件下栽培措施对异黄酮含量的影响
     2007年和2008年单年方差分析中种植密度、施氮量、基因型和它们互作对大豆籽粒中大豆黄素含量均有极显著的影响。两年的联合方差分析中,种植密度、基因型及各项互作项对大豆籽粒中大豆黄素含量均有极显著的影响。通过本试验认为,选用大豆品种黑农37,种植密度22万株/hm~2,纯氮施用量30 kg/hm~2均可提高大豆黄素含量。由于较强的互作效应的存在,以大豆黄素含量为目标性状进行大豆栽培生产时,应针对不同品种提出其特定的配套栽培措施。
     2007年和2008年单年方差分析中种植密度、施氮量、基因型及它们互作项对大豆籽粒中黄豆黄素含量均有极显著的影响。两年的联合方差分析中,种植密度、基因型及各项互作项对大豆籽粒中黄豆黄素含量均有极显著的影响。通过本试验认为,选用大豆品种黑农48,种植密度27万株/hm~2,纯氮施用量30 kg/hm~2均可提高黄豆黄素含量。由于互作效应的存在,以黄豆黄素含量为目标性状进行大豆栽培生产时,应针对不同品种提出其特定的配套栽培措施。
     2007年和2008年单年方差分析中栽培密度、施氮量、基因型及它们互作项对大豆籽粒中染料木素含量均有极显著的影响。两年的联合方差分析中,种植密度、施氮量、基因型及各项互作项对大豆籽粒中染料木素含量均有极显著的影响。选用品种东农51,22万株/hm~2种植密度,30kg/hm~2施氮量均有提高染料木素含量的效果。由于互作效应的存在,染料木素含量为目标性状进行大豆栽培生产时,应针对不同品种提出其特定的配套栽培措施。
     种植密度、施氮量、基因型及各项互作项对大豆籽粒中异黄酮总含量均有极显著的影响。22万株/hm~2种植密度,30kg/hm~2施氮水平,选用东农51与黑农37均有提高异黄酮总含量的效果。由于互作效应的存在,在以大豆异黄酮总含量为目标性状进行大豆栽培生产时,应针对不同品种提出其特定的配套栽培措施。
     3.大豆异黄酮积累动态规律及其分子机制分析
     3.1大豆发育过程中叶片异黄酮积累动态分析
     在均衡营养液处理条件下,两品种在浇营养液后较浇营养液前均有一个明显的异黄酮总含量及3种组份含量的降低,并且幅度很大。而在空白对照中,在浇营养液前后异黄酮总含量及3种组份含量没有明显的增减变化。异黄酮总含量及3种组份含量均在R1前后出现一个明显的波峰。说明进入花期前后,大豆叶片中异黄酮总含量出现一个积累高峰。
     3.2苯丙氨酸解氨基因相对表达量与大豆叶片中异黄酮总含量及3种苷元组份含量间有协同增减趋势。
     3.3发育中的大豆籽粒异黄酮总含量及3种苷元组份含量与籽粒发育日数呈极显著正相关。
To survey the difference of isoflavones content in soybean seeds in different environment four cultivars were planted at five locations from 2005 to 2007.Two soybean cultivars were adopted in sand culture experiment,to analysis soybean seed isoflavone content changes under different N and P applied rate,and,to analysis isoflavone content sequential changes in soybean seed and leaf,meanwhile,to analysis molecular mechanism of isoflavone content change in the leaf.7 soybean cultivars were planted under different seeding rate and N-application rate in the Harbin area in 2007-2008 years,to analysis the agronomy measure influencing soybean isoflavone content.The results were as follows:
     1 Ecological difference of isoflavones content in soybean seeds among different genotypes
     1.1 The difference of daidzein content in different ecological condition
     There were significant difference in daidzein contents among years.There were significant difference in daidzein contents among planting sites.Daidzein contents were significantly positively correlated with latitude of the locations at the 0.01 probability levels. Different genotypes influence daidzein content at the 0.01 probability levels.Interaction of the factors influenced daidzein content greaty.Relative importance of factors affecting daidzein content were as follow:Year>genotypex yearx location>location>year×location.
     1.2 The difference of glycitein content in different ecological condition
     There were significant difference in glycitein contents among years.There were significant difference in glycitein contents among planting locations.Glycitein contents were significantly positively correlated with latitude of the locations at the 0.01 probability levels. Different genotypes influence glycitein content at the 0.01 probability levels in every year of the three years.Interaction of the factors influenced glycitein content greaty.Relative importance of factors affecting glycitein content were as follow:Genotype×year×location>year>year×location>genotype.
