高性能有机电致发光材料的制备及器件研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为新一代平板显示技术,有机发光二极管(OLED)又称为有机电致发光(OEL)因为具有主动发光,响应快,可视角度大及制作工艺简单等优点,受到学术和产业界的高度重视。目前阻碍OLED实用化和市场化的关键问题是有些颜色的发光效率较低、工作寿命短、量产难度大。开发高效率与量产性稳定的有机电致发光材料、探索新的器件制备工艺、优化器件结构、提高器件效率和寿命及探索彩色化的最佳方案等,仍然是研究工作的主要目标。本文针对上述问题,从材料合成、纯化、新型器件结构设计到器件优化做了一系列研究,主要内容如下:
     合成了典型有机电致发光材料,如电子传输材料Alq与空穴传输材料NPB,通过对反应条件的控制及各项工艺参数的优化,我们得到了高产率的Alq与NPB的粗品材料,其纯度分别达到了98.2%与95.5%。通过三温区同时升温的升华方法,我们对Alq与NPB进行了进一步的升华纯化,得到了有机电子级纯的Alq与NPB产品(纯度高于99.9%)。三温区同时升温升华的方法不但提高了材料的纯度,而且还大大提高了提纯效率,降低了提纯过程中产物的损失。X射线衍射的结果表明,经多次提纯后Alq与NPB材料的晶体粒度增大,材料的性能有所改善。以各种纯度的Alq与NPB分别作为电子传输层与空穴传输层材料制作了发光器件。实验结果表明随着材料纯度的提高,器件的性能也依次提高,这是因为随着材料纯度的提高,材料中杂质或缺陷浓度都会降低,这将减少杂质或缺陷对发光的淬灭与载流子传输的陷阱作用。杂质或缺陷浓度的减少将有利于激子的运动,提高器件中电子和空穴复合的几率,从而获得更高的发光效率。
     通过共掺杂方法,我们成功制备了以宽禁带材料ADN为基质的红、绿、蓝三色发光器件,实现了以一种材料为主体的三基色发光。其中蓝光器件的结构为ITO (80nm)/NPB (30nm)/ ADN: DPAVB: TBPE (30nm)/ Alq (30nm)/LiF (1 nm)/Al(100nm),经优化后器件的最大发光亮度达到5626cd/m2,最高发光效率6.2 cd/A ,CIE色坐标为x,y=0.15,0.19;绿色发光器件的结构为ITO (80 nm)/NPB (40 nm)/ ADN: C545T: DMQA (30nm)/ Alq (30nm)/LiF (1nm)/Al(100nm),经优化后器件的最大发光亮度达到15153cd/m2,最高发光效率为10.8 cd/A,CIE色坐标为x,y=0.30,0.62。红色发光器件的结构为ITO (80nm)/NPB (40nm)/ ADN: C6: DCJTB (30nm)/ Alq (30nm)/LiF (1 nm)/Al(100nm),经优化后器件的最大发光亮度达到12847cd/m2,最高发光效率为4.9 cd/A,CIE色坐标为x,y=0.61,0.38;ADN材料具有的双极性载流子传输特征,能够捕获多余的空穴,从而使器件中载流子的注入更加平衡,器件的性能得到提高。同时在一种主体材料中掺入双掺杂客体材料,能使得主体材料与客体材料之间的能量传递更加充分有效,并且不同的客体分子同时掺入到主体材料中也可以减少同种分子间的自淬灭几率,从而在很大程度上抑制掺杂发光分子的浓度淬灭现象,使器件性能得到大幅提高。
     从分子设计的角度出发,我们合成了一种新的蓝色非掺杂发光材料TOBP及一种新的红色掺杂材料DADIN。其中蓝光材料TOBP是一种含噁二唑基团的邻菲啰啉衍生物,该材料具有良好的热稳定性,睞Щ湮露任?Tg=142℃,热分解温度Td=325℃,以该材料为发光层制备的蓝色发光器件ITO (80 nm)/NPB (30nm)/ TOBP (30nm)/ Alq (30nm)/LiF (1nm)/Al(100nm)的最大亮度达到4078cd/m2,器件的最高发光效率为2.7cd/A,CIE色坐标为x,y =0.15, 0.10。而红色发光材料DADIN是一种含吡喃腈、具有对称结构的掺杂型电致发光材料,与柯达公司经典掺杂型红色发光材料DCJTB相比,DADIN的合成、提纯工艺简单,产率高,更容易实现规模化制备。以DADIN为掺杂材料制备的红色发光器件ITO (80nm)/NPB (40nm)/ Alq:DADIN (30nm)/ Alq (30nm)/LiF (1nm)/Al(100nm),其发光峰值波长约在650nm处,CIE色坐标为x,y=0.64, 0.34,非常接近于NTSC标准红色,其最高电致发光效率达到2.3 cd/A。相比于以DCJTB掺杂材料制备的器件,以DADIN掺杂制备的OLED器件具有更高的色纯度及发光电流效率。
Organic light-emitting diodes (OLED) have attracted much attention because of their potential applications for multicolor emission with many advantages such as active emission, fast response, wide view-angle and simple fabrication process. As the present time, low power-conversion efficiency, short useful life and bad long-term stability are the critical problems to block the utility and marketization of OLED. However, exploiting organic light-emitting materials with high efficiency and stable physic characteristics, choosing appropriate electrode materials, searching for new film fabrication process, and optimizing device configuration, improving the efficiency and useful life of device, and questing for the best scheme to realize full color are still the primary aims of study work. The investigation of essential mechanism and characterization in organic electroluminescence (EL) field is imperative for fulfilling commercialization requirements. Consequently, this work is dedicated to the systematic study of following issues.
