水稻细条斑病菌harpin蛋白HpaG_(Xooc)与其功能片段的生物效应及对绿茶产量和生化品质的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物病原细菌产生的harpin类蛋白质可以诱导过敏性细胞死亡(hypersensitive cell death,HCD),增强植物抗旱性,诱导植物抗病、抗虫,促进植物生长。水稻细条斑病菌HpaG_(Xooc)蛋白质作为harpin蛋白家族的一员,包含两个富含甘氨酸的结构域(glycine-rich motif,GRM),一个半胱氨酸(cysteine)。GRM是harpin类蛋白共有的特征,而半胱氨酸是其它harpin类蛋白所没有的。分离水稻细条斑病菌HpaG_(Xooc)的不同功能域,我们得到其九种功能片段,分别含有全长中的一段氨基酸序列,如HpaG_(1-94)含有HpaG_(Xooc)的1-94位氨基酸。其中,HpaG_(1-94)、HpaG_(10-42)以及HpaG_(62-138),在促进作物生长、抗病以及诱导HCD等方面均强于HpaG_(Xooc)。本研究以无活性蛋白(EVP)为对照,研究这三种功能片段与HpaG_(Xooc)相比,对绿茶(山茶科,荼属)田间产量、生化品质方面的改良作用。实验表明,HpaG_(Xooc),尤其是HpaG_(1-94)不仅可以促进绿茶新芽萌发、嫩叶生长,增加茶园产量,而且可以提高叶片中儿茶酚的含量,改良绿茶的生化品质。HpaG_(Xooc)、HpaG_(1-94)处理绿茶,与EVP相比,茶园产量分别提高39%、55%,烘培后叶片中儿茶酚含量分别提高64%、72%。expansin基因调节植物细胞生长,茶树查耳酮合酶CsCHS基因调控茶树中儿茶酚的生物合成。RT-PCR和RNA gel blotting结果表明,HpaG_(Xooc)和HpaG_(1-94)可以诱导绿茶叶片中expansin基因和CsCHS基因表达;HpaG_(1-94)的诱导表达水平要明显高于HpaG_(Xooc)。综上所述,绿茶作为一种有药用价值的饮料,对栽培和加工过程的无公害有着严格的要求;HpaG_(Xooc)尤其是其功能片段HpaG_(1-94),能够有效提高绿茶田间产量、改良其生化品质,因此有望在绿茶安全改良方面发挥作用。
Harpin proteins from plant pathogenic bacteria can stimulate hypersensitive cell death(HCD), drought tolerance, defense responses against pathogens and insects in plants, and they can enhance plant growth as well. HpaG_(Xooc), produced by Xanthomonas oryzae pv. oryzae, is a member of harpin group of proteins. The protein contains two copies of the glycine-rich motif(GRM), a characteristic of harpins, and a cysteine, which is absent in other harpins. Recently, we have identified nine functional fragments of HpaG_(Xooc), a harpin protein from Xanthomonas oryzae pv. oryzicola, the pathogen that causes bacterial leaf streak in rice. Fragments HpaG_(1-94), HpaG_(10-42), and HpaG_(62-138), which contain HpaG_(Xooc) regions of amino acid sequence as indicated by the number spans, exceed the parent protein in promoting growth, pathogen defense, and HCD in plants. Here we report improved productivity and biochemical properties of green tea(Camellia sinensis) in response to the fragments tested in comparison with HpaG_(Xooc) and an inactive protein control. Filed tests suggested that the four proteins markedly increased growth and yield of green tea, and increased leaf contents of tea catechols, a group of compounds that have relevance in prevention and treatment of human diseases. In particular, HpaG_(1-94) was more active than HpaG_(Xooc) to expedite growth of juvenile buds and leaves used as green tea material and increase contents of catechols in processed teas. When tea shrubs were treated with HpaG_(Xooc) and HpaG_(1-94) compared to control, green tea yields were over 39% and 55% greater, and leaf catechols were increased by more than 64% and 72%, respectively. The expression of three homologues of expansin genes, which regulate plant cell growth, and the CsCHS gene encoding a tea chalcone synthase, which critically regulates biosynthesis of catechols, were induced in germinal leaves of tea plants following treatment with HpaG_(1-94) or HpaG_(Xooc). Higher levels of gene expression were induced by the application of HpaG_(1-94) than HpaG_(Xooc). Our results suggest that the harpin protein, especially the functional fragment HpaG_(1-94), can be used to effectively increase yield and improve the biochemical property of green tea, a drinking material with medical effects and serious requirement for public harmless farming and processing.