     1.3 The difference of genistein content in different ecological condition
     There were significant difference in genistein contents among years.Every year,there were significant difference in genistein contents among planting locations.Genistein contents were significantly positively correlated with latitude of the locations at the 0.01 probability levels.Different genotypes influence genistein content at the 0.01 probability levels in every year of the three years,at the 0.05 probability levels in three years.Interaction of the factors influenced genistein content greaty.Relative importance of factors affecting genistein content were as follow:Year×location>location>year>genotype×year×location>genotype.
     1.4 The difference of isoflavone content in different ecological condition
     There were significant difference in isoflavone contents among years.Every year,there were significant difference in isoflavone contents among planting locations at the 0.01 probability levels,at the 0.05 probability levels in three years.Isoflavone contents were significantly positively correlated with latitude of the locations at the 0.01 probability levels. Different genotypes influence isoflavone content at the 0.01 probability levels in every year and three years.Interaction of the factors influenced isoflavone content greaty.Relative importance of factors affecting isoflavone content were as follow:Year>location>year×location>genotype×year×location>genotype.
     2 Effect of planting measure on isoflavone contents in soybean seeds
     2.1 Effects of N and P on isoflavone contents in soybean seeds under pot culture experiment.
     Soybean isoflavone content under the low N condition was significant higher than the content under high N and CK.Isoflavone content changes under different P treatment existed cultivars difference.Isoflavone content were higher under low P processes in all two cultivars. But,these two cultivars exist difference in high P processes.In different years,there were different response rules of isoflavone content to N and P processes.
     2.2 Effect of planting measure on isoflavone contents in soybean seeds under field trial
     Seeding rate,N-application rate,genotype and their interaction influenced daidzein content significantly in 2007 and 2008.Seeding rate,genotype and all interaction influenced daidzein content significantly in union variance analysis.Through this experiment,we fond that Heinong37 cultivar,22 ten thousand plant/hm2 seeding rate,30 kg/hm2 N-application rate all could improve daidzein content.As the interaction existing,we should adopt special cultivation measure to different cultivars to improve daidzein content in soybean seeds.
     Seeding rate,N-application rate,genotype and their interaction influenced glycitein content significantly in 2007 and 2008.Seeding rate,genotype and all interaction influenced glycitein content significantly in union variance analysis.Through this experiment,we fond that Heinong 48 cultivar,27 ten thousand plant/hm2 seeding rate,30 kg/hm2 N-application rate all could improve glycitein content.As the interaction existing,we should adopt special cultivation measure to different cultivars to improve glycitein content in soybean seeds.
     Seeding rate,N-application rate,genotype and their interaction influenced genistein content significantly.Through this experiment,we fond that Dongnong 51 cultivar,22 ten thousand plant/hm2 seeding rate,30 kg/hm2 N-application rate all could improve genistein content.As the interaction existing,we should adopt special cultivation measure to different cultivars to improve genistein content in soybean seeds.
     Seeding rate,N-application rate,genotype and their interaction influenced isoflavone content significantly.Through this experiment,we fond that Dongnong 51 and Heinong 37 cultivar,22 ten thousand plant/hm2 seeding rate,30 kg/hm2 N-application rate all could improve isoflavone content.As the interaction existing,we should adopt special cultivation measure to different cultivars to improve isoflavone content in soybean seeds.
     3 Isoflavone accumulation in soybean and it's molecular mechanism analysis
     3.1 Isoflavone accumulation in soybean leafs
     Soybean isoflavone content reduced greatly after pouring nourishing cream.Soybean isoflavone content appeared a peak in Rl stage.
     3.2 There coordination fluctuation tendency.between alanin ammonialyase(PAL) gene relative expression quantity and isoflavone content in soybean leaf.