     By controlling the reaction conditions and optimizing the process parameters, we get the high purity crude products of electron-transporting material Alq and hole-transporting material NPB, whose purity reached 98.2% and 95.5% respectively. Through the method of elevating the temperature of the three zones, we carry out further purification sublimation and get the higher purity material of Alq and NPB, the purity of which is higher than 99.9%.This method not only increased the purity of the materials, but also greatly enhanced the efficiency of the purification and reduced the product losses during the purification process. The data of XRD showed that with the increase of the purification times, the crystal size of the Alq and NPB material increased and the performance of the material was improved. The OLED devices were made with the various purity of Alq and NPB as electron-transporting and hole-transporting layer respectively. The experiment results showed that with the increase of the material purity, the performance of the devices was improved. With the improvement of the material purity, the concentration of the impurities or defects in the materials was reduced, which would reduce the luminescence quenching effect caused by impurities or defects. And the concentration decrease of impurities or defects will help to the movement of the exciton and increasing the possibility of the recombination of holes and electrons in the devices, resulting in the performance improvement of the devices.
     Through the co-doping method, we obtained blue, green and red light-emitting devices based on a wide band gap host material ADN. The structure of the blue device was ITO (80nm)/NPB (30nm)/ ADN: DPAVB: TBPE (30nm)/ Alq (30nm)/ LiF (1 nm)/Al(100nm), the maximum luminance brightness of which reached 5626 cd/m2 and the maximum current luminance efficiency of which got to 6.2 cd/A with CIEx,y=0.15,0.19.The structure of the green device was ITO (80 nm)/NPB (40nm)/ ADN: C545T: DMQA (30nm)/ Alq (30nm)/LiF (1nm)/Al(100nm), the maximum luminance brightness of which reached 15153 cd/m2 and the maximum current luminance efficiency of which got to 10.8 cd/A with CIEx,y=0.30,0.62.The structure of the blue devise was ITO (80 nm)/NPB (40 nm)/ ADN: C6: DCJTB (30 nm)/ Alq (30nm)/LiF (1nm)/Al(100 nm), the maximum luminance brightness of which reached 12847cd/m2 and the maximum current luminance efficiency of which got to 4.9 cd/A with CIEx,y=0.61,0.38.The bipolar character of ADN serves to trap the excess holes generated at high current drive condition thus preventing the imbalance of the carriers injected in the device and improving the performance of the device. In addition, co-dopants of the heterogeneous light-emitting molecules may decrease the possibility of self-quenching from the interaction of the homogenous molecules at the same doping concentration, which will also result in the improvement of the color purity and emission efficiency.
     Based on the design of the molecule, we have synthesized a new non-doped blue light-emitting material TOBP and a new red-doped material DADIN. TOBP is one kind of phenanthroline derivatives with oxadiazole group and it has good thermal stability with glass transition temperature Tg = 142℃and the thermal decomposition temperature Td = 325℃. The structure of the blue device with TOBP as the emitting layer is ITO (80nm)/NPB (30nm)/ TOBP (30nm)/ Alq (30nm)/LiF (1 nm)/Al(100nm), the maximum luminance brightness of which reached 4078 cd/m2 and the maximum current luminance efficiency of which got to 2.7 cd/A with CIEx,y=0.15,0.10. DADIN is an electroluminescent material with symmetrical structure. Compared with Kodak classic red dopant material DCJTB, the synthesis and purification process of DADIN is simpler and it is easier to achieve large-scale preparation. The structure of the red device with DADIN as the dopant is ITO (80 nm)/NPB (40nm)/ Alq:DADIN (30 nm)/ Alq (30nm)/LiF (1nm)/Al(100nm), the EL wavelength of which was 650 nm and the maximum current luminance efficiency of which got to 2.3 cd/A with CIEx,y=0.64,0.36 that was very close to the standard red color. Compared to the device with DCJTB as the dopant material, the device with DADIN as the dopant material had showed higher color purity of and higher current luminance efficiency.
引文
[1] Pope M., Kallmann H., and Magnante P., Electroluminescence in organic crystals [J]. J Chem Phys., 1963, 38(8): 2042~2043.
    [2] Vincett P. S., Barlow W. A., Hann R. A., et al., Electrical conduction and low voltage blue electroluminescence in vacuumdeposited organic films [J]. Thin Solid Film, 1982, 94: 171~ 173.
    [3] Chiang C. K., Fincher C. R., Park Y. W., Heeger A. J., Shirakawa H., Louis E. J., Gau S. C., and Macdiarmid G., Electrical Conductivity in Doped Polyacetylene [J]. Phys. Rev. Lett., 1977, 39: 1098~1101.
    [4] Partridge R. H., Electroluminescence from Polyvinylcarbazole Films: Electroluminescence Using Higher Work Functions Cathodes [J]. Polymer, 1983, 24: 755~762.
    [5] Tang C. W. and Van Slyke S A., Organic electroluminescent diodes [J]. Appl.Phys.Lett., 1987, 51(12): 913-915.
    [6] Adachi C., Tokito S., Tsutsui T. and Saito, S., Organic electroluminescent device with a three-layer structure [J]. Jpn. J. Appl. Phys., 1988, 27(2): 269~271.
    [7] Adachi C., Tsutsui T. and Saito S., Organic electroluminescent device have a hole conductor as a emitting layer [J]. Appl. Phys.Lett., 1989, 55(15): 1489~1491.
    [8] Adachi C., Tsutsui T. and Saito S., Blue light-emitting organic electroluminescent devices [J]. Appl. Phys. Lett., 1990, 56(6): 799~801.
    [9] Burroughes J. H., Bradley D. C., Brown A. R.,et al., Light-emitting diodes based on conjugated polymers [J]. Nature, 1990, 347: 539~541.
    [10] Gustafsson G., Cao Y., Treacy G. M., Klavetter F., Colaneri N., and Heeger A., Flexible light-emitting diodes made from soluble conducting polymers [J]. Nature, 1992, 357: 477~47 9.
    [11] Cao Y., Treacy G. M., Smith P., and Heeger A., Solution-cast films of polyaniline: Optical- quality transparent electrodes [J]. Appl. Phys. Lett., 1992, 60: 2711~2713.
