脊髓MAPK参与大鼠转移性骨癌痛的机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
慢性痛中,最严重、最难以控制的是由恶性肿瘤引起的疼痛,即癌痛。最常见的癌痛成因是乳腺癌、前列腺癌、肺癌和卵巢癌的骨转移引起的疼痛。癌痛早期,由于肿瘤细胞和周围组织炎症细胞持续释放神经活性物质可引起类似炎症痛的反应:癌痛中、后期,由于肿瘤生长引起的神经浸润和压迫,可出现类似神经病理性疼痛的特征,这提示癌痛与炎症痛和神经病理性痛可能分享着某种类似的细胞和分子机制。
     细胞外信号调节激酶(Extracellular signal-regulated kinase, ERK)和p38是有丝裂原激活的蛋白激酶(mitogen-activated protein kinase, MAPK)家族的两个重要成员。它们在脊髓背角神经元和胶质细胞的激活是炎症痛和神经病理性疼痛产生痛觉敏化的重要机制。但在癌痛状态下,ERK和p38在脊髓背角及其与胶质激活相关的时间依赖性变化尚不清楚。因此,本论文在大鼠胫骨骨髓腔内接种Walker256乳腺癌细胞建立的骨癌痛模型上,应用形态学、免疫组织化学、免疫印迹分析及行为学等方法,对骨癌痛发生和发展过程中脊髓ERK/MAPK和p38/MAPK信号分子在不同细胞中激活的时间过程及其在骨癌痛中枢敏化产生中的可能机制进行了初步探索。主要结果如下:
     将Walker256大鼠乳腺癌细胞(4×104)接种至雌性Wistar大鼠胫骨骨髓腔内。随着肿瘤的生长,术侧胫骨在接种后14和21天出现骨质损伤和破坏;术侧后肢表现出明显的自发痛体征;双侧后肢出现机械触诱发痛及热痛过敏,呈现出典型的镜像痛特征。
     接种肿瘤细胞14及21天后,双侧脊髓背角小胶质细胞和星形胶质细胞均被大量激活;鞘内给予胶质细胞抑制剂丙戊茶碱(propentofylline, PPF)和小胶质细胞抑制剂美满霉素(minocycline)均可显著抑制骨癌痛。
     随骨癌痛的发生和发展,双侧脊髓背角p38和ERK大量激活,在肿瘤细胞接种后3、7、14及21天,磷酸化的ERK (pERK)和p38(p-p38)在脊髓的表达水平明显高于对照组;免疫荧光双标记结果显示,肿瘤细胞接种后3天和7天,pERK主要表达在神经元和小胶质细胞,接种后14和21天,脊髓背角神经元、小胶质细胞和星形胶质细胞均可表达pERK;与ERK的激活稍有不同,p38在肿瘤细胞接种后3-21天在双侧脊髓背角神经元和小胶质细胞均有激活,但骨癌痛早期主要分布在神经元,而晚期主要分布在小胶质细胞;行为学测试显示,瘤细胞接种前2天预先腰穿给予p38抑制剂SB203580(10μg),并在术后每天一次,持续两周,可以阻断骨癌诱导的机械触诱发痛形成;在肿瘤接种14天,行为痛敏已出现后,单次鞘内给予p38抑制剂SB203580(10μg)和SB39063(100μg),或MEK (ERK的激酶)的抑制剂U0126(1、3μg)也可翻转已形成的机械触诱发痛;提示MAPK在骨癌痛的发展和维持中均发挥重要作用。
     综上所述,在接种Walker256大鼠乳腺癌细胞引起的大鼠胫骨转移性骨癌痛模型,ERK/MAPK和p38/MAPK在双侧脊髓背角的激活参与了骨癌痛的发展与维持;MAPK对骨癌痛的调制作用可能是通过活化脊髓胶质细胞实现的。本研究提示,MAPK可能是治疗骨癌痛的一个重要靶点。
Cancer pain is one of the most severe types of chronic pain, and the most common type of cancer pain is bone cancer pain, which is caused by tumors that metastasize from distant sites such as breast, prostate, and lung to the bone. Compared with neuropathic and inflammatory pain, cancer pain might share similar physiological and pathological changes. At its earlier phase, an inflammatory response is inevitable, while in its later phase, nerve infiltration and compression by tumour cells, cancer pain may also be characterized as neuropathic pain. Thus, cancer pain, neuropathic pain and inflammatory pain may share some similar molecular and cellular mechanisms.
     Excellular signal-regulated kinase (ERK) and p38MAPK are main family members of mitogen-activated protein kinases (MAPKs), a reserved serine/ threonine kinase family. The activation of MAPKs in spinal neuronal and glial cells has been demonstrated to be involved in the mechanisms of inflammatory and neuropathic pain. However, as to the relationship of the two MAPKs and spinal glial activation during the development of bone cancer pain, our knowledge is very limited. Therefore, in a rat model induced by intra-tibia inoculation of Walker 256 mammary gland carcinoma cells, we inverstigated the temporal change of ERK and p38 activation in different cell types in the spinal dorsal horn following the development of bone cancer pain.
     Syngeneic Walker 256 mammary gland carcinoma cells (4×104) were injected into the tibia medullary cavity via intercondylar eminence. Series of tests were carried out including bone radiology, bone histology and behavioral tests. The rats inoculated with carcinoma cells showed significant spontaneous pain, mechanical allodynia and thermal hyperalgesia. The pain hypersensitive behaviors were aggravated with time and destruction of bone. Interestingly, mechanical allodynia was also observed in the contralateral limb, indicating the involvement of'mirror image'pain in bone cancer pain.
     Following the inoculation with Walker 256 cells, microglia and astrocytes were robustly activated in the bilateral spinal dorsal horn at days 14, and 21. Intrathecal injection of propentofylline (PPF), a glial inhibitor, and minocycline, a microglial inhibitor, significantly suppressed glial activation and bone cancer-induced mechanical allodynia.