     3.3 Growth date number was significantly related to soybean seeds isoflavone content.
引文
1.常汝镇,陈一舞.1994.盐对大豆农艺性状及籽粒品质的影响.大豆科学,13(2):101-105
    2.陈代文,张克英,胡祖禹.2002.猪肉品质特征的形成原理.四川农业大学学报,20(1):60-66
    3.陈晓亚,刘培.植物次生代谢的分子生物学及基因工程.生命科学,8(2):8-11
    4.陈应志.2005.世界大豆生产和科研的进展.大豆通报,(1):26-30
    5.陈原.1999.大豆异黄酮的抗癌机理.中国保健食品,20(1):17
    6.程忠刚,林映才,余德谦.2005.大豆黄酮对肥育猪生产性能的影响及其作用机制探讨.动物营养学报,17(1):30-34
    7.董怀海,谷文英.2002.高效液相色谱—质谱法在大豆异黄酮测定中的应用.粮食与饲料工业,5:48-50
    8.董李平.大豆异黄酮代谢机理的研究.西南农业大学,硕士论文,2003年7月7日
    9.董李平,吴珍龄,易泽林.2004.大豆结实前异黄酮积累规律的研究,西南农业大学学报(自然科学版),26(6):756-758
    10.高荣海,李长彪.2006.大豆异黄酮分离及其检测方法的研究进展.中国调味品,7:4-8
    11.龚凌霄.2006.大豆异黄酮的提取和精制.浙江大学,硕士论文
    12.何继春,卫巍.2001.大豆异黄酮检测及四标样快速测定法研究.粮食与油脂,7:46-47
    13.何水林,郑金贵,王晓峰,王燕华,许明,李斌莲,林明.2002.植物次生代谢:功能、调控及其基因工程.应用与环境生物学报,8(5):558-56
    14.鞠兴荣,袁建,汪海波.高效液相色谱法测定大豆提取物中大豆异黄酮的含量.中国粮油学报,2000,15(4):26-29
    15.来永才,李炜,毕远林,李霞辉,林红,齐宁,张必弦.2008.黑龙江省野生大豆高异黄酮新种质创新利用研究Ⅲ大豆种间杂交F1代异黄酮的遗传规律和杂种优势的研究.大豆科学,27(2):212-214
    16.来永才,李炜,王庆祥,李霞辉,齐宁,林红.2006.黑龙江省野生大豆高异黄酮新种质创新利用Ⅰ异黄酮含量及与籽粒相关性状的分析.大豆科学,25(4):414-416
    17.李辉,戴常军,兰静,赵迺新,李宛.2007.黑龙江省栽培大豆异黄酮含量的初步分析.中国粮油学报,22(1):38-40
    18.李菊艳,李文滨,任继秋.2006.微量元素对大豆异黄酮含量的影响.现代化农业,4:23
    19.李莉.钾肥对大豆异黄酮合成代谢的影响.东北农业大学,硕士论文,2007年6月9日
    20.李卫东.2004.大豆籽粒异黄酮含量与生态因子相关关系的研究.中国农业科学,37(10):1458-1463.
    21.梁慧珍,李卫东,方宣钧,曹颖妮,王辉.2005.大豆异黄酮及其组分含量的配合力和杂种优势.中国农业科学,38(10):2147-2152
    22.梁慧珍,李卫东.2006.大豆籽粒异黄酮含量的遗传效应研究.作物学报,32(6):856-860
    23.刘大川,汪海波.2000.大豆胚芽中大豆皂甙、异黄酮甙的提取工艺研究.食品科学,21(10):28-31
    24.刘皙洁,张桂春,张维生.2003.半胱胺、大豆黄酮对肉仔鸡脂肪代谢的影响.东北农业大学学报,34(2):171-175
    25.陆宁,宛晓春.1998.葛根总黄酮,淀粉的提取及应用.食品工业科技,19(1):33-34.
    26.鹿娜,姜景彬.2009.东北三省大豆异黄酮含量生态地理差异.黑龙江农业科学,2:46-48
    27.陆景陵,胡蔼堂.2002.《植物营养学》.北京农业大学出版社
    28.马德莹,单安山.2004.中草药对动物生长、内分泌和免疫功能的影响.中国畜牧兽医,31(1):16-19
    29.蒋大海,田娟娟,宋宏哲,白志明.2008.大豆异黄酮水解方法的比较.粮食与食品工业,15(1):25-27
    30.欧阳光察,薛应龙.1988.植物苯丙烷类代谢的生理意义及其调控.植物生理学通讯,24(3):9-26
    31.欧阳光察,应初衍,沃绍根.1985.植物苯丙氨酸解氨酶的研究.Ⅵ.水稻、小麦PAL的纯化及基本特性.植物生理学报,11(2):204-214
    32.潘廖明,姚开,贾冬英.2003.超声辅助提取大豆异黄酮的研究.中国油脂,28(11):85-87
    33.彭义交,刘宗林.2004.大豆异黄酮双向纸层析分析方法的研究.食品科学,25(4):141-144
    34.沈黎明,孙君明,丁安林.1999.不同光照条件下大豆体内异黄酮的含量与分布.中国油料作物学报,21(2):36-40
    35.史琳娜.2000.大豆异黄酮对卵巢大鼠骨丢失的影响.营养学报,22(2):113
    36.孙君明,丁安林,常汝镇.1995.中国大豆异黄酮含量的初步分析.中国粮油学报,10:51-54
    37.孙君明,丁安林,常汝镇.2002.大豆子粒中异黄酮含量的遗传初步分析.中国农业科学,35(1):16-21.
    38.孙君明,丁安林,沈黎明.1998.光照对大豆幼苗组织中异黄酮含量和分布的影响.植物学报,40(11):1015-1021
    39.孙君明,丁安林.1997.地理环境对大豆种子中异黄酮积累的影响趋势.大豆科学,16(4):298-303.