    [12] Gu G., Shen Z., Burrows P. E., and Forrest S. R., Transparent flexible organic light-emittingdevices [J]. Adv. Mater., 1997, 9: 725~728.
    [13] Fukuda M., Sawada K., and Yoshino K., Novel characteristics of conducting poly (9-alkylfluorene), poly(9,9-dialkylfluorene) and poly(1,10-bis(9-alkylfluorenyl) alkane [J]. Synth. Met., 1991, 41(3): 855~858.
    [14] Bredas J. L., and Heeger A, Influence of donor and acceptor substituents on the electronic characteristics of poly(paraphenylene vinylene) and poly(paraphenylene [J]. Chem. Phys. Lett., 1994, 217(5, 6): 507~512.
    [15] Park Y., Choong V., Gao Y., Hsieh B.R., and Tang C.W, Work Function of Indium Tin Oxide Transparent Conductor Measured by Photoelectron Spectroscopy [J]. Appl. Phys. Lett., 1996, 68(19): 2699~2701.
    [16] Baldo M. A., O’Brien D. F., You Y., et al., Highly efficient phosphorescent emission from organic electroluminescent devices [J]. Nature, 1998, 395: 151~154.
    [17] Arkhipov V. I., Emelianova E. V., Tak Y. H., and B?ssler H., Charge injection into light- emitting diodes: Theory and experiment [J]. J. Appl. Phys., 1998, 84(2): 848~856.
    [18] Parke I. D., Carrier tunneling and device characteristics in polymer light-emitting diodes [J]. J. Appl. Phys., 1994, 75(3): 1656~1666.
    [19] Burrows P. B., Shen Z., Bulovic V., McCarty D. M., and Forrest S. R., Relationship between electroluminescence and current transport in organic heterojunction light-emitting devices [J]. J. Appl. Phys, 1996, 79(10): 7991~8006.
    [20] Burrows P. E. and Forrest S. R., Electroluminescence from trap-limited current transport in vacuum deposited organic light emitting devices [J]. Appl. Phys. Lett., 1994, 64(17): 2285~2287.
    [21] Mort J. and Pfister G., Photoelectronic Properties of Disordered Organic Solids: Molecularly -Doped Polymers [J]. Polym. Plast. Tech. Eng., 1979, 12 (2): 89~139.
    [22] Stolka M., Yanus J. F. and Pai D. M., Hole transport in solid solutions of a diamine in polycarbonate [J]. J. Phys. Chem., 1984, 88(20): 4707~4714.
    [23] Pai D. M., Yanus J. F., and Stolka M., Trap-controlled hopping transport [J]. J. Phys. Chem., 1984, 88(20): 4714~4717.
    [24] Kalinowski J., Camaioni N., Di Marco P, et al., Kinetics of charge carrier recombination in organic light-emitting diodes [J]. Appl. Phys. Lett., 1998, 72(5): 513~515.
    [25] Pope M. and Swenberg C.E., Electronic Process in Organic Crystals [M]. Oxford University Press. Oxford, 1982:501.
    [26] Kido J. and Matsumoto, Bright Organic Electroluminescent Devices Having a Metal-doped Electron-injecting Layer [J]. App. Phys. Lett., 1998, 73: 2866~2868.
    [27] Brown T. M., Friend R. H., Millard I. S., et al. , LiF/A1 cathodes and the effect of LiF thickness on the device characteristics and built-in potential of polymer light-emitting [J]. Appl. Phys. Lett., 2000, 77: 3096-3098.
    [28] Hung L. S. and Tang C. W, Enhanced Electron Injection in Organic Electro-luminescence using an Al/LiF Electrode [J]. Appl. Phys. Lett., 1997, 70(2):152~154.
    [29] Tang H., Li F., and Shinar J., Bright high efficiency blue organic light-emitting diodes with Al2O3/Al cathodes [J]. Appl. Phys. Lett., 1997, 71: 2560~2562.
    [30] Li F., Tang H., Anderegg J., and Shinar J., Fabrication and electroluminescent of double-layered organic light-emitting diodes with the Al2O3/Al cathode [J]. Appl. Phys. Lett., 1997, 70(10): 1233~1235.
    [31] Van Slyke S.A., Chen C. H., and Tang C.W, Organic electroluminescent device with improved stability [J]. Appl. Phys. Lett,, 1996, 69(15): 2160~2162.
    [32] Gyoutoku A., Hara S., Komatsu T., Shirinashihama M., et al., An organic electroluminescent dot-matrix display using carbon underlayer [J]. Synth. Met., 1997, 91: 73~75.
    [33] Deng Z. B., Ding X.M., Lee S.T., et al., Enhanced Brightness and Efficiency in Organic Electroluminescent Devices Using SiO2 Buffer Layers [J]. Appl. Phys. Lett., 1999, 74(15): 2227~2229.
    [34] Van Slyke S. A., Chen C. H., and Tang C. W., Organic electroluminescent device with improved stability [J]. Appl. Phys. Lett., 1996, 69: 2160~2162.
    [35] Choy W. H., Hui K.N., Fong H.H., Liang Y.J., and Chui P.C., Improving the efficiency of organic light emitting devices by using co-host electron transport layer [J]. Appl. Phys. Lett.,2006, 509: 193~196.
    [36] Khan M. A., Xu W., Wei F. X., Bai Y., Jiang X. Y., Zhang Z. L., and Zhu W. Q., Highly efficient organic electroluminescent diodes realized by efficient charge balance with optimized electron and hole transport layers [J]. Solid State Commun., 2007, 144: 343~346.
    [37] Iwasaki K., Adachi C., Tsutsui T. and Saito S., Abstracts of the 51st Autumn Meeting of Japan Society of Applied Physics, Wate, September 1993, p.28a-PB-3.
