几种含碳纳米管复合体系的制备、表征及相关应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着对原子级制造工艺越来越多的认识,纳米技术成为21世纪各个领域都十分关心的重点技术,碳纳米管(CNTs)以其优异的性能倍受科学界的关注,被认为具有广泛的应用前景。碳纳米管作为一种新型的材料,显示出了现有传统纤维无法比拟的优异特性,有望成为先进复合材料的理想增强体。尤其是在聚合物基和无机非金属基复合材料方面,含CNTs复合材料的研究已取得了不少研究成果,在改善基体性能方面取得了明显效果。
     为了对CNTs与聚合物、金属粉末的复合行为及体系性能进行更深入的研究,本论文对CNTs进行表面改性,并将其与环氧树脂和金属银进行复合,以改进环氧树脂材料的力学性能、电学性能;将CNTs与微/纳米铁粉复合,并对体系的流变特性进行系统评价,以研究其对金属粉末注射成型的影响,以解决注射成型工艺中存在的一些关键问题。
     主要研究结果如下:
     1.采用超声波分散及真空浇铸成型法制备的碳纳米管/环氧树脂复合材料能明显提高环氧树脂的力学性能和电性能。碳纳米管的添加量在1.7wt%以下时能有效提高复合材料的力学性能。当碳纳米管的添加量为0.75wt%时,复合材料的综合力学性能最佳,其拉伸强度、拉伸模量、断裂伸长率较环氧树脂基体分别提高了18.2%,16.1%和85.5%。进一步分析表明:断裂时能量主要分三部分吸收,分别是碳纳米管的拔出功,碳纳米管的断裂功以及碳纳米管与基体的脱粘功。其中碳纳米管拔出时吸收能量最多,为5kJ/m2,断裂功为1.1kJ/m2,碳纳米管与基体的脱粘功为0.15kJ/m2。显微结构分析表明:随着碳纳米管的加入,复合材料的断面形貌从光滑变得粗糙,裂纹扩展受阻,表明碳纳米管对复合材料的增强效果显著。碳纳米管/环氧树脂复合材料的电阻大幅度下降,体系的导电性增强,体系的两个渗流阈值分别出现在碳纳米管含量约为0.3wt%时和1.1wt%时。
     2.添加改善碳纳米管分散性的添加剂十二烷基苯磺酸钠(SDB)有助于提高碳纳米管的分散性,从而进一步提高复合材料的力学性能。加入2.25wt%的SDB时,复合材料的拉伸强度、拉伸模量、断裂伸长率分别提高21.4%、26.0%、40.7%。体系的两个渗流阈值出现在SDB的含量为0.4wt%和2.25wt%时。显微结构分析表明添加剂处理后的碳纳米管在复合材料中的分散程度增加,裂纹更加不平,断面出现类似韧窝状特征,因此,复合材料的强度更高。
     3.分别用机械球磨法和化学镀的方法制备了两种银/碳纳米复合管。当球磨法制备的复合管加入量为25wt%时,复合材料的拉伸强度、拉伸模量、断裂伸长率分别比未加银粉时增加19.6%、16.6%、15.3%;复合材料的两个渗流阈值分别出现在复合管含量为15wt%和31wt%处。化学镀法制备的复合管加入量为20wt%时,复合材料的拉伸强度、拉伸模量、断裂伸长率分别比未加碳纳米管时增加34.1%、33.3%、19.3%;该复合材料的两个渗流阈值分别出现在复合管含量为11wt%和25wt%时。相对于机械球磨法制备的复合管和纯碳纳米管增强相,用化学镀法制备的银/碳纳米复合管能更大幅度提高环氧树脂的力学和电性能的作用。
     4.用机械合金化方法制备了微米铁粉/碳纳米管复合粉体,将传统粘结剂体系进行优化后,将该复合粉体与优化后的经典粘接剂混合,制备了微米铁粉注射成型喂料。研究发现,微米铁粉/碳纳米管复合粉体可以改善铁粉在粘结剂中的分散效果,0.2wt%的碳纳米管与微米铁粉复合后制备的喂料装载量可达54vo1%,粘流活化能E=16.5kJ/mol,应变敏感因子n=0.39。红外光谱研究表明,碳纳米管加入可以诱导C=O双键的打开,强化铁粉与粘结剂连接,这种结构有助于铁粉颗粒在粘结剂中的分散,避免铁粉的团聚。
     5.用超声分散结合机械合金化的方法制得了纳米铁粉/碳纳米复合粉末。将纳米铁粉与碳纳米管以20:1的比例制备的复合粉末加入传统的微米级粉末注射成型喂料中,装载量可提高至58vo1%,改进后的喂料粘流活化能以及应变敏感性因子最小,分别是14.79kJ/mol和0.2,对温度以及剪切速率变化敏感,微观结构分散均匀,缺陷较少。研究表明复合粉末可以在苯环其它C原子位置上取代功能团,从而与其他粘结剂分子形成比较紧密的键合作用,有助于提高喂料生坯稳定性,减少产品的变形。另外,复合粉末的加入使得铁粉与粘结剂的连接加强,这种结构有助于防止注射成形过程中由于剪切速率过高而导致铁粉与粘结剂产生分离,从而减少铁粉的团聚以及由此引发的各种缺陷。
     6.首次制备了全纳米铁粉喂料,研究发现,随温度升高或者剪切速率增大,全纳米喂料的粘度均降低。但由于高比表面积的关系,相同温度或剪切速率下,其粘度比微米粉末制备的喂料粘度高。显微结构分析表明0.2wt%的碳纳米管可以在纳米铁粉之间维持一定的分散距离以防止团聚,增加粉末之间的流动性,降低应变敏感因子。当装载量为35vo1%时,粘流活化能及应变敏感因子分别是15.87kJ/mol和0.2,微观结构均匀,缺陷较少。对纳米铁粉喂料颗粒间的相互作用能的计算结果表明,对于球形Fe粉,随着颗粒尺寸的减少,吸引势能和排斥势能逐渐靠近。当颗粒直径为40nm,装载量在33vo1%左右时,体系的能量处于平衡状态,系统可以处于热力学的稳定状态,理论与实验结果比较一致。
     7.对含有碳纳米管的全纳米喂料作了热分析评价,结果表明:纳米铁粉喂料的脱脂分为两个步骤,第一步骤为PW热解,热重损失约为16wt%,第二步骤为EVA热解,脱脂量为6wt%,热解相互衔接且阶段明显,可以满足MIM脱脂工艺的分步脱脂的要求。
Nano technology is one of the most important technologies in the21century. Carbon nanotube(CNTs) has been paid much attention for its excellent properties and abroad application potential. As a new one-dimension material, CNTs exposed more excellent properties than traditional materials, which have the potential to be the ideal reinforce filler of advanced composite. Great research of CNTs reinforced polymer matrix or inorganic matrix composite has been done in recent years, which acquired a lot of achievements.