    40.孙君明,丁安林.1998.大豆异黄酮含量及影响因素的评价.中国粮油学报,13:10-13
    41.孙君明,丁安林.1998.大豆籽粒中异黄酮含量的质量-数量性状的遗传分析初探.大豆科学,17(4):305-310
    42.孙君明,丁宁林.1998.大豆种子发育过程中异黄酮的积累.植物生理学通讯,34(1):10-13
    43.孙君明,韩粉霞.2004.储藏温度与时间对大豆子粒异黄酮含量的影响.大豆科学,23(4):245-248
    44.孙君明.1995.大豆异黄酮的研究概况.大豆科学,14(2):160-166
    45.孙艳梅.2003.β-葡萄糖苷酶水解大豆异黄酮糖苷的研究.哈尔滨,东北农业大学
    46.俞联平,李发弟,程文定,陈兴荣,王维中.2009.钼、播种量和行距对岷山红三叶产量及异黄酮含量的影响.中国草地学报,31(1):52-57
    47.王春娥.1998.大豆异黄酮的成分、含量及特性.食品科学.19(1):39-43
    48.王国杰,韩正康,陈伟华.1995.大豆异黄酮对大鼠肌肉生长和几种内源激素水平的影响.动物学研究,16(1):23-29
    49.王葭.2002.大豆异黄酮的研究进展.河北师范大学学报(自然科学版),26(1)44-47
    50.谢灵玲,赵武玲,沈黎明.2000.光照对大豆叶片苯丙氨酸裂解酶(PAL)基因表达及异黄酮合成的调节.植物学通报,17(5):443-449
    51.谢明杰,宋明,邹翠霞.2004.超声波提取大豆异黄酮.大豆科学,23(1):75-76
    52.闫祥华,刘大星,何传民,顾景范,孙存普,刘佃辛.2001.大豆异黄酮的提取工艺及其对血凝调节的影响.食品科学,22(5):70-73
    53.阳成波,印遇龙,龚建华,郁海,黄瑞林,李铁军.2003.实时定量PCR研究进展及其应用.中国预防兽医学报,25(5):395-399
    54.杨频,韩玲军,张立伟.2001.超临界流体萃取技术在中草药有效成分提取中的应用.化学研究与应用,13(2):128-132
    55.尹靖东,齐广海,张萍.2004.大豆黄酮对鸡蛋胆固醇及其耐氧化性的影响.中国农业科学,37(5):756-761
    56.曾祥群.2000.葛根总黄酮提取工艺.食品工业科技,21(3):33-34
    57.张炳文,宋永生,郝征红,岳晖.2003.大豆异黄酮酸水解工艺的研究探讨.中国粮油学报,18(3):44-47
    58.张海德,李琳,张水华,肖凯军,郭祀远.2000.酱油中异黄酮物质的分离与鉴定.中国调味品,8:23-26
    59.张永忠,石冬冬.2003.微波法处理提取大豆异黄酮的研究.粮油食品,3(11):8-10
    60.张玉梅.2000.紫外分光光度法测定大豆总异黄酮的含量.中国食品卫生杂志,12(4):7-9
    61.赵胜利,冀亚兰,黄正云.1979.愈风宁心片的薄层扫描定量法.中草药通报,8:8-9
    62.周三,关崎春雄,岳旺,泽聪子,杨志宏.2008.野生大豆、黑豆和大豆的异黄酮类成分比较-大豆科学,27(2):315-319
    63.周应恒,邹林刚.2005.我国大豆产业发展战略的另一种选择.农业经济问题,9:42-46
    64.朱仕房,王善利.2001.大豆异黄酮提取条件的研究.食品科学,22(3):54-57
    65.王汝兴,刘翠哲,刘喜纲.2004.大豆异黄酮的药理学研究进展.承德医学院学报,21(1):65-67
    66.吴伟,王储炎,吴传华.2008.大豆异黄酮的研究概况.农产品加工,3:33-39
    67.Adlercreutz CH,Goldin BR,Gorbach SL,H(o|¨)ckerstedt KA.1995.Soybean phytoe strogen intake and cancer risk.J Nutr,125(7):757-770
    68.Bartlett NJR.The genetic control of Anthocyanin biosynethesis in Antirrhinum majus,PhD Dissertation,(Norwich,England,University of East Anglia)
    69.Bordigunon J R.2000.Effect of Water deficiency in the isoflavone contents in Brazilian soybean cultivars.The Third International Soybean Processing and Utilization Conference.,99-100.