     At days 14, and 21 after inoculation of tumour cells, the expressions of phosph-p38 (p-p38) and phosph-ERK (pERK) in both side of the spinal dorsal horn were remarkably increased. Double immunofluorescence showed that pERK was expressed in neurons and microglia of the spinal cord at days 3 and 7 after inoculation; while at days 14 and 21, pERK was detected in all the neurons, microglia and astrocytes of the spinal cord. Differentlly, p-p38 colocalized with NeuN (a neuronal marker) and OX-42 (a microglial marker) in the spinal dorsal horn at all days we observed. Preferentially, p-p38 expressed in neurons in early phase and in microglia in late phase respectively. To address the effects of inactivating p38/MAPK on the development of behavioral hypersensitivity in rats inoculated with carcinoma cells, repeated intrathecal injection of p-p38 inhibitor SB203580 (1,5, and 10μg) were carried out once daily for 2 weeks, with the first application 2 days before inoculation. At a dose of 10μg, SB203580 significantly suppressed the development of bone cancer pain. To address the effects of inactivating p38/MAPK and ERK/MAPK on the existed behavioral hypersensitivity evoked by bone cancer, intrathecal administrations of p-p38 inhibitor SB203580 (10μg), SB239063 (100μg) or MEK inhibitor U0126 (3μg) were performed at 14 days after inoculation. The bone cancer-induced mechanical allodynia was reversed by either p38 inhibitor or MEK inhibitor. These results suggest that MAPKs in spinal cord may be involved in both development and maintenance of bone cancer pain.
     Taken together, the present study indicates that activation of ERK/MAPK and p38/MAPK in spinal dorsal horn contributes to the development and maintenance of bone cancer pain. And the modulation of MAPKs to bone cancer pain may be involved in the activation of spinal glial cells. Thus, MAPK might become a novel target for treating bone cancer pain.
引文
[1] Ciruela, A., Dixon, A. K., Bramwell, S., Gonzalez, M. I., Pinnock, R. D. and Lee, K. Identification of MEK1 as a novel target for the treatment of neuropathic pain [J]. British Journal of Pharmacology, 2003,138: 751-756.
    [2] Clark, A. K., Yip, P. K., Grist, J., Gentry, C., Staniland, A. A., Marchand, F., Dehvari, M., Wotherspoon, G., Winter, J., Ullah, J., Bevan, S. and Malcangio, M. Inhibition of spinal microglial cathepsin S for the reversal of neuropathic pain [J]. Proceedings of the National Academy of Sciences of the United States of America, 2007,104:10655-10660.
    [3] Clark, A. K., Staniland, A. A., Marchand, F., Kaan, T. K. Y., McMahon, S. B. and Malcangio, M. P2X7-Dependent Release of Interleukin-1 beta and Nociception in the Spinal Cord following Lipopolysaccharide [J]. Journal of Neuroscience, 2010, 30: 573-582.
    [4] Deli, T. and Csernoch, L. Extracellular ATP and cancer - An overview with special reference to P2 purinergic receptors [J]. Pathology & Oncology Research, 2008,14:219-231.
    [5] Farber, K. and Kettenmann, H. Purinergic signaling and microglia [J]. Pflugers Archiv-European Journal of Physiology, 2006,452: 615-621.
    [6] Ferrari, D., Pizzirani, C., Adinolfi, E., Lemoli, R. M., Curti, A., Idzko, M., Panther, E. and Di Virgilio, F. The P2X(7) receptor: A key player in IL-1 processing and release [J]. Journal of Immunology, 2006,176: 3877-3883.
    [7] Gwak, Y. S., Unabia, G. and Hulsebosch, C. Inhibition of neuronal p-38 mapk activation attenuates below-level central neuropathic pain following spinal cord injury [J]. Journal of Neurotrauma, 2007, 24:1259-1259.
    [8] Hains, B. C. and Waxman, S. G. Activated microglia contribute to the maintenance of chronic pain after spinal cord injury [J]. Journal of Neuroscience, 2006, 26: 4308-4317.
    [9] Honore, P., Luger, N. M., Sabino, M. A. C., Schwei, M. J., Rogers, S. D., Mach, D. B., O'Keefe, P. F., Ramnaraine, M. L., Clohisy, D. R. and Mantyh, P. W. Osteoprotegerin blocks bone cancer-induced skeletal destruction, skeletal pain and pain-related neurochemical reorganization of the spinal cord [J]. Nature Medicine, 2000a, 6: 521-528.
    [10] Honore, P. and Mantyh, P. W. Bone cancer pain: From mechanism to model to therapy [J]. Pain Medicine, 2000, 1: 303-309.
    [11] Honore, P., Rogers, S. D., Schwei, M. J., Salak-Johnson, J. L., Luger, N. M., Sabino, M. C, Clohisy, D. R. and Mantyh, P. W. Murine models of inflammatory, neuropathic and cancer pain each generates a unique set of neurochemical changes in the spinal cord and sensory neurons [J]. Neuroscience, 2000b, 98: 585-598.
    [12] Honore, P., Donnelly-Roberts, D., Namovic, M. T., Hsieh, G., Zhu, C. Z., Mikusa, J. P., Hernandez, G., Zhong, C. M., Gauvin, D. M., Chandran, P.,R. and Jarvis, M. F. A-740003[N-(1-{[(cyanoimino)(5-quinolinylamino)methyl]amino}-2,2-dimethylpropyl) -2-(3,4-dimethoxyphenyl)acetamide], a novel and selective P2X(7) receptor antagonist, dose-dependently reduces neuropathic pain in the rat [J]. Journal of Pharmacology and Experimental Therapeutics, 2006,319:1376-1385.
    [13] Jarvis, M. F. The neural-glial purinergic receptor ensemble in chronic pain states [J]. Trends Neurosci, 2010,33:48-57.
    [14] Ji, R. R., Baba, H., Brenner, G. J. and Woolf, C. J. Nociceptive-specific activation of ERK in spinal neurons contributes to pain hypersensitivity [J]. Nature Neuroscience, 1999,2:1114-1119.
    [15] Ji, R. R. and Woolf, C. J. Neuronal plasticity and signal transduction in nociceptive neurons: Implications for the initiation and maintenance of pathological pain [J]. Neurobiology of Disease, 2001, 8:1-10.
    [16] Ji, R. R., Befort, K., Brenner, G. J. and Woolf, C. J. ERK MAP kinase activation in superficial spinal cord neurons induces prodynorphin and NK-1 upregulation and contributes to persistent inflammatory pain hypersensitivity [J]. Journal of Neuroscience, 2002a, 22:478-485.
    [17] Ji, R. R., Samad, T. A., Jin, S. X., Schmoll, R. and Woolf, C. J. p38 MAPK activation by NGF in primary sensory neurons after inflammation increases TRPV1 levels and maintains heat hyperalgesia [J]. Neuron, 2002b, 36:57-68.