     To make a focused research on the preparation and its properties of CNTs compound with polymers or metals, the main work of this paper include the surface modification of CNTs and its compound with resin and silver in order to improve the mechanical and electronical properties of epoxide resin. The effect of CNTs and its compound with micro/nano iron powder on metal injection molding is researched. The rheological properties are evaluated to resolve some of the traditional problems in MIM industry.
     The main results can be summarized as follows:
     1. Prepared by ultrasonic and vacuum casting, CNTs can enhance the mechanical and electronical properties of epoxide resin with the content no more than1.7wt%. When CNTs content is0.75wt%, the tensile-strength, tensile-modules and the fracture extensibility of the composite increase18.2%,16.1%and85.5%respectively. The broken energy is absorbed by three parts, one is pulling Cnts out, the other is broken Cnts and the last one is debonding of Cnts and matrix. The values of the three parts are5kJ/m,1.1kJ/m2and0.18kJ/m2, respectively. Micro structure observation shows that with the adding of CNTs, the fracture surface of composite become more and more coarse, and the crack can not expand through the sample very easy. For these reason, the composite gains enhanced mechanical properties. The electron resistance drop down and two seepage threshold values appear when the content of CNTs is0.3wt%and1.1wt%.
     2. Additives of SDB is used to improve the separation of CNTs. Adding2.25wt%SDB can help to increase the tensile-strength, tensile-modules and the fracture extensibility of the composite by21.4%,26.0%and40.7%respectively. The two seepage threshold values appear when the additives content is0.4wt%and2.25wt%. Microstructure shows that after treated by additives, the CNTs disperse much better, the cracks expand even harder, and a dimple-like fracture shape appears.
     3. Two kinds of Ag/C compound nanotube are prepared by ball milling and chemical plating. When the milling-tube is25wt%, the tensile-strength, tensile-modules and the fracture extensibility of the composite increase19.6%,16.6%and15.3%. The seepage threshold values appear when the content is15wt%and31wt%. When the plating-tube is20wt%, the tensile-strength, tensile-modules and the fracture extensibility of the composite increase34.1%,33.3%and19.3%. The seepage threshold values appear when the content is llwt%and25wt%. Compared with milling Ag/C nanotube and pure CNTs, plating Ag/C nanotube can increase the mechanical and electronical properties to a greater extent for the reason that the plating nanotube can achieve a more uniform silver coat around CNTs, which will double the reinforce effect of the fillers.
     4. Micro iron/CNT compound powder is prepared by mechanical alloying and the traditional binder system was optimized. Proper content of the compound powder was added into optimized binders to prepare micro iron MIM feedstock. Study shows that the compound powders can increase the iron separation in the binders and improve powder loading to54vol%, of which the viscos activation energy E and strain sensitive factor n are16.5kJ/mol and0.39respectively. IR analyze shows CNTs can open the C=O bond, improve the connection of powders with binders.