    70.Britsch L,Dedio J,Saedler H.1993.Molecular characterization of flavanone 3 beta-hydroxylasees. Consensus sequence, comparison with related enrymes and the role of conserved histidine residues. Eur J Biochem,217(2):745-754
    71. Britsch L, Grisebach H. 1986. Purification and characterization of (2S)-flavanone 3-hydroxylase from Petunia hybrida, Eur J Biochem, 156(3):569-577
    72. Britsch L, Ruhnau-Brich B, Forkmann G. 1992. Molecular cloning, sequence analysis, and in vitro expression of flavanone 3 beta-hydroxylase from Petunia hybrida. J Biol Chem, 267(8):5380-5387
    73. Carrao-panizzi MC, Kitamura K. 1995. Isoflavone content in Brazilian soybean cultivars. Breeding science, (45):295-300.
    74. Charrier B, Coronado C, Kondorosi A. 1995. Molecular characterization and expression of alfalfa (Medicago sariva L) flavanone 36eta-hydroxylase and dihydroflavonol-4-reductase encoding genes. Plant Molecular Biology, 29(4):773-786
    75. Charrier B, Leroux C, Kondorosi A. 1996. The expression pattern of alfalfa flavanone 3-hydroxylase promoter-gus fusion in Nicotiana benthamiana correlates with the presence of flavonoids detected in situ. Plant Molecular Biology, 30(6):1153-1168
    76. Chris H, Philippa L, Se´, verine T. 2002. Melting curve analysis of feline calicivirus isolates detected by real_time reverse transcrip-tion PCR. Journal of Virological Methods, 106(2):241-244.
    77. Cooper LD, Doasm RP, Price R. 2005. Application of Bruchin B to pea pods results in the up-regulation of CYP93C18, a putative isoflavone synthase gene, and an increase in the level of pisatin, an isoflavone phytoalexin. J Exp Bot, 56(414):1229-1237
    78. Dayde Jean. 2000. Variation of isoflavone content and composition in soybean seeds and related products. The Third International Soybean Processing and Utilization Conference, 55-56
    79. Deboo GB, Albertsen MC, Taylor LP. 1995. Flavanone 3 beta-hydroxylase transcripts and flavonol acc μM μlation are temporally coordinate in maize anthers. Plant J, 7(5):703-713
    80. Dixon RA. 1999. Isoflavonoids: biochemistry, molecular biology and biological functions, in Comprehensive Natural Products Chemistry. Elsevier, Amsterdam, 773-823.
    81. Eldridge A, W Kwolek. 1983. Soybean isoflavones:Effect of the environment and variety on composition. J Agric Food Chem. 31:394-396.
    82. Elsheikh EAE, Wood M. 1995. Nodulation and N2 fixation by soybean inoculated with salt-tolerant rhizobia or salt-sensitive bradyrhizobia in salinity soi. Soil Biol Biochem, 27:657-661.
    83. Forkmann G. 1991. Flavonoids as flower pigments: the formation of the natural spectrum and its extension by genetic engineering, Plant Breed, 106:1-26
    84. Franke AA, Custer LJ, Cerna CM, Narala K. 1994, Quantitation of Phytoestrogens in legumes by HPLC. Agric Food chem, 42:1905-1913
    85. Froemel S, Vlaming P, Stotz G. 1985. Genetic and biochemical studies on the conversion of flavanones to dihydroflavonols in flowers of Petunia hybrid. Theor Appl Genet, 70:561-568
    86. Fukutake M, Takahash M, Ishida K, Kawamura H. 1996. Quantification of genistein and genistin in soybeans and soy-beanproducts. Food and Chemical Toxicology, 34(5):457-461.
    87. Giorla Carla Piubelli, Clara Beatriz Hoffmann-Campo, Iara Cintra De Arruda, Julio Cesar Franchini, Fernando Mesquita Lara. 2004. Flavonoid increase in soybean as a response to Nezara viridula injury and its effect on insect-feeding preference. Journal of Chemical Ecology, 29(5): 1223-1233
    88. Gong Z, Yamazaki M, Sugiyama M. 1997. Cloning and molecular analysis of structural genes involved in anthocyanin biosynthesis and expressed in a forma-specific manner in Perilla frutescens, Plant Molecular Biology, 35(6):915-927
    89. Graham TL, Kim JE, Graham MY. 1990. Role of constitutive isofiavone conjugates in the accumulation of glyceollinin soybean infected with Phytophthora megasperma. Molecular plant-microbe interactions, 3(3):157-166
    90. Hanson RR, Havir EA. 1981. Secondary Plant Products. New York: Acadamic Press, 577-625
    91. Havir EA. 1981. Phenylalanine ammonia-lyase: purification and characterization from soybean cell suspension cultures. Archives of Biochemistry and Biophysics, 211(2): 556-563