    [18] Ji, R. R. and Suter, M. R. p38 MAPK, microglial signaling, and neuropathic pain [J]. Molecular Pain, 2007, 3: -.
    [19] Jin, S. X., Zhuang, Z. Y., Woolf, C. J. and Ji, R. R. P38 mitogen-activated protein kinase is activated after a spinal nerve ligation in spinal cord microglia and dorsal root ganglion neurons and contributes to the generation of neuropathic pain [J]. Journal of Neuroscience, 2003, 23: 4017-4022.
    [20] Lever, I. J., Pezet, S., McMahon, S. B. and Malcangio, M. The signaling components of sensory fiber transmission involved in the activation of ERK MAP kinase in the mouse dorsal horn [J]. Molecular and Cellular Neuroscience, 2003,24:259-270.
    [21] Ma, W. Y. and Quirion, R. The ERK/MAPK pathway, as a target for the treatment of neuropathic pain [J]. Expert Opinion on Therapeutic Targets, 2005,9:699-713.
    [22] Mao-Ying, Q. L., Zhao, J., Dong, Z. Q., Wang, J., Yu, J., Yan, M. F., Zhang, Y. Q., Wu, G. C. and Wang, Y. Q. A rat model of bone cancer pain induced by intra-tibia inoculation of Walker 256 mammary gland carcinoma cells [J]. Biochemical and Biophysical Research Communications, 2006, 345: 1292-1298.
    [23] Medhurst, S. J., Walker, K., Bowes, M., Kidd, B. L., Glatt, M., Muller, M., Hattenberger, M., Vaxelaire, J., O'Reilly, T., Wotherspoon, G., Winter, J., Green, J. and Urban, L. A rat model of bone cancer pain [J]. Pain, 2002, 96: 129-140.
    [24] Mercadante, S. Malignant bone pain: pathophysiology and treatment [J]. Pain, 1997,69:1-18.
    [25] Miyoshi, K., Obata, K., Kondo, T., Okamura, H. and Noguchi, K. Interleukin-18-Mediated Microglia/Astrocyte Interaction in the Spinal Cord Enhances Neuropathic Pain Processing after Nerve Injury [J]. Journal of Neuroscience, 2008, 28: 12775-12787.
    [26] Mizushima, T., Obata, K., Katsura, H., Sakurai, J., Kobayashi, K., Yamanaka, H., Dai, Y., Fukuoka, T., Mashimo, T. and Noguchi, K. Intensity-dependent activation of extracellular signal-regulated protein kinase 5 in sensory neurons contributes to pain hypersensitivity [J]. Journal of Pharmacology and Experimental Therapeutics, 2007, 321: 28-34.
    [27] Nelson, D. W., Gregg, R. J., Kort, M. E., Perez-Medrano, A., Voight, E. A., Wang, Y., Grayson, G., Namovic, M. T., Donnelly-Roberts, D. L., Niforatos, W., Honore, P., Jarvis, M. F., Faltynek, C. R. and Carroll, W. A. Structure-activity relationship studies on a series of novel, substituted 1-benzyl-5-phenyltetrazole P2X(7) antagonists [J]. Journal of Medicinal Chemistry, 2006,49: 3659-3666.
    [28] Perregaux, D. and Gabel, C. A. Interleukin-1-Beta Maturation and Release in Response to Atp and Nigericin - Evidence That Potassium-Depletion Mediated by These Agents Is a Necessary and Common Feature of Their Activity [J]. Journal of Biological Chemistry, 1994,269:15195-15203.
    [29] Piao, Z. G., Cho, I. H., Park, C. K., Hong, J. P., Choi, S. Y., Lee, S. J., Lee, S., Park, K., Kim, J. S. and Oh, S. B. Activation of glia and microglial p38 MAPK in medullary dorsal horn contributes to tactile hypersensitivity following trigeminal sensory nerve injury [J]. Pain, 2006,121:219-231.
    [30] Russell K. Portenoy, D. P., Paul Jacobsen. Breakthrough pain: characteristics and impact in patients with cancer pain [J]. Pain, 1999a, 81 (1999) 129-134.
    [31] Russell K. Portenoy, P. L. Management of cancer pain [J]. Lancet, 1999b, 353: 1695-1700.
    [32] Schwei, M. J., Honore, P., Rogers, S. D., Salak-Johnson, J. L., Finke, M. P., Ramnaraine, M. L., Clohisy, D. R. and Mantyh, P. W. Neurochemical and cellular reorganization of the spinal cord in a murine model of bone cancer pain [J]. Journal of Neuroscience, 1999,19: 10886-10897.
    [33] Shimoyama, M., Tatsuoka, H., Ohtori, S., Tanaka, K. and Shimoyama, N. Change of dorsal horn neurochemistry in a mouse model of neuropathic cancer pain [J]. Pain, 2005,114: 221-230.
    [34] Sung, C. S., Wen, Z. H., Chang, W. K., Chan, K. H., Ho, S. T., Tsai, S. K., Chang, Y. C. and Wong, C. S. Inhibition of p38 mitogen-activated protein kinase attenuates interleukin-1 beta-induced thermal hyperalgesia and inducible nitric oxide synthase expression in the spinal cord [J]. Journal of Neurochemistry, 2005, 94: 742-752.
    [35] Svensson, C. I., Marsala, M., Westerlund, A., Calcutt, N. A., Campana, W. M., Freshwater, J. D., Catalano, R., Feng, Y, Protter, A. A., Scott, B. and Yaksh, T. L. Activation of p38 mitogen-activated protein kinase in spinal microglia is a critical link in inflammation-induced spinal pain processing [J]. Journal of Neurochemistry, 2003, 86: 1534-1544.
    [36] Svensson, C. I., Brainin-Mattos, J., Luo, Z. D., Powell, H. C. and Yaksh, T. L. p38 MAP kinase contributes to tactile allodynia in osteosarcoma bone cancer pain model [J]. Journal of the Peripheral Nervous System, 2005,10: 92-92.
    [37] Svensson, C. I., Medicherla, S., Malkmus, S., Jiang, Y., Ma, J. Y., Kerr, I., Brainin-Mattos, J., Powel, H. C., Luo, Z. D., Chakravarty, S., Dugar, S., Higgins, L. S., Protter, A. A. and Yaksh, T. L. Role of p38 mitogen activated protein kinase in a model of osteosarcoma-induced pain [J]. Pharmacology Biochemistry and Behavior, 2008,90: 664-675.