引文
1. Alfano J R, Collmer A. Bacterial pathogens in plants: life up against the wall [J]. Plant Ceil, 1996, 8:1683-1698
    2. Alfano J R, Collmer A. Type Ⅲ secretion system effector proteins: double agents in bacterial disease and plant defense [J]. Annu Rev Phytopathol, 2004, 42:385-414
    3. Andi S, Taguchi F, Toyoda K, Shiraishi T, Ichinose Y. Effect of methyl jasmonate on harpin-induced hypersensitive cell death, generation of hydrogen peroxide and expression of PAL mRNA in tobacco suspension cultured BY-2 cells [J]. Plant Cell Physiol, 2001, 42:446-449
    4. Ashihara H, Crozier A. Caffeine: a well known but little mentioned compound in plant science [J]. Trends Plant Sci, 2001, 6:407-13
    5. Aucamp J P, Hara Y, Apostolides Z. Simultaneous analysis of tea catechins, caffeine, gallic acid, theanine and ascorbic acid by micellar electrokinetic capillary chromatography [J]. J Chromatogr A, 2000, 876:235-242
    6. Babu P V, Sabitha K E, Srinivasan P, Shyamaladevi C S. Green tea attenuates diabetes induced Maillard-type fluorescence and collagen cross-linking in the heart of streptozotocin diabetic rats [J]. Pharmacol Res, 2007, 55:433-440
    7. Bauer D W, Wei Z M, Beer S V, Collmer. Erwinia chrysathemi hrapin_(Ech):an elicitor of the hypersensitive response that contributes to soft-rot pathogenesis [J]. Mol Plant-Microbe Interact, 1995, 8:484-491
    8. Bent A E Plant disease resistance genes:function meets structure [J]. Plant Cell, 1996, 8:1757-1771
    9. Berberich T, Sugawara K, Harada M, Kusano T. Molecular cloning, characterization and expression of an elongation factor la gene in maize [J]. Plant Mol Biol, 1995, 29:611-615
    10. Birrell M A, Korbonits M, Korbonits D, Barnes P J. Theobromine inhibits sensory nerve activation and cough [J]. FASEB J, 2005, 19:231-233
    11. Brito B, Aldon D, Barberis P, Boucher C, Genin S. A signal transfer system through three compartments transduces the plant cell contact-dependent signal controlling Ralstonia solancearum hrp genes [J]. Mol Plant-Microbe Interact, 2002, 15:109-119
    12. Century K S, Holub E B, Staskawicz B J. NDR1, a locus ofArabidopsis thaliana that is required for disease resistance to both a bacterial and a fungal pathogen [J]. Proc Natl Acad Sci USA, 1995, 92:6597-6601
    13. Chen L, Qian J, Qu S, Long J, Yin Q, Zhang C, Wu X, Sun F, Wu T, Beer S V, Dong H. Identification of specific fragments of HpaG_(Xooc), a harpin protein from Xanthomonas oryzae pv. oryzicola, that induce disease resistance and enhanced growth in rice [J]. Phytopathology, 2007a, (in revision)
    14. Chen L, Zhang S-S, Qu S, Long J, Yim Q, Qian J, Sun F, Zhang S-J, Chunling Zhang, Wang L, Wu X, Wu T, Zhang Z, Cheng Z, Beer S V, Dong H. A selected fragment of HpaG_(Xooc), a harpin protein from Xanthomonas oryzae pv. oryzicola, affects disease reduction and grain yield of rice in extensive grower plantings [J]. Phytopathology, 2007b, (in revision)
    15. Collmer A, Badel J L, Charkowski A O, Deng W L, Fouts D E, Ramos A R, Rehm A H, Anderson S M, Schneewind O,Van Dijk K, Alfano J R. Pseudomonas syringae Hrp type Ⅲ secretion systems and effector proteins [J]. Proc Natl Acad Sci USA, 2000, 978:770-777
    16. Cooper R, Morre D J, Morre D M. Medicinal benefits of green tea: part Ⅱ. Review of anticancer properties [J]. J Altern Complement Med, 2005, 11:639-652
    17. Desikan R, Hancock J T, Ichimura K, Shinozaki K, Neill S J. Harpin induces activation of the Arabidopsis mitogen-activated protein kinases ATMPK4 and ATMPK6 [J]. plant physiol, 2001, 126:1579-1587