    92. Heid, CA, Stevens J, Livak JK. 1996. Real time quantitative PCR. Genome Res, 6(10):986-994
    93. Hoeck JA, Fehr WR, Murphy PA, Welke GA. 2000. Influence of genotype and environment on isofiavone contents of soybean. Crop Sciences, 40:48-51
    94. Huang A, Hsich OAL, Chang SS. 1981. Characterzation of the nonvolatile minor constituents responsible for the objectionable taste of detatted soybean flour. J of Food Sci, 47:19-23
    95. Hutabarat LS, Greenfield H, Mulholland M. 2000. Quantitative determination of isoflavones and coumestrol in soybean by column liquid chromatography. Journal of Chromatography A, 886 (1) 55-63
    96. Jin-Ae Kim, Seung-Beom Hong, Woo-Suk Jung, Chang-Yeon Yu, Kyung-Ho Ma, Jae-Goon Gwag, Ⅲ-Min Chung. 2007. Comparison of isoflavones composition in seed, embryo, cotyledon and seed coat of cooked-with-rice and vegetable soybean(Glycine max L.) varieties. Food Chemistry, 102(3):738-744
    97. Jones DH. Review Article Number3: phenylalanine ammonialyase.Regulation of its induction and its role in plant development. Phytochemisty, 1984, 23(7): 1349-1359
    98. Jong Jin Kim, Seung Hyun Kim, Sang Jun Hahn, Ⅲ Min Chung. 2005. Changing soybean isofiavone composition and concentrations under two different storage conditions over three years. Food Research International, 38 (4): 435-444
    99. Jung W, Yu O, Lau S C. 2000. Identification and expression of isofiavone synthase, the key enzyme for biosynthesis of isofiavone in legumes. Nat Biotechchnol, 18(5): 208-212
    100. Kaprelyants. 2000. Isofiavone content of Ukrainian cultivars and effect of processing on isoflavones in traditional soyfoods. The Third International Soybean Processing and Utilization Conference, 63-65
    101. Kelly GE, Nelson C, Waring MA, Joannou GE, Reeder AY. 1993. Metabolites of dietary isoflavones in human urin. Am J Clin Nutr, 223(1-2):1338
    102. Ken M Riedl, Jae Hwan Lee, Marjory Renita, Steven K St Martin, Steven J Schwartz, Yael Vodovot. 2007. Isofiavone profiles, phenol content, and antioxidant activity of soybean seeds as influenced by cultivar and growing location in Ohio. Journal of the Science of Food and Agriculture, 87(7):1197-1206
    103. Kenis Babi. 1993. The preparation of Isoflavones specimen and the Clinical utilization of cancer resistance. Soybean Digest, 9:26-29
    104. Kim HK, Nelson DC, Delia- Fera MA. 2006. Genistein decrea-ses food intake, body weight, and fat pad weight and causes adipose tissue apoptosis in ovariectomized female mice. Journal of Nutrition, 136:409-414
    105. Kim JA, Chung IM. 2007. Change in isoflavone concentration of soybean (Glycine max L.) seeds at different growth stages. Journal of the Science of Food and Agriculture, 87(3):496-503
    106. Kim SH, Jung WS, Ahn JK, Chung IM. 2005. Analysis of isoflavone concentration and composition in soybean [Glycine max (L.)] seeds between the cropping year and storage for 3 years. Eur Food Res Technol, 220:207-214
    107. Kim SH, Jung WS, Ahn JK, Kim JA, Chung IM. 2005. Quantitative analysis of the isoflavone content and biological growth of soybean (Glycine max L.) at elevated temperature, CO2 and nitrogen applications. J Sci Food Agric, 85(15):2557-2566
    108. Kitamura K, Igita K, Kikuchil A. 1991. Low isoflavone in some early maturing cultivars, so called "Summer type Soybean" (Glycine max(L.)Merrill). Japan J Breed, 41:651-654
    109. Kosslak RM, Bookland R, Barkei T, Paaren HE, Appelbaum ER. 1987. Induction of Bradyrhizobium japonicum common nod genes by isoflavones isblated from Glycine max. Proceeding of Natural Academy of Science USA, 84:7428-7432
    110. Koukol J, Conn EE. 1961. The metabolism of aromatic compounds in higher plants. Ⅳ. Purification and properties of the phenylalanine deaminase of Herdeum vulagare. Journal of Biology and Chemistry, 236:2692-2698
    111. Kudou S, Fleury Y, Welti D, Magnolato D, Uchida T. 1991. Mal-onyl isoflavone glucosides in soybean seeds (Glycine maxMerri). Agricultural Biological Chemistry, 55 (9):2227-2233