    [38] Terayama, R., Omura, S., Fujisawa, N., Yamaai, T., Ichikawa, H. and Sugimoto, T. Activation of microglia and p38 mitogen-activated protein kinase in the dorsal column nucleus contributes to tactile allodynia following peripheral nerve injury [J]. Neuroscience, 2008,153:1245-1255.
    [39] Thompson, S. W. N. and Tonge, D. Bone cancer gain without the pain [J]. Nature Medicine, 2000,6: 504-505.
    [40] Verge, G. M., Milligan, E. D., Maier, S. F., Watkins, L. R., Naeve, G. S. and Foster, A. C. Fractalkine (CX3CL1) and fractalkine receptor (CX3CR1) distribution in spinal cord and dorsal root ganglia under basal and neuropathic pain conditions [J]. Eur J Neurosci, 2004, 20:1150-1160.
    [41] Verri, W. A., Schivo, I. R. S., Cunha, T. M., Liew, F. Y, Ferreira, S. H. and Cunha, F. Q. Interleukin-18 induces mechanical hypernociception in rats via endothelin acting on ETB receptors in a morphine-sensitive manner [J]. Journal of Pharmacology and Experimental Therapeutics, 2004,310: 710-717.
    [42] Verri, W. A., Cunha, T. M., Magro, D. A., Domingues, A. C., Vieira, S. M., Souza, G. R., Liew, F. Y., Ferreira, S. H. and Cunha, F. Q. Role of IL-18 in overt pain-like behaviour in mice [J]. Eur J Pharmacol, 2008, 588: 207-212.
    [43] Wacnik, P. W., Eikmeier, L. J., Ruggles, T. R., Ramnaraine, M. L., Walcheck, B. K., Beitz, A. J. and Wilcox, G. L. Functional interactions between tumor and peripheral nerve: Morphology, algogen identification, and behavioral characterization of a new murine model of cancer pain [J]. Journal of Neuroscience, 2001, 21: 9355-9366.
    [44] Wacnik, P. W., Kehl, L. J., Trempe, T. M., Ramnaraine, M. L., Beitz, A. J. and Wilcox, G. L. Tumor implantation in mouse humerus evokes movement-related hyperalgesia exceeding that evoked by intramuscular carrageenan [J]. Pain, 2003,101:175-186.
    [45] Wen, Y. R., Suter, M. R., Kawasaki, Y., Huang, J., Pertin, M., Kohno, T., Berde, C. B., Decosterd, I. and Ji, R. R. Nerve conduction blockade in the sciatic nerve prevents but does not reverse the activation of p38 mitogen-activated protein kinase in spinal microglia in the rat spared nerve injury model [J]. Anesthesiology, 2007, 107: 312-321.
    [46] Wheeler, R. D., Brough, D., Le Feuvre, R. A., Takeda, K., Iwakura, Y., Luheshi, G. N. and Rothwell, N. J. Interleukin-18 induces expression and release of cytokines from murine glial cells: interactions with interleukin-1 beta [J]. J Neurochem, 2003, 85: 1412-1420.
    [47] Yoshizawa, K., Kimoto, T., Fukuda, K., Miura, T., Yamada, T., Masuda, R.,Kato, H., Kuzumaki, N., Narita, M. and Suzuki, T. Adjuvant treatment with the NMDA receptor antagonist ifenprodil provides adequate analgesia with fewer adverse effects for cancer pain treatment [J]. Yakugaku Zasshi-Journal of the Pharmaceutical Society of Japan, 2008,128:212-214.
    [48] Zhang, R. X., Liu, B., Wang, L. B., Ren, K., Qiao, H. T., Berman, B. M. and Lao, L. X. Spinal glial activation in a new rat model of bone cancer pain produced by prostate cancer cell inoculation of the tibia [J]. Pain, 2005, 118: 125-136.
    [49] Zhang, R. X., Liu, B., Li, A., Wang, L., Ren, K., Qiao, J. T., Berman, B. M. and Lao, L. Interleukin 1 beta facilitates bone cancer pain in rats by enhancing NMDA receptor NR-1 subunit phosphorylation [J]. Neuroscience, 2008, 154: 1533-1538.
    [50] Zhao, P., Waxman, S. G. and Hains, B. C. Extracellular signal-regulated kinase-regulated microglia-neuron signaling by prostaglandin E-2 contributes to pain after spinal cord injury [J]. Journal of Neuroscience, 2007a, 27: 2357-2368.
    [51] Zhao, P., Waxman, S. G. and Hains, B. C. Modulation of thalamic nociceptive processing after spinal cord injury through remote activation of thalamic microglia by cysteine-cysteine chemokine ligand 21 [J]. Journal of Neuroscience, 2007b, 27: 8893-8902.
    [52] Zhuang, Z. Y., Gerner, P., Woolf, C. J. and Ji, R. R. ERK is sequentially activated in neurons, microglia, and astrocytes by spinal nerve ligation and contributes to mechanical allodynia in this neuropathic pain model [J]. Pain, 2005,114:149-159.
    [53] Zhuang, Z. Y., Wen, Y. R., Zhang, D. R., Borsello, T., Bonny, C, Strichartz, G. R., Decosterd, I. and Ji, R. R. A peptide c-Jun N-terminal kinase (JNK) inhibitor blocks mechanical allodynia after spinal nerve ligation: Respective roles of JNK activation in primary sensory neurons and spinal astrocytes for neuropathic pain development and maintenance [J]. Journal of Neuroscience, 2006,26:3551-3560.
    [54] 董航, 田玉科, 项红兵, 田学愎 and 金小高. 骨癌痛模型大鼠患侧腰段脊髓p38α和p38β的细胞定位及其意义 [J]. 中华医学杂志, 2007: 53-57.
    [55] 申文, 马正良, 黄小冬 and 曾因明. 鞘内注射氟代柠檬酸对骨癌痛小鼠机械痛敏和热痛敏的影响[J]. 徐州医学院学报, 2007:151-155.
    [56] Ballanti.Ht, Cassidy, W. L., Flanagan, N. B. and Marino, R. Stereotaxic Anterior Cingulotomy for Neuropsychiatric Illness and Intractable Pain [J].Journal of Neurosurgery, 1967, 26: 488-&.
    [57] Dubuisson, D. and Dennis, S. G. Formalin Test - Quantitative Study of Analgesic Effects of Morphine, Meperidine, and Brain-Stem Stimulation in Rats and Cats [J]. Pain, 1977,4: 161-174.