    18. Dixon R A. Natural products and plant disease resistance [J]. Nature, 2001, 411: 843-847
    19. Dong H P, Peng J, Bao Z, Meng X, Bonasera J M, Beer S V, Dong H. Downstream divergence of the ethylene signaling pathway for harpin-stimulated Arabidopsis growth and insect defense [J]. Plant Physiol, 2004, 136:3628-3638
    20. Dong H P, Yu H, Bao Z, Guo X, Peng J, Yao Z, Chen G, Qu S, Dong H. The AB12-dependent abscisic acid signalling controls HrpN-induced drought tolerance in Arabidopsis [J]. Planta, 2005, 221:313-327
    21. Dong H, Delaney T P, Bauer D W, Beer S V. Harpin induces disease resistance in Arabidopsis through the systemic acquired resistance pathway mediated by salicylic acid and the NIM1 gene [J]. Plant J, 1999, 20:207-215
    22. Dong X. Genetic dissection of systemic acquired resistance [J]. Curr Opin Plant Biol, 2001, 4:309-314
    23. Fontanilla J M, Montes M, De Prado R. Induction of resistance to the pathogenic agent Botrytis cinerea in the cultivation of the tomato by means of the application of the protein "Harpin" (Messenger) [J]. Commun Agric Appl Biol Sci, 2005a, 70:35-40
    24. Fontanilla M, Montes M, De Prado R. Effects of the foliar-applied protein "Harpin_(Ea)" (Messenger) on tomatoes infected with Phytophthora infestans [J]. Commun Agric Appl Biol Sci, 2005b, 70:41-45
    25. Friedman M, Mackey B E, Kim H J, Lee I S, Lee K R, Lee S U, Kozukue E, Kozukue N. Structure-activity relationships of tea compounds against human cancer cells [J]. J Agric Food Chem, 2007, 55:243-253
    26. Gaudriault S, Malandrin L, Paulin J P, Barny M A. DspA, an essential pathogenicity factor of Erwinia amylovora showing homology with AverE of Pseudomonas syringae, is secreted via the Hrp secretion pathway in a DspB-dependent way [J]. Mol Microbiol, 1997, 26:1057-1069
    27. Gopalan S, Wei W, He S Y. hrp gene-dependent induction ofhinl: a plant gene activated rapidly by both harpins and the avrPto gene-mediated signal [J]. Plant J, 1996, 10:591-600
    28. Graham H N. Green tea composition, consumption, and polyphenol chemistry [J]. Prev Med, 1992, 21:334-350
    29. He S Y. Type Ⅲ protein secretion systems in plant and animal bacteria [J]. Annu Rev Phytopathol, 1998, 36:163-392
    30. He S Y, Huang H C, Collmer A. Pseudomonas syringae pv. syringae harpinpin_(Pss): A protein that is secreted via the Hrp pathway and elicits the hypersensitive response in plants [J]. Cell, 1993, 73:1255-1266
    31. Hu W, Yuan J, Jin Q L, Hart P, He S Y. Immunogold labeling of Hrp pili of Pseudomonas syringae pv. tomato assembled in minimal medium and in planta [J]. Mol Plant-Microbe Interact, 2001, 14:234-241
    32. Jin Q, He S Y. Role of the Hrp pilus in type Ⅲ protein secretion systems in Pseudomonas syringae [J]. Science, 2001, 294: 2556-2558
    33. Jin Q, Hu W, Brown I, McGhee G; Hart P, Jones A L, He S Y. Vissualization of secreted Hrp and Avr proteins along the Hrp pilus during type Ⅲ secretion in Erwinia amylovora and Pseudomonas syringae [J]. Mol Microbiol, 2001, 40:1129-1139
    34. Kato M, Mizuno K, Crozier A, Fujimura T, Ashihara H. Caffeine synthase gene from tea leaves [J]. Nature, 2000, 406:956-957
    35. Kato M, Gyoten Y, Sakai Kato K, Toyo'oka T. Rapid analysis of amino acids in Japanese green tea by microchip electrophoresis using plastic microchip and fluorescence detection [J]. J Chromatog A, 2003, 1013:183-189
    36. Kim J G, Jeon E, Oh J, Moon J S, Hwang I. Mutational analysis of Xanthomonas harpin HpaGidentifies a key functional region that elicits the hypersensitive response in nonhost plants [J]. J Bacteriol, 2004, 186:6239-6247