    [38] Shirota Y., Okumoto K., and Inada H., Thermally stable organic light-emitting diodes using new families of hole-transporting amorphous molecular materials [J]. Synth. Met., 2000, 111-112: 387~391.
    [39] Shirota Y., Kuwabara Y., Inada H., et al., Multilayered organic electroluminescent device using a novel starburst molecule 4, 4’4’–tris(3-methylphylphenylamino)triphenylamine, as a hole transport material [J]. Appl. Phys. Lett., 1994, 65(7): 807~809.
    [40] Hosokawa C., Tokailin H., Higashi H., and Kusumoto T., Transient behavior of organic thin film electroluminescence [J]. Appl. Phys. Lett., 1992, 60: 1220~1222.
    [41] Chen C. H., Shi J., Chen C. H., and Shi J., Metal chelates as emitting materials for organic electroluminescence [J]. Coord. Chem. Rev., 1998, 171: 161~174.
    [42] Kim J. H., Yoon D. Y., Kim J. W., and Kim J. J., New host materials with high triplet energy level for blue-emitting electrophosphorescent device [J]. Synth. Met., 2007, 157: 743~750.
    [43] Hosokawa C., Kawasaki M., Sakamoto S., and Kusumoto T., Bright blue electroluminescence from hole transporting polycarbonate [J]. Appl.Phys.Lett., 1992, 61: 2503~2505.
    [44] Kim J. H., J Y. M., Lee H. S., et al., New asymmetric monostyrylamine dopants for blue light-emitting organic electroluminescence device [J]. Synth. Met., 2008, 158: 369~374.
    [45] Shi J. M., Tang C. W., and Klubek K. P., Electroluminescent device with anthracene derivatives hole transport layer, 2002, US Patent 6465115.
    [46] Tao S. L., Xu S. D., and Zhang X. H., Efficient blue organic light-emitting devices based on novel anthracence derivatives with pronounced thermal stability and excellent film-formingproperty [J]. Chem. Phys. Lett., 2006, 429: 622~627.
    [47] Park J. Y., Jung S. Y., Lee J. Y., Baek Y. G., High efficiency in blue organic light-emitting diodes using an anthracene-based emitting material, [J]. Thin Solid Films, 2008, 516: 2917~2921
    [48] Wu C. C., Lin Y. T., Chiang H. H., Cho T. Y., Chen C. W., Wong K. T., Liao Y. L., Lee G.. H, and Peng S. M., Highly bright blue organic light-emitting devices using spirobifluorene- cored conjugated compounds [J]. Appl.Phys.Lett., 2002, 81:577~579.
    [49] Salbeck J., Weissrtel F., Yu N., Bauer J., and Bestgen H., Low molecular organic glasses for blue electroluminescence [J]. Synth.Met., 1997, 91: 209~215.
    [50] Spreitzer H., Schenk H., Salbeck J., Weissoertel F., Reil H, and Riess W., Temperature stability of OLEDs using amorphous compounds with spiro-bifluorene core. Proc. SPIE-Int. Soc.Opt.Eng., (Organic Light-Emitting Materials and Devices III).1999, 3797(41): 316~324.
    [51] Tang C.W., Van Slyke S.A., and Chen C. H., Electroluminesence of doped organic thin films [J]. J. Appl. Phys., 1989, 65(9): 3610~3616.
    [52] C H Chen, J Shi, and C W Tang., Macromal. Symp., 1997, 125: 1.
    [53] Yamashita K., Futenma J., Mori T., et al., Effect of location and width of doping region on efficiency in doped organic light-emitting diodes [J]. Synth.Met., 2000, 111: 87~90.
    [54] Fox J. L. and Chen C. H., 1988, US Patent 4736032.
    [55] Van Slyke S. A., Chen C. H. and Tang C. W., Organic electroluminescent devices with improved stability [J]. Appl. Phys. Lett., 1996, 69(15): 2160~2162.
    [56] Hosokawa C., Higashi H., Nakamura H., et al., Highly efficient blue electroluminescence from a distyrylarylene emitting layer with a new dopant [J]. Appl. Phys. Lett., 1995, 67: 3853~3855.
    [57] Dawson W. R. and Windsor M. W, Fluorescence yields of aromatic compounds [J]. J. Phys. Chem.,1968, 72: 3251~3260.
    [58] Mi B. X., Gao Z. Q., Lee C. S., et al., Reduction of molecular aggregation and its application to the high performance blue perylene-doped organic electroluminescent device [J]. Appl. Phys. Lett., 1999, 75 (26): 4055~4053.
    [59] Uchida M., Izumizawa T., Nakano T., Yamaguchi S., Tamao K., and Furukawa K., Structural optimization of 2,5-diarylsiloles as excellent electron-transporting materials for organic ele- ctroluminescent devices [J]. Chem. Mater., 2001, 13:2680~2683.
    [60] Shi J. M., Tang C. W., and Chen C. H., 1999, US5935721.
    [61] Shi J. M. and Tang C. W., Anthracene derivatives for stable blue-emitting organic electroluminescence devices [J]. Appl. Phys. Lett., 2002, 80: 3201~3203.
    [62] Kim Y. H., Shin D. C., Kim S. H., Ko C. H., Yu H. S., Chae Y. S., and Kwon S. K., Novel Blue Emitting Material with High Color Purity [J]. Adv. Mater., 2001, 12: 1690~1693.
    [63] Hosokawa C., Higashi H., Nakamura H.,et al, Highly efficient blue electroluminescence from a distyrylarylene emitting layer with a new dopant [J]. Appl. Phys. Lett., 1995, 67: 3201 ~3203.
    [64] Wu C. C., Lin Y. T., Chiang H. H., Cho T. Y., Chen C., Wong W. K. T., Liao Y. L., Lee G. H., and Peng S. M., Highly bright blue organic light-emitting devices using spirobifluorene -cored conjugated compounds [J]. Appl. Phys. Lett., 2002, 81: 577~579.