    [58] Foltz, E. L. and White, L. E. Role of Rostral Cingulumotomy in Pain Relief [J]. International Journal of Neurology, 1968, 6: 353-&.
    [59] Gao, Y. J., Ren, W. H., Zhang, Y. Q. and Zhao, Z. Q. Contributions of the anterior cingulate cortex and amygdala to pain- and fear-conditioned placeavoidance in rats [J]. Pain, 2004,110:343-353.
    [60] Hall, R. A. and Soderling, T. R. Differential surface expression and phosphorylation of the N-methyl-D-aspartate receptor subunits NRl and NR2 in cultured hippocampal neurons [J]. Journal of Biological Chemistry, 1997,272: 4135-4140.
    [61] Higashi, H., Tanaka, E. and Nishi, S. Synaptic Responses of Guinea-Pig Cingulate Cortical-Neurons Invitro [J]. Journal of Neurophysiology, 1991, 65:822-833.
    [62] Huh, K. H. and Wenthold, R. J. Turnover analysis of glutamate receptors identifies a rapidly degraded pool of the N-methyl-D-aspartate receptor subunit, NRl, in cultured cerebellar granule cells [J]. Journal of Biological Chemistry, 1999,274:151-157.
    [63] Hurt, R. W. and Ballantine, H. T. Stereotactic anterior cingulate lesions for persistent pain: a report on 68 cases [J]. Clin Neurosurg, 1974,21: 334-351.
    [64] Johansen, J. P., Fields, H. L. and Manning, B. H. The affective component of pain in rodents: Direct evidence for a contribution of the anterior cingulate cortex [J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98: 8077-8082.
    [65] Johansen, J. P. and Fields, H. L. Glutamatergic activation of anterior cingulate cortex produces an aversive teaching signal [J]. Nature Neuroscience, 2004, 7:398-403.
    [66] Koyama, T., Tanaka, Y. Z. and Mikami, A. Nociceptive neurons in the macaque anterior cingulate activate during anticipation of pain [J].Neuroreport, 1998, 9:2663-2667.
    [67] Kung, J. C, Su, N. M., Fan, R. J., Chai, S. C. and Shyu, B. C. Contribution of the anterior cingulate cortex to laser-pain conditioning in rats [J]. Brain Research, 2003,970: 58-72.
    [68] Lei, L. G., Sun, S., Gao, Y. J., Zhao, Z. Q. and Zhang, Y. Q. NMDA receptors in the anterior cingulate cortex mediate pain-related aversion [J].Experimental Neurology, 2004,189: 413-421.
    [69] Liu, R. J., Qiang, M. and Qiao, J. T. Nociceptive c-Fos expression in supraspinal areas in avoidance of descending suppression at the spinal relay station [J]. Neuroscience, 1998, 85: 1073-1087.
    [70] Rainville, P., Duncan, G H., Price, D. D., Carrier, B. and Bushnell, M. C. Pain affect encoded in human anterior cingulate but not somatosensory cortex [J].Science, 1997,277:968-971.
    [71] Ren, W. H., Guo, J. D., Cao, H., Wang, H., Wang, P. F., Sha, H., Ji, R. R., Zhao,Z. Q. and Zhang, Y. Q. Is endogenous D-serine in the rostral anterior cingulate cortex necessary for pain-related negative affect? [J]. Journal of Neurochemistry, 2006, 96:1636-1647.
    [72] Sikes, R. W. and Vogt, B. A. Nociceptive Neurons in Area-24 of Rabbit Cingulate Cortex [J]. Journal of Neurophysiology, 1992, 68: 1720-1732.
    [73] Tzschentke, T. M. and Schmidt, W. J. The development of cocaine-induced behavioral sensitization is affected by discrete quinolinic acid lesions of theprelimbic medial prefrontal cortex [J]. Brain Research, 1998a, 795: 71-76.
    [74] Tzschentke, T. M. and Schmidt, W. J. Discrete quinolinic acid lesions of the rat prelimbic medial prefrontal cortex affect cocaine- and MK-801-, but not morphine- and amphetamine-induced reward and psychomotor activation as measured with the place preference conditioning paradigm [J]. Behavioural Brain Research, 1998b, 97:115-127.
    [75] Wei, F., Wang, G. D., Kerchner, G. A., Kim, S. J., Xu, H. M., Chen, Z. F. and Zhuo, M. Genetic enhancement of inflammatory pain by forebrain NR2B overexpression [J]. Nature Neuroscience, 2001,4:164-169.
    [76] Wenthold, R. J., Sans, N., Standley, S., Prybylowski, K. and Petralia, R. S. Early events in the trafficking of N-methyl-D-aspartate (NMDA) receptors [J]. Biochemical Society Transactions, 2003,31: 885-888.
    [77] Wilson, J. A., Garry, E. M., Anderson, H. A., Rosie, R., Colvin, L. A., Mitchell, R. and Fleetwood-Walker, S. M. NMDA receptor antagonist treatment at the time of nerve injury prevents injury-induced changes in spinal NRl and NR2B subunit expression and increases the sensitivity of residual pain behaviours to subsequently administered NMDA receptor antagonists [J]. Pain, 2005, 117: 421-432.
    [78] Wu, L. J., Toyoda, H., Zhao, M. G., Lee, Y. S., Tang, J. R., Ko, S. W, Jia, Y. H., Shum, F. W. F., Zerbinatti, C. V., Bu, G. J., Wei, F., Xu, T. L., Muglia, L. J., Chen, Z. F., Auberson, Y. P., Kaang, B. K. and Zhuo, M. Upregulation of forebrain NMDA NR2B receptors contributes to behavioral sensitization after inflammation [J]. Journal of Neuroscience, 2005,25:11107-11116.
    [79] Zhang, Y. Q., Ji, G. C, Wu, G. C. and Zhao, Z. Q. Excitatory amino acid receptor antagonists and electroacupuncture synergetically inhibit carrageenan-induced behavioral hyperalgesia and spinal fos expression in rats [J]. Pain, 2002, 99: 525-535.
    [1]Aumeerally, N., Allen, G. and Sawynok, J. Glutamate-evoked release of adenosine and regulation of peripheral nociception [J]. Neuroscience,2004, 127:1-11.
    [2]Borensztein, P. Osteoprotegerin blocks bone cancer-induced skeletal pain [J]. M S-Medecine Sciences,2000,16:1133-1134.