     5. Nano iron compound CNTs is prepared by ultrasonic dispersing and mechanical alloying. Adding this compound powders with the ratio of nano iron and CNTs of20:1into traditional micro iron MIM feedstock can help to increase the powder loading to58vol%with the best rheological properties, when the viscos activation energy E and strain sensitive factor n are14.79kJ/mol and0.2and the micro structure has the lest defect. The compound powder can add some functional group on the benzene molecular, which can combine with other binders to improve the strength of the green product. Besides, it can strength connection effect of particles and binders, which to prevent the separation of particles and binders in MIM procedure.
     6. The toal nano iron powder MIM feedstock with CNTs is prepared and the related properties have been studied for the first time, which shows a pseudo-plastic behavior similar as micro iron feedstock. But, nano iron feedstock has a higher viscosity than that of micro iron feedstock in the same temperature or shear rate for its high surface area. When powder loading is35vol%, the viscos activation energy E and strain sensitive factor n are15.87kJ/mol and0.2. Calculation shows that feedstock system can reach the energy balance when the particle diameter is40nm and the powder loading is around33vol%, which is according to the experimental results.
     7. Thermal analyze of the total nano iron MIM feedstock with CNTs shows that the degrease stage has two steps, one is the PW decomposition with the weight lose of16wt%, the other is EVA decomposition with weigh lose of6%. This grease pattern can be applied into the real MIM operation.
引文
[1]Iijima S. Helical microtubules of graphitic carbon, Nature,1991,354:56-58
    [2]Charlier A, McRae E, Heyd R, et al, Classification for double-walled carbon nanotubes. Carbon,1999,37:1779-1783
    [3]Qian Dong, Gregory J Wagner, Wing Kam Liu, et al, Mechanics of carbon nanotubes, Applied mechanicl revies,2002,55(6):495-533
    [4]Treacy M M J, Ebbesen T W, Gibson J M., Exceptionally high young's modulus observed for individual carbon nanotubes, Nature,1996,381 (6584):678-680
    [5]Walters D A, Ercson L M, Casavant M J, et al, Crystalline ropes of metallic carbon nanotubes, Science,1996,273 (5274):483-487
    [6]曹允洁,袁品仕,吴华强等,CNT/FeNi复合纳米材料的制备及其电化学性能,安徽师范大学学报(自然科学版),2004,27(3):306-308
    [7]Hiroki A, Thomas K, Franco C, et al, Articles physical chemistry of surfaces and interfaces work functions and surface functional groups of multiwall-carbon nanotubes, Physal chemstry B,1999,103:8116-8121
    [8]Liu J,Rinzler A.G, Dai H J, et al, Fullerene Pipes, Science, 1998,280:1253-1256
    [9]晋圣松,石岩,徐学诚,聚苯乙烯接枝修饰碳纳米管,化学研究与应用,2006,18(8):941-945
    [10]杨植,陈小华,刘云泉等,碳纳米管的烃甲基化及其马来酸酐接枝研究,化学学报,2006,64(3):203-207
    [11]范凌云,沈晓冬,崔升等,表面改性碳纳米管/PMMA复合材料的电性能,电子元件与材料,2006,25(4):24-26
    [12]Zhang X, Zhang J, Liu Z, Tubular composite of doped polyaniline with multi-walled carbon nanotubes. Applied Physics A:Material Science Processing, 2005,80(8):1813-1817
    [13]Xiaoyi Gong, Jun Liu, Suresh Baskaran, et al, Surfactant-Assited processing of carbon nanotube/polymer composites, Chemistry material.2002,12:1049-1052
    [14]Walther J H, Jaffe R, Halicioqlu T, et al. Carbon nanotubes in water: Structural characteristics and energetics. Journal of Physical Chemistry B,2001, 105(41):9980-9987
    [15]Ball P. Roll up for the revolution. Nature,2001,414(6860):142-144
    [16]张志,崔作林.纳米技术与纳米材料.北京:国防工业出版社,2000.73-80
    [17]李贺,刘白玲,高利珍.高聚物碳纳米管复合材料研究进展,合成化学,2002,1(10):197-199
    [18]Shaffer M S P, Windle A H. Fabrication and characterization of carbon nanotube/poly(vinyl alcohol) composites. Advanced Material,1999,11(11):937-941
    [19]Jia Z, Wang Z, Xu C, Liang J, et al. Study on poly(methyl methacrylate)/carbon nanotube composites. Material Science Engineering A,1999, 271(1~2):395-400