    37. Koshiishi C, Kato A, Yama S, Crozier A, Ashihara H. A new caffeine biosynthetic pathway in tea leaves: utilisation of adenosine released from the S-adenesyl-L-methionine cycle [J]. FEBS Lett, 2001, 499: 50-54
    38. Lam E. Controlled cell death, plant survival and development [J]. Nature Rev Mol Cell Biol, 2004, 5:305-315
    39. Lee J, Klessig D F, Numberger T. A harpin binding site in tobacco plasma membranes mediates activation of the pathogenesis-related gene HIN1 independent of extracellular calcium but dependent on mitogen-activated protein kinase activity [J]. Plant Cell, 2001a, 13:1079-1093
    40. Li B, Shi Q, Fang J, Pan X. Techniques of diseases, insect pests and weeds control and their efficacy in bio-rational rice production (in Chinese with English abstract) [J]. Acta Appi Ecol, 2004a, 15:111-115
    41. Li P, Lu X, Shao M, Long J, Wang J. Genetic diversity of harpins from Xanthomonas oryzae and their activity to induce hypersensitive response and disease resistance in tobacco [J]. Sci China C Life Sci, 2004b, 47:461-469
    42. Liu F, Liu H, Jia Q, Wu X, Guo X, Zhang S, Song F, Dong H. The internal glycine-rich motif and cysteine suppress several effects of HpaG_(Xooc) in plants [J]. Phytopathology, 2006, 96:1052-1059
    43. Misako K, Kouichi M. Caffeine synthase and related methyltmnsferases in plants [J]. Front Biosci, 2004, 9:1833-1842
    44. Mor H, Manulis A, Zuck M, Nizan R, Coplin D L, Barash I. Genetic organization of the hrp gene cluster and dspAE/BF operon in Erwinia herbicola pv. gypsophilae [J]. Mol Plant-Microbe Interact, 2001, 14:431-436
    45. Parker J E, Holub E B, Frost L N, Falk A, Gunn N D, Daniels M J. Characterization of edsl, a mutation in Arabidopsis suppressing resistance to Peronospora parasitica specified by several different RPP genes [J]. Plant Cell, 1996, 8:2033-2046
    46. Peng J, Bao Z, Dong H, Ren H, Wang J. Expression of harpinxoo in transgenic tobacco induces pathogen defense in the absence of hypersensitive cell death [J]. Phytopathology, 2004a, 94:1048-1055
    47. Peng J, Bao Z, Ren H, Wang J, Dong H. Harpinxoo and its functional domains activate pathogen-inducible plant promoters in Arabidopsis [J]. Acta Bot Sinica, 2004b, 46:1083-1090
    48. Peng J, Dong H, Dong H P, Delaney T P, Bonasera B M, Beer S V. Harpin-elicited hypersensitive cell death and pathogen resistance requires the NDR1 and EDS1 genes [J]. Physiol Mol Plant Pathol, 2003, 62:317-326
    49. Pontier D, Tronchet M, Rogowsky P, Lain E, Roby D. Activation of hsr203, a plant gene expressed during incompatible plant-pathogen interactions, is correlated with programmed cell death [J]. Mol Plant-Microbe Interact, 1998, 11: 544-554
    50. Preston G, Huang H C, He S Y, Collmer A. The I-IrpZ protein of Pseudomonas syringae pvs. Syringae, glycinea, and tomato are encoded by an operon containing Yersina ysc homologs and elicit the hypersensitive response in tomato but not soybean [J]. Mol Plant-Microbe Interact, 1995, 8:717-732
    51. Reboutier D, Frankart C, Briand J, Biligui B, Laroche S, Rona J P, Barny M A, Bouteau F. The HrpNEa harpin from Erwinia amylovora triggers differential responses on the nonhost Arabidopsis thaliana cells and on the host apple cells [J]. Mol Plant-Microbe Interact, 2007, 20:94-100
    52. Ren H, Gu G, Long J, Qian J, Wu T, Song T, Zhang S, Chen Z, Dong H. Combinative effects of a bacterial type-Ⅲ effector and a biocontrol bacterium on rice growth and disease resistance [J]. J Biosci, 2006a, 31: 617-627