    [3]Cain, D. M., Wacnik, P. W., Turner, M., Wendelschafer-Crabb, G., Kennedy, W. R., Wilcox, G. L. and Simone, D. A. Functional interactions between tumor and peripheral nerve:Changes in excitability and morphology of primary afferent fibers in a murine model of cancer pain [J]. Journal of Neuroscience, 2001,21:9367-9376.
    [4]Cao, H. and Zhang, Y. Q. Spinal glial activation contributes to pathological pain states [J]. Neurosci Biobehav Rev,2008,32:972-983.
    [5]Cao, H., Gao, Y. J., Ren, W. H., Li, T. T., Duan, K. Z., Cui, Y. H., Cao, X. H., Zhao, Z. Q., Ji, R. R. and Zhang, Y. Q. Activation of Extracellular Signal-Regulated Kinase in the Anterior Cingulate Cortex Contributes to the Induction and Expression of Affective Pain [J]. Journal of Neuroscience,2009, 29:3307-3321.
    [6]Chacur, M., Milligan, E. D., Sloan, E. M., Wieseler-Frank, J., Barrientos, R. M., Martin, D., Poole, S., Lomonte, B., Gutierrez, J. M., Maier, S. F., Cury, Y. and Watkins, L. R. Snake venom phospholipase A2s (Asp49 and Lys49) induce mechanical allodynia upon peri-sciatic administration:involvement of spinal cord glia, proinflammatory cytokines and nitric oxide[J]. Pain,2004, 108:180-191.
    [7]Cheng, X. P., Wang, B. R., Liu, H. L., You, S. W., Huang, W. J., Jiao, X. Y and Ju, G. Phosphorylation of extracellular signal-regulated kinases 1/2 is predominantly enhanced in the microglia of the rat spinal cord following dorsal root transection [J]. Neuroscience,2003,119:701-712.
    [8]Ciruela, A., Dixon, A. K., Bramwell, S., Gonzalez, M. I., Pinnock, R. D. and Lee, K. Identification of MEK1 as a novel target for the treatment of neuropathic pain[J]. British Journal of Pharmacology,2003,138:751-756.
    [9]Clark, A. K., D'Aquisto, F., Gentry, C., Marchand, F., McMahon, S. B. and Malcangio, M. Rapid co-release of interleukin 1 beta and caspase 1 in spinal cord inflammation [J]. Journal of Neurochemistry,2006,99:868-880.
    [10]Clark, A. K., Yip, P. K., Grist, J., Gentry, C., Staniland, A. A., Marchand, F., Dehvari, M., Wotherspoon, G., Winter, J., Ullah, J., Bevan, S. and Malcangio, M. Inhibition of spinal microglial cathepsin S for the reversal of neuropathic pain [J]. Proceedings of the National Academy of Sciences of the United States of America,2007,104:10655-10660.
    [11]Clohisy, D. R. and Mantyh, P. W. Bone cancer pain [J]. Cancer,2003,97: 866-873.
    [12]Cruz, C. D., Avelino, A., McMahon, S. B. and Cruz, F. Increased spinal cord phosphorylation of extracellular signal-regulated kinases mediates micturition overactivity in rats with chronic bladder inflammation [J]. European Journal of Neuroscience,2005a,21:773-781.
    [13]Cruz, C. D., Neto, F. L., Castro-Lopes, J., McMahon, S. B. and Cruz, F. Inhibition of ERK phosphorylation decreases nociceptive behaviour in monoarthritic rats [J]. Pain,2005b,116:411-419.
    [14]Daulhac, L., Mallet, C., Courteix, C., Etienne, M., Duroux, E., Privat, A. M., Eschalier, A. and Fialip, J. Diabetes-induced mechanical hyperalgesia involves spinal mitogen-activated protein kinase activation in neurons and microglia via N-methyl-D-aspartate-dependent mechanisms [J]. Molecular Pharmacology,2006,70:1246-1254.
    [15]DeLeo, J. A. and Yezierski, R. P. The role of neuroinflammation and neuroimmune activation in persistent pain [J]. Pain,2001,90:1-6.
    [16]Donovan-Rodriguez, T., Dickenson, A. H. and Urch, C. E. Superficial dorsal horn neuronal responses and the emergence of behavioural hyperalgesia in a rat model of cancer-induced bone pain [J]. Neuroscience Letters,2004,360: 29-32.
    [17]Donovan-Rodriguez, T., Dickenson, A. H. and Urch, C. E. Gabapentin normalizes spinal neuronal responses that correlate with behavior in a rat model of cancer-induced bone pain[J]. Anesthesiology,2005,102:132-140.
    [18]Gao, Y. J., Zhang, L., Samad, O. A., Suter, M. R., Yasuhiko, K., Xu, Z. Z., Park, J. Y, Lind, A. L., Ma, Q. and Ji, R. R. JNK-Induced MCP-1 Production in Spinal Cord Astrocytes Contributes to Central Sensitization and Neuropathic Pain [J]. Journal of Neuroscience,2009,29:4096-4108.
    [19]Ghilardi, J. R., Rohrich, H., Lindsay, T. H., Sevcik, M. A., Schwei, M. J., Kubota, K., Halvorson, K. G., Poblete, J., Chaplan, S. R., Dubin, A. E., Carruthers, N. I., Swanson, D., Kuskowski, M., Flores, C. M., Julius, D. and Mantyh, P. W. Selective blockade of the capsaicin receptor TRPV1 attenuates bone cancer pain[J]. Journal of Neuroscience,2005,25:3126-3131.
    [20]Griffiths, J. R. Are Cancer-Cells Acidic [J]. British Journal of Cancer,1991, 64:425-427.
    [21]Guo, L. H., Trautmann, K. and Schluesener, H. J. Expression of P2X4 receptor by lesional activated microglia during formalin-induced inflammatory pain [J]. J Neuroimmunol,2005,163:120-127.
    [22]Gwak, Y. S., Unabia, G. and Hulsebosch, C. Inhibition of neuronal p-38 mapk activation attenuates below-level central neuropathic pain following spinal cord injury [J]. Journal of Neurotrauma,2007,24:1259-1259.
    [23]Hains, B. C. and Waxman, S. G. Activated microglia contribute to the maintenance of chronic pain after spinal cord injury[J]. Journal of Neuroscience,2006,26:4308-4317.