    [20]Lordi V, Yao N. Molecular mechanics of binding in carbon-nanotube polymer composites. Journal of Materials Research,2000,15(12):2770-2779
    [21]Wise K, Gates T S, et al. Constitutive modeling of nanotube-reinforced polymer composites. Composites Science and Technology,2003,63(11):1671-1687
    [22]Sun X, YU R Q, XU G Q. Broadband optical limiting with multiwalled carbon nanotubes. Applied Physics Letter,1998,73:3632
    [23]Xuefeng Li, Wenchao Guan, Haibiao Yan, Fabrication and atomic force microscopy/friction force microscopy(AFM/FFM) studies of polyacrylamide-carbon nanotubes(PAM-CNTs) copolymer thin films, Materials chemistry and physics, 2004,88:53-58
    [24]Jin Zhaoxiao, Sun Xuan, Xu Guoqin. Nonlinear optical Properties of some polymer/mutiwalled carbon nanotube composites. Chemical Physics Letters,2000, 318:505-510
    [25]Collins PG, Zettl A. Unique characteristics of cold cathode carbon nanotube-matrix field emitters. Physics Review B,1997,55(15):9391-9399
    [26]Hafner JH, Cheung CL, Lieber CM. Growth of nanotubes for probe microscopy tips, Nature,1999,398(6730):761
    [27]Curran S, DaveyA P, Coleman J, et al. Evolution and evaluation of the polymer nanotube composite. Synthetic Metals,1999,103(1-3):2559-2562
    [28]Zhang P H, Lammert P E, Crespi V H. Plastic deformations of carbon nanotubes. Physics Review Letter,1998,81(24):5346-5349
    [29]Richard P, Prasse T, Cavaille J Y, Chazeau L, Gauthier C, Duchet J. Reinforcement of rubbery epoxy by carbon nanofibres. Material Science Engineering:A,2003,352:344
    [30]Zhou X, Eungsoo Shin, Wang K W, et al. Interfacial Damping Characteristics of Carbon Nanotube based composites. Composites Science and Technology,2004,15(64):2425-2437
    [31]Andrews R, WeisenbergerM C. Carbon nanotube polymer composites. Current Opinion in Solid State and Materials Science,2004, (8):31-37
    [32]Liu KC, Anderson MA. Porous nickel oxide/nickel film for electrochemical capacitors. Journal of Eloctrochem Society,1996,143(1):124-130
    [33]沈曾明,杨子芹,赵东林等,碳纳米管/ABS树脂基复合材料的力学性能和雷达吸波性能的研究,复合材料学报,2003,20(2):25-29
    [34]Ajayan P M, Stephan O, Colliex C, et al, Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite. Science,1994,265:1212-1214
    [35]李宏伟,高绪珊,童俨,PP/多壁碳纳米管复合材料的非等温结晶动力学,合成树脂及塑料,2006,23(2):28-31
    [36]Martin C A, Sandier J. K. W., Shaffer M. S. P, et al, Formation of percolating networks in multi-wall carbon-nanotube-epoxy composites, Compositie Science and technology,2004:64:2309-2316
    [37]贾志杰,王正元,原位法制取碳纳米管/尼龙-6复合材料,清华大学学报(自然科学版),2000,40(4):14-16
    [38]曾效舒,曹东,李文唐,碳纳米管/聚苯胺复合材料分散性和界面特点,纤维复合材料,2004,1(1):24-27
    [39]郑成斐,杨胜林,李光等,碳纳米管在聚丙烯腈中的分散状态,功能高分子学报,2004,17(1):25-29
    [40]胡静,陈小华,张刚等,碳纳米管/马来酸酐接枝聚丙烯复合材料制备及性能研究,材料科学与工程学报,2005,23(6):847-849
    [41]Safadi B, Andrews R, Grulke E A. Multiwalled carbon nanotube polymer composites:syntheis and characterization thin films, Applied Polymer science, 2002,84(14):2660-2669
    [42]Jin Z X, Pramoda K P, Goh S H, et al, poly(vinylidene fluoride) assisted melt-blending of multi-walled carbon nanotube/poly(methyl methacrylate) composites, Materials Research Bulletin,2002,37:271-278
    [43]Mac Diarmid A G. Polyaniline and polypyrrole:where are we headed? Synthesized Metal,1997,84(1-3):27-34
    [44]Li Y F, Ouyang J, Yang J,2-doping structures and structural anisotropy revealed by the mass-loss and shrinkage of polypyrrole films on alkali treatment. Synthesized Metals,1995,74:49-53
    [45]Ion A, Ion I, Popescu A. et al, A gerrocene crown ether functionalized polypyrrole film electrode for the electrochemical recognition of barium and calcium cations. Advanced Material,1997,9(9):711-713
    [46]赵文元,王亦军,功能高分子材料化学,北京:化学工业出版社,2003.86-89
    [47]赵文元,赵文明等,聚合物材料的电学性能及其应用,北京:化学工业出版社,2006.58-60
    [48]余颖,曾艳,张丽莎等,碳纳米管对三元乙丙橡胶性能的影响,弹性体,2002,12(6):1-4
    [49]张洁,冯圣玉,导电硅橡胶理论研究进展,功能高分子学报,2002,15(1):87-90
    [50]杨红生,周啸,张庆武,聚苯胺/分级纳米管复合材料的制备与性能研究,高分子学报,2004,5:766-769
    [51]李文春,沈烈,孙晋等,多壁碳纳米管填充高密度聚乙烯复合材料的导电性和动态流变行为,高分子学报,2006,2:269-273