    [65] Shi J. and Tang C. W., Doped organic electroluminescent devices with improved stability [J]. Appl. Phys. Lett., 1997, 70(13): 1665~1667.
    [66] Inoe T. and Nakatani K., 1994, Japanese Patent 6009952.
    [67] Ito J., 1995, Japanese Patent 7166160.
    [68] Chen C. H., Tang C. W., Shi J., and Klubek K. P., 2000, US Patent 6020078.
    [69] Chen C. H. and Liu T. H., Proceedings of the International Conference on Mater. Adv. Tech. (ICMAT 2001) Singapore, 2001,p.221 (Abstracts).
    [70] Hosokawa C., Fukuoka K., Kawamura H., Sakai T., Kubora M., Funahashi M., Moriwaki F. and Ikeda H., Proceeding of SID’04, p.780, May 23-28, 2004, Seattle, Washington, USA.
    [71] Rajeswaran G., Itoh M.,and Boroson M., SID' 00 Digest 40 (2000) 1.
    [72] Fukuda Y., Watanabe T., and Wakimoto T., An organic LED display exhibiting pure RGB colors [J]. Synth. Met., 2000, 111: 1~6.
    [73] Hunk L. S. and Chen C. H., Recent progress molecular organic of electroluminescent material and devices [J]. Mater. Sci. Eng. R,2002, 39: 143~222
    [74] Hamada Y., Kanno H., Tsujioka T., et al., Red organic light-emitting diodes using an emitting assist dopant [J]. Appl. Phys. Lett., 2003, 75(12): 1682~1684.
    [75] Hamada Y., Kanno H., Fujii H., et al. ACS Poly Millennial 2000 Abs., 2000, p. 167.
    [76] Hatwar T. K., Rajeswaran G., Shi J., et al., Proceedings of the 10th International Workshop on Inorg. and Org. EL (EL' 00),Hamamatsu, Japan, 4 December 2000, p. 31.
    [77] Chen C. H., Tang C. Shi W., J., et al., Recent developments in the synthesis of red dopants for Alq hosted electroluminescence [J]. Thin Solid Films, 2000, 363: 327~331.
    [78] Chen B., Lin X., Cheng L. F., et al., Improvement of efficiency and colour purity of red-dopant organic light-emitting diodes by energy levels matching with the host materials [J]. J. Phys. D: Appl. Phys., 2001, 34: 30~35.
    [79] Chen C. T., Evolution of Red Organic Light-Emitting Diodes: Materials and Devices [J]. Chem. Mater., 2004, 16: 4389~4400.
    [80] Toguchi S., Morioka Y., Ishikawa H., Oda A. and Hasegawa E., Novel red organic electroluminescent materials including perylene moiety [J]. Synth. Met., 2000, 111: 57~61.
    [81] Hung L. S. and Chen C. H, Recent progress of molecular organic electroluminescent materials and devices [J]. Mater. Sci. Eng., 2002, R39: 143~222.
    [82] Yeh C. H., Yeh S. J., and Chen C. T., Readily Synthesised Arylamino Fumaronitrile for Non- Doped Red Organic Light-Emitting Diodes [J]. Chem. Commun., 2003, 2632~2633.
    [1] Sheats J. R., Antoniadis H., Hueschen M., Leonard W., Miller J., Moon R., Roitman D., and Stocking A., Organic Electroluminescent Devices [J]. Science, 1996, 273: 884~886.
    [2] Kumar S., Shukla V. K., and Tripathi A., Ellipsometric investigations on the light induced effects on tris(8-hydroxyquinoline) aluminum (Alq3) [J]. Thin Solid Films, 2005, 477(1-2): 240~243.
    [3] Tapponnier A., Khan R.U.A., Marcolli C., and Günter P., Molecularly ordered aluminum tris-(8-hydroxyquinoline) thin films grown by hot-wall deposition [J]. Thin Solid Films, 2007, 515(5): 3061~3064.
    [4] Hamada Y., Sano T., Fujita M., et al, Organic electroluminescent devices with 8- hydroxyl- lquinoline derivative metal complexes as an emitter [J ]. Jpn. J . Appl . Phys., 1993, 32 (4A): 514~ 515.
    [5]李海蓉,张福甲,郑代顺,有机电致发光材料8-羟基喹啉铝的结构表征[J ].发光学报, 2003 , (2): 45~49.
    [6] Papadimitrakopoulos F. and Zhang X. M., Environmental stability of aluminum tris (8- hydroxy-quinoline) (Alq) and its implications in light emitting devices [J ] . Synth. Met., 1997, 85 (123): 1221~1224.
    [7] Papadimitrakopoulos F., Zhang X. M., et al, A chemical hailure mechanism for aluminum(Ⅲ) 8-hydroxyquinoline light-emitting devices [J ]. Chem. Mater., 1996, 8(7): 1363~1365.
    [8] Greenham N. C., Moratti S. C., Bradley D. D. C., et al, Efficient light-emitting diodes on polymers with high electron affinities, Nature, 1993, 365: 628~630.
    [9]钟家伟,黄颂羽,阴其俊.电荷传输剂TPD的合成及其在电致发光中的应用[J].应用化学, 1998, 15(5): 28~30.
    [10] Fang Q., Xu B., Jiang B., Fu H. T., Zhu W. Q., Jiang X. Y., and Zhang Z. L., A novel fluorene derivative containing four triphenylamine groups: Highly thermostable blue emitter with hole-transporting ability for organic light-emitting diode (OLED) [J]. Synth. Met., 2005, 155: 206~210.
    [11] Ichikawa M., Hibino K., Yokoyama N., Miki T., Koyama T., and Taniguchi Y., Solution-processable dendric triphenylamine nonamers as hole-transporting and hole-injection materials for organic light-emitting devices [J]. Synth. Met., 2006, 156: 1383~1389.