    53. Ren H, Song T, Wu T, Sun L, Liu Y, Yang F, Chen Z, Dong H. Effects of a biocontrol bacterium on growth and defence of transgenic rice plants expressing a bacterial type-Ⅲ effector [J]. Ann Microbiol, 2006b, 56:281-287
    54. Salmond GPC, Reeves P G. Membrane traffic wardens and protein-secretion in Gram-negative bacteria [J]. Trends Biochem Sci, 1993, 18:7-12
    55. Sauerbom J. Site productivity, the key to crop productivity [J]. J Agron Crop Sci, 2002, 188:363-375
    56. Schagger H, von Jagow G. Tricine-sodium dodecyl sulphate-polyacrylamid gel electrophoresis for the separation of proteins in the range from I to 100 kDa [J]. Anal Biochem, 1987, 166:368-379
    57. Scofield S R, Tobias C M, Rathjen J P, Chang J H, Lavelle D T, Michelmore R W, Staskawicz B J. Molecular basis of gene-for-gene specificity in bacterial speck disease of tomato [J]. Science, 1996, 274:2063-2065
    58. Shimizu M, Weinstein I B. Modulation of signal transduction by tea catechins and related phytochemicals [J]. Murat Res, 2005, 591: 147-160
    59. Strobel R N, Gopalan J S, Kuc J A, He S Y. Induction of systemic acquired resistance in cucumber by Pseudomonas syringae pv. syringae 61 HrpZ_(pss) protein [J]. Plant J, 1996, 9:431-439
    60. Stuiver M H, Custers J H H V. Engineering disease resistance in plants [J]. Nature, 2001, 411: 865-868
    61. Subramanian S, Kondaiah P, Adiga P R. Expression, purification, and characterization of minimized chicken riboflavin carrier protein from a synthetic gene in Escherichia coli [J]. Protein Expres Purif, 2002, 26:284-289
    62. Takeuchi A, Matsumoto S, Hayatsu M. Chalcone synthase from Camellia sinensis: Isolation of the cDNAs and the organ-specific and sugar-responsive expression of the genes [J]. Plant Cell Physiol, 1994, 35:1011-1018
    63. Tang X Y, Frederick R D, Zhou J M, Halterman D A, Jia Y L, Matin G B. Initiation of plant disease resistance by physicial interaction of AvrPto and Pro kinase [J]. Science, 1996, 274:2060-2063
    64. Tressl R, Voubrecht H R. Health effects of decaffeinated tea; Tea Coffee Trade, 1998, 170:52-58
    65. Usmani O S, Belvisi M G, Patel H J, Crispino N, Birrell M A, Korbonits M, Korbonits D, Barnes P J. Theobromine inhibits sensory nerve activation and cough [J]. FASEB J, 2005, 19:231-233
    66. Wang K L C, Li H, Ecker J R. Ethylene biosynthesis and signaling networks [J]. Plant Cell, 2002, 14:S131-S151
    67. Wei Z M, Beer S V. Harpin from Erwinia amylovora induces plant resistance [J]. Acta Hortic, 1996, 411: 223-225
    68. Xie D Y, Sharma S B, Paiva N L, Ferreira D, Dixon R A. Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis [J]. Science, 2003, 299:396-399
    69. Yamazaki T, Kishimoto T, Shiga S, Sato K, Hagiwara T, Inoue M, Sasaki N, Ouchi K, Hara Y. Biosynthesized tea plyphenols inactivate chlamydia trachomatis in Vitro [J]. Antimicrob Agents Chemother, 2005, 49:2501-2503
    70. Zasloff M. Antimicrobial peptides ofmulticellular organisms [J]. Nature, 2002, 415:389-395
    71. Zhu W G, Magbanua M M, White F F. Identification of two novel hpaG-associated genes in the hpaG gene cluster of Xanthomonas oryzae pv. oryzae [J]. J Bacteriol, 2000, 182:1844-1853
    72. Zitter TA, Beer S V. Harpin for insect control [J]. Phytopathology, 1998, 88:S104-S105
    73.王泽农.茶叶生化原理[M].北京:农业出版社,1981:226-268
    74.徐仲溪.茶多糖化学及生物活性研究[J].茶叶科学,2004,24:75-81
    75.杨贤强,王岳飞,陈留记.茶多酚化学[M].上海:上海科技出版社,2003:127-151
    76.张星海.EGCG防癌抗癌的药理药效研究进展[J].茶叶,2001,27:43-48