    [52]余颖,刘冰,王卫军等,PA6/碳纳米管复合材料的力学性能与结构,塑料工业,2002,30(6):18-20
    [53]Cooper C A, Young R J, Halsall M. Investigation into the deformation of carbon nanotubes and their composites through the use of Raman spectroscopy. Composites Part A:Applied Science and manufacturing,2001,32(3-4):401-411
    [54]贾志杰,王正元,原位法制取碳纳米管尼龙—6复合材料,清华大学学报(自然科学版)2000,40(4):14-16
    [55]Qian D, Dickey E C, Andrews R, Rantell T. Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Applied Physics Letter, 2000,76(20):2868-2870
    [56]夏军宝,陈卫祥,李飞等,碳纳米管/PTFE基复合材料摩擦学性能的研究,浙江大学学报(工学版),2003,37(4):471-473
    [57]Enomoto Kazuki, Yasuhara Toshiyuki, Kitakata Shintaro, et al, Frictioinal properties of carbon nanofiber reinforced polymer matrix composites, New Diamond and Frontier Carbon Technology,2004,14(1):11-20
    [58]Park J M, Kim D S, Lee J R, Kim TW. Nondestructive damage sensitivity and reinforcing effect of carbon nanotube/epoxy composites using electromicrechanical technique. Materials Science and Engineering:C,2003,23(6~ 8):971-975
    [59]Yakobson B I, Avouris P. Mechanical properties of carbon nanotubes. Carbon Nanotubes,2001,45:287-329
    [60]Yu Ren, Feng Li, HuiMing Cheng, et al. Tension tension fatigue behavior of unidire-ctional single-walled carbon nanotube reinforced epoxy composite. Carbon,2003,41(11):2177-2179
    [61]Sun X, YURQ, XU G Q. Broadband optical limiting with multiwalled carbon nanotubes. Applied Physics Letter,1998,73:3632
    [62]Curran S A, Ajayan P M, Blau W J, et al, A composite from poly(m-pyenylenevinylene-co-2,5-dioctoxy-p-phenylenevinylene) and carbon nanotubes:a novel material for molecular optoelectronics. Advanced Materials 1998,10(14):1091-1093
    [63]Coleman J N, Dalton A B, Curran S, et al, Phase separation of carbon nanotubes and turbostratic graphite using a functional organic polymer. Advanced Materials,2000,12(3):213-216
    [64]Tang Benzhong, Xu Hongyao. Preparation Alignment and optical propertyes of soluble poly(phenylacetylene)-wrapped carbon nanotubes. Macromolecules,1999,32:2569-2576
    [65]刘先曙,防止隐形飞机遭雷电袭击的碳纳米管复合材料板,科技导报,2002,6:25
    [66]慕春海,韩博,李超鹏等,碳纳米管-异甘草素复合物体内外释药相关性研究,中国新药杂志,2010,19(15):1372-1375
    [67]Pease L F, A perspective on the markets and technology for injection molded metal powder and ceramic parts. Internation Jounal of Powder Metallurgy, 1986,22:177-184
    [68]Gregory M.B., The adoption of thermoset condensation resin binders to powder metal injection molding. Powderl Injection Molding Symposium,1992:67
    [69]Angerman, Rapid thermal binder removal and dimentional control of powder compacts with a novel thermoplastic-based binder formulation. Powder Injection Molding Symposium,1992:329
    [70]Hunold K., Greim J., A Lipp. Injection moulded ceramic rotors-comparison of SiC and Si3N4, Powder Metallurgy International,1989,21(4):17-23
    [71]Deryagin B.C., Landau L., Influence of surfactant on rheological behaviors of injection-molded alumina suspensions. Acta Physics Chemistry URSS, 1941(14):633-635
    [72]Chung C.I., Rhee B.O.. Requirements of binder for powder injdection molding. Advances In Powder Metallurgy,1989(3):67-70
    [73]J.E.Burroughs, Thornton H.R., Refractory aerospace structural components by plastic molding process. Bullitin of American Ceramic Society, 1966(45):187-192
    [74]范景莲,注射成形高比重合金致密化过程的研究:[博士学位论文],中南工业大学,1999:1-3
    [75]Verwey E.J.W., Overbeek J.Th.G.., Theory of the Stability of Lyophobic Colloids, Originally published:New York; Elsevier Pub. Co, Amsterdam,1948
    [76]Mutsuddy B.C., Rheology and Mixing of Ceramic Mixtures Used in Plastic Molding. Plastic Molding Rheology and Mixing,1986:240-245
    [77]Zhan Tao, Jiang Zuozhao, et al, Influence of rheological behavior of ceramic mixes on injection moulding of ceramic compacts. Journal of American Ceramic Society,1990,73(7):217
    [78]Mistier R.E., Shanefield D.J., R.B.Runk, Tape Casting of Ceramics, Ceramics Processing Before Firing. Edited by GY.Onoda, Jr.and L.L.Hench.Wiley&Sons, New York,1978:441