    [12] Zhao H. P., Tao X. T., Wang F. Z., et al., Structure and electronic properties of triphenylamine-substituted indolo[3,2-b]carbazole derivatives as hole-transporting materials for organic light-emitting diodes [J]. Chem. Phys. Lett., 2007, 439: 132~137.
    [13] Van Slyke S. A., Chen C. H., and Tang C. W., Organic electroluminescent device with improved stability [J]. Appl. Phys. Lett., 1996, 69: 2160~2162.
    [14] Choy W. H., Hui K.N., Fong H.H., Liang Y.J., and Chui P.C., Improving the efficiency of organic light emitting devices by using co-host electron transport layer [J]. Appl. Phys. Lett., 2006, 509: 193~196.
    [15] Khan M. A., Xu W., Wei F. X., Bai Y., Jiang X. Y., Zhang Z. L., and Zhu W. Q., Highly efficient organic electroluminescent diodes realized by efficient charge balance with optimized electron and hole transport layers [J]. Solid State Commun., 2007, 144: 343~346.
    [16] Shirota Y., Kobata T., and Noma N., Starburst molecules for amorphous molecular materials 4,4’,4’’-tris(N,N–diph enylamino)triphenylamine and 4,4’,4’’-tris[N-(3-methylphenyl)-N- phenylamino]triphenylamine [J]. Chem. Lett., 1989, 1145~1146.
    [17] Sugahara M. and Ukita T., A facile copper-catalyzed Ullmann condensation: N-arylation of heterocyclic compounds containing an -NHCO-moiety [J]. Chem. Pharm, Bull., 1997, 45: 19~22.
    [18] Son J. M., Ogino K., Yonezawa N., et al, Condensation polymerization of triphenylamine derivatives with paraformaldehyde [J]. Synth. Met., 1998, 98: 71~74.
    [19] Bryan E. Koene, Douglas E. Loy, and Thompson M. E., Asymmetric triaryldiamines as thermally stable hole transporting layers for organic light-emitting devices [J]. Adv. Mater., 1998, 10: 2235~2250.
    [20] Shirota Y., Kobata T., and Noma N., Starburst molecules for amorphous molecularmaterials 4,4’,4’’-tris(N,N-diphenylamino)triphenylamine and 4,4’,4’’-tris[N-(3-methyl- phenyl)-N-phenylamino] triphenyl amine [J]. Chem. Lett., 1989, 1145~1148.
    [21] Koene B. E., Loy D. E., and Thompson M. E., Asymmetric triaryldiamines as thermally stable hole transporting layers for organic light-emitting devices [J]. Chem. Mater., 1998, 10: 2235~2250.
    [22] Goodbrand H. B. and Hu N., Ligand-accelerated catalysis of the Ullmann condensation: application to hole cond-ucting triarylamines [J]. J. Org. Chem., 1999, 64: 670~674.
    [1] Tang C. W., VanSlyke S. A., and Chen C. H., Electroluminescence of doped organic thin films [J]. Appl. Phys., 1989, 65 (9): 3610~3616.
    [2] Choukri H., Fischer A., Forget S., Chenais S., Castex M. C., Geffroy B., Adès D., and Siove A., Doped and non-doped organic light-emitting diodes based on a yellow carbazole emitter into a blue-emitting matrix [J]. Synth. Met., 2007, 157: 198~204.
    [3] Huang H. H., Chu S. Y., Kao P. C., and Chen Y. C.,High efficiency white organic light emitting diodes using Rubrene doped N,N′-bis-(1-naphthyl)-N,N′-diphenyl-1,1′-biphenyl- 4,4′-diamine as an emitting layer [J]. Thin Solid Films, 2008, 516: 5669~5672.
    [4] Choohe V. E., Shi S., and Curless J., Organic light-emitting diodes with a bipolar transport layer [J]. Appl. Phys. Lett., 1999, 75: 172~174.
    [5] Chen C. H. and Liu T. H., Proceedings of the International Conference on Mater. Adv. Tech. (ICMAT 2001) Singapore, 2001,p.221 (Abstracts).
    [6] Burrows P. E. and Forrest S. R., Operating lifetime of phosphorescent organic light emitting devices [J]. Appl. Phys. Lett., 2000, 76: 2493~2495.
    [7] Sung H. H., Kim I. H., Byun K. N., and Yoo H. S., Characterization of new red dopants for red color OLED [J]. Curr. Appl. Phys., 2005, 5: 345~347.
    [8] Shi J. M. and Tang C. W., Anthracene derivatives for stable blue-emitting organic electroluminescence devices [J]. Appl. Phys. Lett., 2002, 80: 3201~3203.
    [9] Liu T., Shen W., Yen C., Iou C., Chen H., Banumathy B., and Chen C. H., Doped blue emitters of 9, 10-di( 2-naphtuyl)anthrance in organic electroluminescent devices [J]. Synth. Met., 2003, 137: 1033~1034.
    [10] Hamada Y., Kanno H., Tsujioka T., and H. Takahashi, Red organic lightemitting diodes using an emitting assist dopant [J]. Appl. Phys. Lett., 1999, 75: 1682~1684.
    [11] Su W. M., Li W. L., Hong Z. R., Li M. T., Yu T. Z., Chu B., and Li B., Improved electro- luminescent efficiency of organic light emitting devices by co-doping N, N-Dimethyl- quinacridone and Coumarin6 in tris-8-hydroxyquinoline aluminum [J]. Appl. Phys. Lett.,2005, 87: 213501-1.
    [12] D’Andrade B. W., Baldo M. A., Adachi C., and Brooks J., High-efficiency yellow double- doped organic light-emitting devices based on phosphor-sensitized fluorescence [J]. Appl. Phys. Lett., 2001, 79: 1045~1047.
    [13] Ohmori Y., Kajii H., Sawatani T., Ueta H., and Yoshino K., Enhancement of electroluminescence utilizing confined energy transfer for red light emission, 2001 [J]. Thin Solid Films, 393: 407~411.