    [24]Honore, P., Luger, N. M., Sabino, M. A. C., Schwei, M. J., Rogers, S. D., Mach, D. B., O'Keefe, P. F., Ramnaraine, M. L., Clohisy, D. R. and Mantyh, P. W. Osteoprotegerin blocks bone cancer-induced skeletal destruction, skeletal
    pain and pain-related neurochemical reorganization of the spinal cord [J]. Nature Medicine,2000a,6:521-528.
    [25]Honore, P. and Mantyh, P. W. Bone cancer pain:From mechanism to model to therapy [J]. Pain Medicine,2000,1:303-309.
    [26]Honore, P., Rogers, S. D., Schwei, M. J., Salak-Johnson, J. L., Luger, N. M., Sabino, M. C., Clohisy, D. R. and Mantyh, P. W. Murine models of inflammatory, neuropathic and cancer pain each generates a unique set of neurochemical changes in the spinal cord and sensory neurons [J]. Neuroscience,2000b,98:585-598.
    [27]Hua, X. Y., Svensson, C. I., Matsui, T., Fitzsimmons, B., Yaksh, T. L. and Webb, M. Intrathecal minocycline attenuates peripheral inflammation-induced hyperalgesia by inhibiting p38 MAPK in spinal microglia [J]. European Journal of Neuroscience,2005,22:2431-2440.
    [28]Inoue, K. The function of microglia through purinergic receptors:neuropathic pain and cytokine release [J]. Pharmacol Ther,2006,109:210-226.
    [29]Ito, N., Obata, H. and Saito, S. Spinal microglial expression and mechanical hypersensitivity in a postoperative pain model:comparison with a neuropathic pain model [J]. Anesthesiology,2009,111:640-648.
    [30]Jarvis, M. F. The neural-glial purinergic receptor ensemble in chronic pain states [J]. Trends Neurosci,2010,33:48-57.
    [31]Ji, R. R., Baba, H., Brenner, G. J. and Woolf, C. J. Nociceptive-specific activation of ERK in spinal neurons contributes to pain hypersensitivity [J]. Nature Neuroscience,1999,2:1114-1119.
    [32]Ji, R. R. and Woolf, C. J. Neuronal plasticity and signal transduction in nociceptive neurons:Implications for the initiation and maintenance of pathological pain [J]. Neurobiology of Disease,2001,8:1-10.
    [33]Ji, R. R., Befort, K., Brenner, G. J. and Woolf, C. J. ERK MAP kinase activation in superficial spinal cord neurons induces prodynorphin and NK-1 upregulation and contributes to persistent inflammatory pain hypersensitivity [J]. Journal of Neuroscience,2002a,22:478-485.
    [34]Ji, R. R., Samad, T. A., Jin, S. X., Schmoll, R. and Woolf, C. J. p38 MAPK activation by NGF in primary sensory neurons after inflammation increases TRPV1 levels and maintains heat hyperalgesia [J]. Neuron,2002b,36:57-68.
    [35]Ji, R. R. and Suter, M. R. p38 MAPK, microglial signaling, and neuropathic pain[J]. Mol Pain,2007a,3:33.
    [36]Ji, R. R. and Suter, M. R. p38 MAPK, microglial signaling, and neuropathic pain [J]. Molecular Pain,2007b,3:
    [37]Ji, R. R., Gereau, R. W., Malcangio, M. and Strichartz, G. R. MAP kinase and pain [J]. Brain Research Reviews,2009,60:135-148.
    [38]Jin, S. X., Zhuang, Z. Y., Woolf, C. J. and Ji, R. R. P38 mitogen-activated protein kinase is activated after a spinal nerve ligation in spinal cord microglia and dorsal root ganglion neurons and contributes to the generation of neuropathic pain [J]. Journal of Neuroscience,2003,23:4017-4022.
    [39]Karim, F., Wang, C. C. and Gereau, R. W. Metabotropic glutamate receptor
    subtypes 1 and 5 are activators of extracellular signal-regulated kinase signaling required for inflammatory pain in mice [J]. Journal of Neuroscience, 2001,21:3771-3779.
    [40]Katsura, H., Obata, K., Mizushima, T., Sakurai, J., Kobayashi, K., Yamanaka, H., Dai, Y., Fukuoka, T., Sakagami, M. and Noguchi, K. Activation of Src-family kinases in spinal microglia contributes to mechanical hypersensitivity after nerve injury [J]. Journal of Neuroscience,2006,26: 8680-8690.
    [41]Kawasaki, Y., Kohno, T., Zhuang, Z. Y, Brenner, G. J., Wang, H. B., Van der Meer, C., Befort, K., Woolf, C. J. and Ji, R. R. Ionotropic and metabotropic receptors, protein kinase A, protein kinase C, and Src contribute to C-fiber-induced ERK activation and cAMP response element-binding protein phosphorylation in dorsal horn neurons, leading to central sensitization [J]. Journal of Neuroscience,2004,24:8310-8321.
    [42]Kjonniksen, I., Winderen, M., Bruland, O. and Fodstad, O. Validity and Usefulness of Human Tumor-Models Established by Intratibial Cell Inoculation in Nude Rats [J]. Cancer Research,1994,54:1715-1719.
    [43]Kobayashi, K., Yamanaka, H., Fukuoka, T., Dai, Y, Obata, K. and Noguchi, K. P2Y12 receptor upregulation in activated microglia is a gateway of p38 signaling and neuropathic pain [J]. J Neurosci,2008,28:2892-2902.
    [44]Lan, L., Yuan, H., Duan, L., Cao, R., Gao, B., Shen, J., Xiong, Y., Chen, L. W. and Rao, Z. R. Blocking the glial function suppresses subcutaneous formalin-induced nociceptive behavior in the rat [J]. Neurosci Res,2007,57: 112-119.
    [45]Lever, I. J., Pezet, S., McMahon, S. B. and Malcangio, M. The signaling components of sensory fiber transmission involved in the activation of ERK MAP kinase in the mouse dorsal horn [J]. Molecular and Cellular Neuroscience,2003,24:259-270.
    [46]Luger, N. M., Honore, P., Sabino, M. A. C., Schwei, M. J., Rogers, S. D., Mach, D. B., Clohisy, D. R. and Mantyh, P. W. Osteoprotegerin diminishes advanced bone cancer pain [J]. Cancer Research,2001,61:4038-4047.