    [79]Lee H., Pober R., Calvert P., Dispersion of Powders in Solutions of a Block Copolymer, Journal of Colloid Interface Science, (1986(1):48-144
    [80]Edirisinghe M J, Evens J R G, Systematic development of ceramic injection moulding process. Materials science and engineering,1989,109:17-26
    [81]Frados J. Plastic engineering hand book,4th ed. New York:Van Nostrand Reinhold,1976
    [82]Loh N.H., Tor S.B., Khor K.A., Production of metal matrix composite part by powder injection molding, Materials Processing Technology 2001:398-401
    [83]German R. M. Theory of thermal debinding. The International Journal of Powder Metallurgy,1987,23 (4):237-245
    [84]Felton R., Injection molding of metal powders-a new parts production process. Metal Powder Report,1981,36 (8):388
    [85]Ebenhoch J, et al, Process parameters for a fast catalytic debinding system. In:Booker P H ed. Powder injection molding, Princeton Press,1992:385
    [86]Johnson R.E., Morrison W.H..Ceramic Powder Dispersion in Nonaqueous Systems. Advances in Ceramics:Ceramic Powder Science 1984(121):325-335
    [87]Ebenhoch J, et al, Catalytis gas phase erosion-A new technique for quick debinding of injection molded green parts, In Powder Injection Molding. Pease L.F. Princeton Press,1991:159
    [88]Arnold R. E., et al. Injection molding. ASE Handbook,1990(7):495-498
    [89]Felton R., Metalmold, BASF'S new powder injection molding system. Metal Powder Report,1992,47 (5):43-46
    [90]Waiker R. J., et al. P/M injection molding. Horizons of Powder Metal, 1986:661-665
    [91]German R.M.. Powder Injection Molding. Metal powder industries federation,1990:247-250
    [92]Chung C.I., Property characterization of feedstock for powder injection molding. Advances in powder metal,1990(3):247-281
    [93]Billiet R.L., Injection molding of advance PM materials in SE Asia, Metal Powder Rep.,1990,45(5):326-332
    [94]Crawford R.J., Plastics Engineering,2nd edition, Pergamon press, Oxford, 1987
    [95]曲选辉, 颜寒松, 金属注射成形粘结剂的发展,粉末冶金技术,1997(15):61-65
    [96]邱光汉,李益民,粉末合金注射成形技术,粉末冶金材料科学与工程,1996(1):67-70
    [97]梁叔全,黄伯云,曲选辉,金属注射成形的高技术与新概念,材料导报,1996(1):15-17
    [98]龚榆,粉末冶金新工艺—注射成形,稀有金属,1989(6):495-500
    [99]Leander P.F., Metal injection molding:The incubation is over, Internationl Journal of Powder metallurgy,1988(24):123-127
    [100]Dowding R.J., Powder injection molding:technological need identification. Advances in powder metal and Particulate Material,1996:219-275
    [101]http://www.metal-powder.net/news/2008/080218-hoganas.asp2008-2-18/ 2008-3-20
    [102]http://www.pim-international. com/industrynews/000340.ht ml/2008-5-1
    [103]http://www.metal-powder.net/news/2008/080902-JP-MAMIM.asp 2008-9-2/2008-9-10
    [104]Tien-Yin Chan and Shun Tian Li. Effects of Stearic Acid on the Injection Molding of Alumina. Journal of the American Ceramic Society-Chan and Lin. 1995(78):2141-2152
    [105]Wiech R.E., Method and meas for removing binders from a green body, US patent,4,305,765,1981
    [106]Whalen T. J., John C. F., Injection molding of ceramics. Ameriacn Ceramic Society Bullentin,1981(60):216-220
    [107]Dow J.H., Sacks M.D.. et al, Dispersion of ceramic particles in polymer melts, Ceramic transaction,1988,1(A):380-388
    [108]Hunt K.N., G.Evens J.R. et al., The influence of mixing route on the properties of ceramic injection blends, Britain Ceramic Transaction,1988,87:17-21
    [109]Beebhas C.Mutsuddy, Rheology and Mixing of Ceramic Mixtures Used in Plastic Molding. Plastic Molding Rheology and Mixing,1993:245-246
    [110]李笃信等.金属注射成形蜡基粘结剂的研究.材料科学与工程.2001:19(1):34-38
    [111]Chung C.I., Rhee B.O.., Requirements of binder for powder injection molding. Advances in P/M,1989(3):68-70
    [112]Frederick M F, Dispersions of ceramic powders in organic media. Ceramic Powder Science Advances in Ceramics.1997(21):411-415