    [14] Wang X. R., Chen J., You H., Ma D.G., and Sun R. G., Efficiency and color coordinate improvement using codopants in blue organic light-emitting diode [J].Jpn. J. Appl. Phys., 2005, 44: 8480~8483.
    [15] Wang X. R., You H., Tang H., Ding G. H., Ma D.G., Tian H., and Sun R.G., Efficient red organic light-emitting diode sensitized by a phosphorescent Ir compound [J]. J. Lumin., 2008, 128: 27~30.
    [16] Shi J. M., Tang C. W., and Kluber K. P., Electroluminescent device with anthracene derivatives hole transport layer, 2000, EP1009044.
    [17] Zheng S. and Shi J., Novel blue-emitting polymers containing dinaphtylanthracene moiety, [J]. Chem. Mater., 2001, 13: 4405~4409.
    [18] Sakai T., Hosokawa C., Fukuoka K., Tokailin K., Hironaka Y., Ikeda H., Funahashi M., and Kusumoto T. [C]. J. Soc. Inf. Disp., 2002, 10: 145.
    [19] Liu T., Shen W., Yen C., Iou C., Chen H., Banumathy B., and Chen C. H., Doped blue emitters of 9, 10-di(2-naphtuyl)anthrance in organic electroluminescent devices [J]. Synth. Met., 2003, 137: 1033~1034.
    [20] Foster T., Discuss, Faraday Soc., 1959, 7:27.
    [21] Greenham N. C., Samuel I. D. W., Hayes G. R., Phillips R. T., Kessener Y. A. R., Moratti S. C., Holmes A. B., and Friend R. H., Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers [J]. Chem. Phys.Lett., 1995, 241: 89~96.
    [22] Kanno H., Hamada Y., and Takahashi H., Development of OLED with high stability and luminance efficiency by co-doping methods for full color displays [J]. IEEE J. Sel. Top.Quantum Electron., 2004, 10(1): 30~36.
    [23] Mi B. X., Gao Z. Q., Lee C. S., Lee S. T., Kwong H. L., and Wong N. B., Reduction of molecular aggregation and its application to the high-performance blue perylene-doped organic electroluminescent device [J] Appl. Phys. Lett., 1999, 75: 4055~4057.
    [24] Chen C. T., Evolution of Red Organic Light-Emitting Diodes: Materials and Devices [J]. Chem. Mater., 2004, 16: 4389~4400. [ 25] Chen B., Lin X., Cheng L., et al., Improvement of efficiency and color purity of red dopant organic light-emitting diodes by energy levels matching with the host materials [J]. J. Phys. D: Appl. Phys., 2001, 34: 3019~3023.
    [26] Feng J., Li F., Gao W., Cheng G., Xie W., and Liu S., Improvement of efficiency and color purity utilizing two-step energy transfer for red organic light-emitting devices [J]. Appl. Phys. Lett., 2002, 81: 2395~2397.
    [27] Popovic Z. D., Aziz H., Ioannidis A., Hu N. X., and dos Anjos P. N. M.,Time-resolved fluorescence studies of degradation in tris(8-hydroxyquinoline) aluminum (Alq)-based organic light emitting devices (OLEDs) [J]. Synth. Met., 2001, 123: 179~181.
    [1] Shi J. M. and Tang C. W., Doped organic electroluminescent devices with improved stability [J]. Appl. Phys. Lett., 1997, 70: 1665~1667.
    [2] Chen C. H., Tang C. W., Shi J., and Klubek K. P., 2000, US Patent 6020078.
    [3] Li Y., Fung M. K., Xie Z., et al, An efficient pure blue organic light-emitting device with low driving voltage [J]. Adv. Mater., 2002, 14(18): 1317~1321.
    [4] Tao S., Xu S., and Zhang X., Efficient blue organic light-emitting devices based on novel anthrancence derivatives with pronounce thermal stability and excellent film-forming property [J]. Chem. Phys. Lett., 2006, 429(4-5): 622~627.
    [5] Karatsu T., Hazuku R., Asuke M., et al, Blue electroluminescence of silyl substituted anthracene derivatives [J]. Org. Electr., 2007, 8(4): 357~366.
    [6] Wu C. C., Lin Y. T., Wong K. T., et al, Efficient organic blue-light-emitting devices with double confinement on terfluorenes with ambipolar carrier transport properties [J]. Adv. Mater., 2004, 16(1): 61~65.
    [7] Zhao Z., Xu X., Jiang Z., et al, Oligo(2,7-fluorene ethynylene)s with pyrene moieties: sythesis, characterization, photoluminescence, and electroluminescence [J]. J. Org. Chem., 2007, 72(22): 8345~8353.
    [8] Wu Y. Z., Zheng X. Y., Zhu W. Q., et al, Highly efficient pure blue electroluminescence from 1,4-bis[2-(3-N-ethylcarbazory)vinyl]benzene [J]. Appl. Phys. Lett., 2003, 83(24): 5077~5079.
    [9] Lin C. H., Chang Y. T., Li C. S., et al, Bis(aryquinoxalinyl)carbazole derivatives as saturated blue emitters for electroluminescent devices [J]. Synth. Met., 2006, 156(9-10): 671~676.
    [10] Shen J. Y., Yang X. L., Huang T. H., et al, Ambipolar conductive 2,7-carbzole derivatives for electroluminescent devices [J]. Adv. Funct. Mater., 2007, 17(6): 983~995.
    [11] Tang C., Liu F., Xia Y. L., et al, Fluorene-substituted pyrenes-Novel pyrene derivatives as emitters in nondoped blue OLEDs [J]. Org. Electr., 2006, 7(3): 155~162.
    [12] Lee M. T., Liao C. H., Tsai C. H., et al, Highly efficient, deep-blue doped organiclight-emitting devices [J]. Adv. Mater., 2005, 17(20): 2493~2497.