    112. Kudou S, Fleury Y, Welti D, Magnotato D, Vchida T, Kitamura K, Okubo K. 1991. Malonyl isoflavone glycosides in soybean seeds (Glycine max MERRILL). Agric Biol Chem, 55(9):2227-2233
    113. Kudou S, Shimoyamada M, Imura T, Vchida T, Okubo K. 1991. A new isoflavone glycoside in soybean seeds (Glycine max MERRILL) glycitein-7-0-β-D-(6"-0-Acetyl)-glucopyranoside. Agric Biol Chem, 55(3):859-860
    114. kulevanova S. 2000. Determination of total flavonoids and guercetin in Hyperici herba. Actapharm, 50(l):29-32
    115. Liggins J, Bluck LJC. 2000. Deidzein and genistein content of fruits and nuts. Journal of Ntritional Biochemistry, 11(6):326-33
    116. Liu CJ, Blount JW, Steels CL. 2002. Bottlenecks for metaholic engineering of ieoflavone glycoconjugates in Arabidopeis. PNAS, 99(22): 14578-14583
    117. Lozovay W, Lygin AV, Ulanov AV, Nelson RL, Dayde J, Widholm JM. 2005. Effect of temperature and soil moisture status during seed development on soybean seed isoflavone concentration and composition. Crop Sci, 45(5):1934-1940
    118. Lu LJ, Grady JJ, Marshall MV, Ramanujam VM, Anderson KE. 1995. Altered time course of urinary daidzein and genistein excretion during chronic soya diet in healthy male sabjects. Nutri Cancer, , 24 (3):311-323
    119. Lucimara Chiaril, Newton Deniz Piovesanl, Lucas Koshy Naoel, In(?)es Chamel Jos(?)el, Jos(?)e Marcelo Soriano Viana, Maurilio Alves Moreira, Everaldo Gon calves de Barros. 2004. Genetic parameters relating isoflavone and protein content in soybean seeds. Euphytica, 138(1): 55-60
    120. Lukacin R, Britsch L. 1997. Identification of strictly conserved histidine and arginine residues as part of the active site in Petunia hybrids flavanone 3beta-hydroxylase, Eur J Biochem, 249(3):748-757
    121. Lukacin R, Groning 1, Pieper U, Matern U. Site-directed mu Taqenesis of the active site serine290 in flavanone 3 beta-hydroxylase from Petunia hybrida. Eur J Biochem., 2000 Feb;267(3):853-860
    122. Lukacin R, Urbanke C, Groning I, Matern U. 2000. The monomeric polypeptide comprises the functional flavanone 3 beta-hydroxylase from Petunia hybrida. FEBS Lett, 467(2-3):353-358
    123. M I Genovese, N M A Hassimotto, F M Lajolo. 2005. Isoflavone profile and antioxidant activity of brazilian soybean varieties, Food Sci Tech Int, 11(3):205-211
    124. M Shimoyamade. 1990. Distributions of saponin constituents in some varieties of soybean plant, Agric Biol Chem, 54(l):77-80
    125. Martin C, Prescott A, Mackay S, Bartlett J. 1991. Control of anthocyanin biosynthesis in flowers of Antirrhin μM majus. Plant J, 1:37-49
    126. Martin C, Prescott A, Mackay S. 1991. Control of anthocyanin biosynthesis in flowers of Antirrhinum majus. Plant J, 1(1):37-49
    127. Munn CB, Drysdale RB. 1975. Kievitone production and phenylalanine ammonia-lyase activity in cowpea. Phytochemistry, 14(5-6): 1303-1307
    128. Nairn M, Gestetner B, Kirson I, Birk Y, Bondi A. 1973. A new isoflavone from soya beans. Phytochemistry, 12:169-170
    129. Nakashima J, Awano T, Takabe K. 1997. Immunocyto chemical localization of phenylalanine ammonia-lyase and cinnamyl alcohol dehydrogenase in differentiating tracheary elements derived from Zinnia mesophyll cells. Plant and Cell Physiology, 38(2): 113-123
    130. Nazarenko IA, Bhatnager SK, Hohman RJ. 1997. A closed tube format for amplification and detection of DNA based on energy transfer. Nucl Acids Res, 25(12): 2516-2521
    131. Okubo K, Kobayashi Y, Takahashi K. 1983. Improvement of soy milk and tofu process on the behavior of undesirable taste component such as glycesides.Up-to-Date Food Processing 18:16-22
    132. Pamdjaitan N, Hettiarachchy N, Ju ZY. 2000. Evaluation of genistin and genistein contents in soybeanvarieties and soy protein concentrate prepared with 3 basic methods. J Food Sci, 5(3)399-402
    133. Pelletier MK, Shirley BW. 1996. Analysis of flavanone 3beta-hydroxylase in Arabidopsis seedings. Coordinate regulation with chalcone synthase and chalcone isomerase. Plant Physiol, l(l):339-345
    134. Peterson G. 1995. Evaluation of the biochemical targets of genistin in tumor cell. J Nutr, 125(3): 784-789