    [113]Rhee B.O.. Improved wax-based binder formulations for powder injection molding. Advances in powder metal.,1991(2):43-58
    [114]http://www.pim-international.com/industrynews/000317.html 2008-1-1/2008-5-1
    [115]Zhang H. Processing effects on the mechanical properties of an injection molded Fe-2%Ni alloy. Industrial Heating,1990(57):33-38
    [116]Herman E.A., Solvent dewaxing:Principles and application. Advances In P/M,1990(3):233-236
    [117]Lee H, Pober R, and Calvert P, Dispersion of Powders in Solutions of a Block Copolymer. Colloid Interface Science,1986,110(1):44-46
    [118]Zhang H, R.M. German, K.F.Hens, Processing and the mechanical properties of injection molded Fe-2Ni steels, Advances in powder metallurty, 1990(3):437-445
    [119]Edirisinghe M. J., The Effect of Processing Additives on the Properties of a Ceramic-Polymer Formulation. Ceramics International.1991 (17):89-96
    [120]Lacey P.M.C.. Development in the Theory of Particle Mixing, Applied journal of Chemistry,1954(4):257-268
    [121]Petzoldt F., Investigation of different stainless steel MIM feedstocks with a novel binder system. Metal injection molding symposium,1992:155
    [122]Chung C.I., Cao M.Y., A new binder system for powder injection molding. Advances in P/M,1990(3):193-196
    [123]Chung C.I., Cao M.Y., A new water soluble solid polymer solution binder for powder injection molding. Metal injection molding symposium,1992:85
    [124]Werner D, Detlev S, Injection moulding of superalloys and intermetallic phases Metal Powder Report,1990,45(5):333-334,336-338
    [125]Waiker R.J., Patterson B.R., P/M injection molding. Horizons of P/M, 1986:661
    [126]Qingquan W., binru Z., Effect of molybdenum addition on properties and microstructure of W-Ni-Fe heavy alloys, Tungsten & Tungsten Alloys,1992:431-436
    [127]Chung C.I., Rhee B.O.. Requirements of binder for powder injdection molding. Advances In Powder Metallurgy,1989(3):67-70
    [128]Zhukov, A.N, Integrated investigations of the elcetrosurface properties of nonaqueous disperse and capillary systems, Advances in colloid and interface science,2007,134-135:330
    [129]Loh N.H., Tor S.B., Khor K.A., Production of metal matrix composite part by powder injection molding, Materials Processing Technology 2001:398-401
    [130]German R. M. Theory of thermal debinding. The Inter. Journal of Powder Metallurgy,1987,23 (4):237-245
    [131]Tonomura T., Properties of typical metal injection molded test parts. Advances in powder metallurty,1989(3):79-90
    [132]German R.M., Microstructure limitations of high tungsten content heavy alloys,11th International plansee seminar'85,1985(1):143-158
    [133]Kishi Toshihito, Processing effects on the mechanical properties of tungsten heavy alloys, Int J Refra Met & Hard Mater,1990(3):40-45
    [134]Hens K.F., White G.R., German R.M., Quality issues for injection molded high performance steels. Powder injection molding symposium, 1992:169-180
    [135]Bandyopadhyay, Method for injection molding and removing binder from large cross section ceramic shapes, US Pat,1987(34):704,242
    [136]Merhar J.R, Overview of metal injection moulding, Metal Powder Report,1990,45(5):339-342
    [137]Giesekus H., Disperse systems:dependence of rheological properties on the type of flow with implication for foods rheology, in Physical properties of foods, edited by R. Jowitt et al, Applied science publisher,1993
    [138]Maryann T, Characterizing powders for metal injection molding. Powder injection molding symposium,1992:37-52
    [139]Wang Tung-Liang, Gravity feed molding of metal powder, Advance in powder metallurgy,1995(6):295-302
    [140]Liu Z.Y., Loh N.H., Tor S.B., Micro-powder injection molding, J. Mater. Process Technol.2002,127:165-168.
    [141]Rota A., Duong T., Hartwig T., Micro powder metallurgy for the replicative production of metallic microstructures, Microsyst. Technol.2002,8:323-325.