    [13] Tonzola J. C., Kulkarni A. P., Gifford A. P., et al, Blue-light-emitting oligoquinolines: synthesis, properties, and high-efficiency blue-light-emitting diodes [J]. Adv. Funct. Mater., 2007, 17(6): 863~874.
    [14] Tao S., Hong Z., Peng Z. et al, Anthrancene derivative for non-doped blue-emitting organic electroluminescence device with both excellent color purity and high efficiency [J]. Chem. Phys. Lett., 2004, 397(1-3): 1~4.
    [15] Kido J. and Okamoto Y., Organic lanthanide metal complexes for electroluminescent materials [J]. Chem. Rev., 2002, 102(6): 2357~2368.
    [16] Tachikawa T., Terazono S. and Tokita S., Blue light-emitting electroluminescent devices with 2,9disubstituted 1,10-phenanthrolines [J]. Synth. Met., 1997, 91(1-3): 247~248.
    [17] Wang R. Y., Jia W. L., Ariz H., et al, 1-methyl-2-(anthryl)-imidazo[4,5-f] [1,10]- phenanthroline: a highly efficient electron-transport compound and a bright blue-light emitter for electroluminescent devices [J]. Adv. Funct. Mater., 2005, 15(9): 1483~1487.
    [18] Yamada M., Tannaka Y., Yoshimoto Y., et al, Synthesis and properties of diamino-substituted dipyrido [3,2-a:2’,3’-c]phenazine [J]. Bull. Chem. Soc. Jpn., 1992, 65(4): 1006~1011.
    [19] Chen C. T., Evolution of Red Organic Light-Emitting Diodes: Materials and Devices [J]. Chem. Mater., 2004, 16: 4389~4400.
    [20] Bulovi? V., Shoustikv A., Baldo M. A., Bose E, Kozlov V. G., Thompson M. E., and Forrest, S. R., Bright, Saturated, red-to-yellow organic light-emitting devices based on polarization- induced spectral shifts [J]. Chem. Phys. Lett., 1998, 287: 455~460.
    [21] Chen B. J., Sun X. W., Lin X. Q., Lee C. S., and Lee S. T., Improved luminescent efficiency of a red organic dye with modified molecular structure [J]. Mater.Sci.Eng.B, 2003, 100(1): 59~62.
    [22] Yang L. F., Guan M., Nie D. B., Lou B., Liu Z. W., Bian Z. Q., Bian J., and Huang C. H., Efficient, saturated red electroluminescent devices with modified pyran-containing emitters [J]. Opt. Mater., 2007, 29: 1672~1679.
    [23] Chen C. H., Tang C. W., Shi J., and Klubek K. P., Recent developments in the synthesis of red dopants for Alq hosted electroluminescence [J]. Thin Solid Films, 2000, 363: 327~331.
    [24] Baldo M. A., O'Brien D. F., You Y., Shoustikov A., Sibley S., Thompson M. E., and Forrest S. R., Highly efficient phosphorescent emission from organic electroluminescent devices [J]. Nature, 1998, 395: 151~154.
    [25] Li B., Li J., Fu Y., and Bo Z., Porphyrins with Four Monodisperse Oligofluorene Arms as Efficient Red Light Emitting Materials [J]. J. Am. Chem. Soc., 2004, 126: 3430~3431.
    [26] Kido J. and Okamoto Y., Organic lanthanide metal complexes for electroluminescent materials [J]. Chem. Rev., 2002, 102: 2357~2368.
    [27] Li S. F., Zhu W. H., Xu Z. Y., Pan J. F., and Tian H., Antenna-functionalized dendriticβ-diketonates and europium complexes: synthetic approaches to generation growth [J]. Tetrahedron, 2006, 62: 5035~5048.
    [28] Li S. F., Zhong G. Y., Zhu W. H., Li F. Y., Pan J. F., Huang W., and Tian H., Organic electroluminescent derivatives containing dibenzothiophene and diarylamine segments [J]. Mater. Chem., 2005, 15: 3221~3228
    [29]陈芳芳,关敏,张佑专,王科志,黄春辉,一种双核铕配合物的合成、光致发光和电致发光性质研究[J].化学学报, 2005, 63: 663~666.
    [30] Chen L. Q., You H., Yang C. L., Zhang X. W., Qin J. G., and Ma D. G., Tuning the saturated red emission: synthesis, electrochemistry and photophysics of 2-arylquinoline based iridium (III) complexes and their application in OLEDs [J]. J. Mater. Chem., 2006, 16: 3332~3339.
    [31] Zhang K., Chen Z., Yang C. L., Gong S. L., Qin J. G., and Cao Y., Saturated Red-Emitting Electrophosphorescent Polymers with Iridium Coordinating to -Diketonate Units in the Main Chain [J]. Macromol. Rapid Comm., 2006, 27(22): 1926~1931.
    [32] Feng J., Li F., Gao W., Cheng G., Xie W., and Liu S., Improvement of efficiency and color purity utilizing two-step energy transfer for red organic light-emitting devices [J]. Appl. Phys. Lett., 2002, 81: 2935~2937.
    [33] Chen C. H., Tang C. W. and Shi J. M., 1999, US Patent 59345720.
    [34] Balaganesan B., Wen S. W., and Chen C. H., Synthetic study of tetramethyljulolidine—a key intermediate toward the synthesis of the red dopant DCJTB for OLED applications [J]. Tetrahedron Lett., 2003, 44: 145~147.
    [35] Horiuchi T., Miura H., and Uchida S., Highly-efficient metal-free organic dyes for dye- sensitized solar cells [J]. Chem. Commun., 2003, 3036~3037.
    [36] Jung B. J., Yoon C. B., Shim H. K., Do L., and Zyung M. T., Pure-red dye for organic electroluminescent devices: bis-condensed dcm derivatives [J]. Adv. Funct. Mater., 2001, 11: 430~434.