    135. Philippe Seguin, Wenju Zheng, Donald L Smith, Wenhua Deng. 2004. Isoflavone content of soybean cultivars grown in eastern Canada. J Sci Food Agric, 84(11):1327-1332
    136. Primomoa, Vaino Poysab, Gary R, Ablettc, Chung-Ja Jacksond, Mark Gijzene, Istvan Rajcana. 2005. Mapping QTL for individual and total isoflavone content in soybean seeds. Crop Sci, 45:2454-2464
    137. Serraj R, Roy G. 1994. Salt stress induce a decrease in the oxygen uptake of soybean nodules and intheir permeability to oxygen diffusion. Physiol Plant, 91:161-168
    138. Singleton PW, Bohlool BB. 1984. Effect of salinity on nodule formation by soybean. Plant Physiol, 74:72-76
    139. Sparvoli F, Martin C, Scienza A. 1994. Cloning and molecular analysis of structural genes involved in flavonoid and stilbene biosynthesis in grape(Vitis vinitera L). Plant Molecular Biology, 24(5):743-755
    140. Subramaniam R, Reinold S, Molitor EK. 1993. Structure, inheritance, and expression of hybrid poplar(Populus trichocarpa×Populusdeltoides)phenylalanine ammonia-lyase genes. Plant Phsiology, 102(1): 71-83
    141. Sun Joo Lee, Weikai Yan, Joung Kuk Ahn, Ill Min Chung. 2003. Effects of year, site, genotype and their interactions on various soybean isoflavones. Field Crops Research, 81(2-3):181-192
    142. Toda T, Tamura J, Okuhira T. 1997. Isoflavone content in commercial foods. Foods. Food Ingredients J, 172:83-88
    143. Tsukamoto C, Shimada S, Igita K. 1996. Factors isoflavone content in soybean seeds: changes in isoflavones, saponins, and composition of fatty acids at different temperatures during seed development. Journal of Agriculture Chemistry, 43:1184-1192
    144. Tyagi S, Kramer FR. 1996. Molecular beacons: probes that fluoresce upon hybridization. Nature Biotechnology, 14(3):303-308
    145. Uimari A, Strommer J. 1998. Anthocyanin regulatory mutations inpea: effects on gene expression and complementation by R-like genes of maize. Molecular and General Genetics MGG, 257(2):198-204
    146. Vanttinen K, Mocavcova J. 1999. Phytoestrogen in soy foods determination of daidzein and genistein by capillaryelectrophoresis. Czech. J Food Sci, 17(2):61-67
    147. Wall S J, Edward D R. 2002. Quantitative reverse transcription_polymerase chain reaction (TRPCR): A comparison of primedropping, compet-itive, and realtime RT_PCR. Anal Biochem, 300 (2):269_273
    148. Walter E D. 1941. Genistin (an isoflavone glucoside) and its aglucone, genistein, from soybean. J. Am. Oil Chem. Soc, 63:3273-3276
    149. Walz E. 1931. Isoflavone and saponin-glucoside in soja hispida. Ann, Chem, 489:118-155
    150. Wang G Kuan. 1990. A simplified HPLC method for the determination of phytoestrogens in soybean and its processed products. Agric Food Chem, 38:185-190
    151. Wang G, Kuan S, Francis OJ, Ware GM, Carman AS. 1990. A simplied HPLC method for the determination of phytoestrogens in soybean and its processed products. J Agric Food Chem, 38(1):185-190
    152. Wang HJ, Murphy PA. 1994. Isoflavone composition of American and Japanese soybean in Iowa: effects of Variety, crop year, and location. Agric Food Chem, 42:1674-1677
    153. Whitcombe D, Theaker J, Guy SP. 1999. Detection of PCR products using self-probing amplicons and fluorescence. Nature Biotechnol, 17(8):804-807
    154. Willard MF, Stephen JW, Kent EV. 1999. Quantitative RTPCR: pitfall and potential. Bio Techniques, 26(1):112-125
    155. Wittwer CT, Herrmann MG, Moss AA. 1997. Continuous fluorescence monitoring of rapid cycle DNA amplification. Biotechniques, 22(l):130-138
    156. Woo TH, Patel BK, Cinco M. 1999. Identification of Leptospira biflexa by real_time homogeneous detection of rapid cycle PCR product. Journal of Microbiological Methods, 35(l):23-30
    157. Xinhua Yin, Tony J Vyn. 2005. High soybean yield can mean higher concentrations of isoflavones. Better Crops, 89 (4):13-15
    158. Yu O, Shi J, Hession AO. 2003. Metabolic engineering to increase isoflavone biosynthesis in soybean seed. Phytochemistry, 63(7): 753-763
    159. Yu U, Jung W, Shi J. 2000. Production of the isoflavones genistein and daidzein in non-legume dicot and monocot tissues. Plant Physiology, 124(10):781-794