    [142]Shuquan Liang, Yan Tang, Baiyun Huang, Shaoqiang Li, Rheology Application in Metal Powder Injection Molding, Advances in Rehology and its Application, Science Press USA:Inc,2005:827-832. Proceeding of the 4th Pacific Rim Conference on Rheology,7-11 August 2005, Shanghai, China
    [143]侯鹏翔,白朔,成会明,碳纳米管提纯的研究进展,炭素技术,2001,(4): 30-33
    [144]吕德义,陈万喜,徐铸德,碳纳米管的纯化,材料科学与工程,2008,18(4): 106-106
    [145]Tang S C, Chen Y K, Harris P J F, A simple chemical method of opining and filling carbon nanotubes, Nature,1994,372L159-162
    [146]Burroughs J.E., Thornton H.R., Refractory aerospace structural components by plastic molding process. Bull Am Ceram Soc,1966(45):187-192
    [147]中西香尔,P.H.索罗曼著,《红外光谱分析100例》,科学出版社,1984:8-21
    [148]Silverstein R.M., Bassler G.C. Morrill T.C., Spectrometric identification of organic compounds, fifth edition, published by JOHN WILEY & SONS, INC.1991: 102-142
    [149]Brosch J.W., et al., Chemical far infrared spectroscopy, Applied Spectroscopy Reviews, Appl. Spectrose, Reviews,1968(2):30
    [150]贝拉米著,黄维垣等译,《复杂分子的红外光谱》,科学出版社1975
    [151]Richard P, Prasse T, Cavaille J Y, Chazeau L, Gauthier C, Duchet J. Reinforcement of rubbery epoxy by carbon nanofibres. Mater Science Engineering: A,2003,352:344
    [152]Zhou X, Eungsoo Shin, Wang K W, et al. Interfacial Damping Characteristics of Carbon Nanotube based composites. Composites Science and Technology,2004,15(64):2425-2437
    [153]Andrews R, WeisenbergerM C. Carbon nanotube polymer composites. Current Opinion in Solid State and Materials Science,2004, (8):31-37
    [154]Park J M, Kim D S, Lee J R, Kim TW. Nondestructive damage sensitivity and reinforcing effect of carbon nanotube/epoxy composites using electromicrechanical technique. Materials Science and Engineering:C,2003, 23(6-8):971-975
    [155]Ozaki T., Iwasa Y, Mitani T., Stiffness of single-walled carbon nanotubes under large strain, Physics review letter,2000,84:1712-1716
    [156]Yu Ren, Feng Li, HuiMing Cheng, et al. Tension fatigue behavior of unidire-ctional single-walled carbon nanotube reinforced epoxy composite. Carbon, 2003,41(11):2177-2179
    [157]Schadler L S, Giannaris S C, Ajayan P M. Load transfer in carbon nanotube eposy composites. Applied Physics Letter,1998,73(26):3842-3845
    [158]赵文元,赵文明,王亦军等.聚合物材料的电学性能及其应用.北京:化学工业出版社,2006.59-62
    [159]乔生儒主编,复合材料细观力学性能,西北工业大学出版社,1997
    [160]Outwater J O, Murphy M C, The influence of environment and glass finishes on the fracture energy of glass-epoxy joints. Pore.24th Conf. SPI,1969
    [161]Yu M F, Lourie O, Dver M I, et al, Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load, Science,2000,287:637-640
    [162]Yu M F, Files B S, Arepalli S, et al, Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties, Physical Review Letter, 2000,84:5552-5555
    [163]Yu M F, Dyer M J, Skidmore G D, et al, Three-dimensional manipulation of carbon nanotubes under a scanning electron microscope. Nanotechnology, 1999,10:244-252
    [164]陈北明,杨德安.聚合物基复合材料制备中碳纳米管的分散方法.材料导报,2007,21:99-101
    [165]曹东,周泽华,曾效舒.分散剂对阵列式碳纳米管分散性的影响.新技术新工艺·材料与表面处理,2003,10:48
    [166]龚晓钟,汤皎宁,古坤明等.碳纳米管分散性的研究.广东化工,2005,4:7-10
    [167]李子东,李光宇,吉利,郝向杰.胶粘剂助剂.北京:化学工业出版社,2005.195-196
    [168]Ru C Q, Effective bending stiffness of carbon nanotubes. Physics Review Bulletin,2000,62(15):9973-9976
    [169]韩兵强,李楠.高能球磨法在纳米材料研究中的应用.耐火材料,2002,36(4):240-242
    [170]邹正光,李金莲,陈寒元.高能球磨在复合材料制备中的应用.桂林工学院学报,2002,22(3):174-177
    [171]吕卫卫,谷万里,庞秋等.球磨法制备碳纳米管/铜复合材料.材料热处理,2007,36(8):34-36
    [172]刘芙,张孝彬,涂江平等.碳纳米管的球磨处理及其对储氢性能的影响.太阳能学报,2003,24(1):116-120
    [173]於留芳.化学镀碳纳米管/活性炭的微波吸收性能研究:[硕士学位论文].北京:北京交通大学,2006
    [174]Hertel T., Mattel R., Avouris P., Manipulation of individual carbon nanotubes and their interaction with surfaces, Journal of physics chemistry B, 1998,102(6):910-915
    [175]Chesnokov S A, Nalimova V A, Rinzler A G, et al, Mechanical energy storage in carbon nanotube springs, Physics revies letters,1999,82(2):343-346
    [176]Huang L M, Cui X D, White B, et al, Long and oriented single-walled carbon nanotubes grown by ethanol chemical vapor deposition, Jounal of Physics chemistry B,2004,108(42):16451-16456
    [177]Li S D, Yu Z, Rutherglen C et al, Electrical properties of 0.4cm long single-walled carbon nanotubes, Nano letters,2004,4(10):2003-2007
    [178]Koelmans H. Overbeek J.Th. G. Stability and Electrophoretic deposition of suspensions in non-aqueous media. Discussions of the Faraday Society. 1954,18:52-63.
    [179]梁叔全,黄伯云,粉末注射成形流变学,中南大学出版社,2000
    [180]German R. M. Theory of thermal debinding. The International Journal of Powder Metalurgy,1987,23 (4):237-245
    [181]Disma F, Aymard L, Dupont L, et al, Effect of mechanical grinding on the lithium intercalation process in graphites and soft carbon, Journal of Electrochemical Society,1996,143:3959-3971