    [47]Luger, N. M., Mach, D. B., Sevcik, M. A. and Mantyh, P. W. Bone cancer pain: From model to mechanism to therapy [J]. Journal of Pain and Symptom Management,2005,29:S32-S46.
    [48]Ma, W. Y. and Quirion, R. Partial sciatic nerve ligation induces increase in the phosphorylation of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) in astrocytes in the lumbar spinal dorsal horn and the gracile nucleus [J]. Pain,2002,99:175-184.
    [49]Ma, W. Y. and Quirion, R. The ERK/MAPK pathway, as a target for the treatment of neuropathic pain [J]. Expert Opinion on Therapeutic Targets, 2005,9:699-713.
    [50]Mao-Ying, Q. L., Zhao, J., Dong, Z. Q., Wang, J., Yu, J., Yan, M. F., Zhang, Y Q., Wu, G. C. and Wang, Y Q. A rat model of bone cancer pain induced by intra-tibia inoculation of Walker 256 mammary gland carcinoma cells [J].
    Biochemical and Biophysical Research Communications,2006,345: 1292-1298.
    [51]Medhurst, S. J., Walker, K., Bowes, M., Kidd, B. L., Glatt, M., Muller, M., Hattenberger, M., Vaxelaire, J., O'Reilly, T., Wotherspoon, G., Winter, J., Green, J. and Urban, L. A rat model of bone cancer pain [J]. Pain,2002,96: 129-140.
    [52]Meller, S. T., Dykstra, C., Grzybycki, D., Murphy, S. and Gebhart, G. F. The Possible Role of Glia in Nociceptive Processing and Hyperalgesia in the Spinal-Cord of the Rat [J]. Neuropharmacology,1994,33:1471-1478.
    [53]Mercadante, S. Malignant bone pain:pathophysiology and treatment [J]. Pain, 1997,69:1-18.
    [54]Milligan, E. D., Sloane, E. M. and Watkins, L. R. Glia in pathological pain:A role for fractalkine [J]. J Neuroimmunol,2008,198:113-120.
    [55]Miyoshi, K., Obata, K., Kondo, T., Okamura, H. and Noguchi, K. Interleukin-18-mediated microglia/astrocyte interaction in the spinal cord enhances neuropathic pain processing after nerve injury [J]. J Neurosci,2008, 28:12775-12787.
    [56]Mizushima, T., Obata, K., Katsura, H., Sakurai, J., Kobayashi, K., Yamanaka, H., Dai, Y., Fukuoka, T., Mashimo, T. and Noguchi, K. Intensity-dependent activation of extracellular signal-regulated protein kinase 5 in sensory neurons contributes to pain hypersensitivity [J]. Journal of Pharmacology and Experimental Therapeutics,2007,321:28-34.
    [57]Nicol, G. D., Lopshire, J. C. and Pafford, C. M. Tumor necrosis factor enhances the capsaicin sensitivity of rat sensory neurons [J]. Journal of Neuroscience,1997,17:975-982.
    [58]Obata, K., Yamanaka, H., Kobayashi, K., Dai, Y, Mizushima, T., Katsura, H., Fukuoka, T., Tokunaga, A. and Noguchi, K. Role of mitogen-activated protein kinase activation in injured and intact primary afferent neurons for mechanical and heat hypersensitivity after spinal nerve ligation [J]. Journal of Neuroscience,2004,24:10211-10222.
    [59]P. HONORE, S. D. R., M. J. SCHWEI, J. L. SALAK-JOHNSON, N. M. LUGER, M. C. SABINO, and MANTYH, D. R. C. a. P. W. MURINE MODELS OF INFLAMMATORY, NEUROPATHIC AND CANCER PAIN EACH GENERATES A UNIQUE SET OF NEUROCHEMICAL CHANGES IN THE SPINAL CORD AND SENSORY NEURONS [J]. Neuroscience, 2000, Vol.98, No.3:585-598.
    [60]Panga, X. Y., Liu, T., Jiang, F. and Ji, Y H. Activation of spinal ERK signaling pathway contributes to pain-related responses induced by scorpion Buthus martensi Karch venom [J]. Toxicon,2008,51:994-1007.
    [61]Paul W. Wacnik, L. J. E., Timothy R. Ruggles, Margaret L. Ramnaraine, Bruce K. Walcheck, Alvin J. Beitz, and George L. Wilcox. Functional Interactions between Tumor and Peripheral Nerve:Morphology, Algogen Identification, and Behavioral Characterization of a New Murine Model of Cancer Pain [J]. The Journal of Neuroscience,2001, The Journal of Neuroscience, December 1,
    2001,21(23):9355-9366.
    [62]Perkinton, M. S., Ip, J. K., Wood, G. L., Crossthwaite, A. J. and Williams, R. J. Phosphatidylinositol 3-kinase is a central mediator of NMDA receptor signalling to MAP kinase (Erkl/2), Akt/PKB and CREB in striatal neurones [J]. Journal of Neurochemistry,2002,80:239-254.
    [63]Peters, C. M., Ghilardi, J. R., Keyser, C. P., Kubota, K., Lindsay, T. H., Luger, N. M., Mach, D. B., Schwei, M. J., Sevcik, M. A. and Mantyh, P. W. Tumor-induced injury of primary afferent sensory nerve fibers in bone cancer pain [J]. Experimental Neurology,2005,193:85-100.
    [64]Piao, Z. G., Cho, I. H., Park, C. K., Hong, J. P., Choi, S. Y, Lee, S. J., Lee, S., Park, K., Kim, J. S. and Oh, S. B. Activation of glia and microglial p38 MAPK in medullary dorsal horn contributes to tactile hypersensitivity following trigeminal sensory nerve injury [J]. Pain,2006,121:219-231.
    [65]Qiu, Z. H., Sweeney, D. D., Netzeband, J. G. and Gruol, D. L. Chronic interleukin-6 alters NMDA receptor-mediated membrane responses and enhances neurotoxicity in developing CNS neurons [J]. Journal of Neuroscience,1998,18:10445-10456.
    [66]Raghavendra, V., Tanga, F. Y. and DeLeo, J. A. Complete Freunds adjuvant-induced peripheral inflammation evokes glial activation and proinflammatory cytokine expression in the CNS [J]. Eur J Neurosci,2004,20: 467-473.
    [67]Reeh, P. W. and Steen, K. H. (1996) in Polymodal Receptor-a Gateway to Pathological Pain, Vol.113, pp.143-151.
    [68]Roodman, G. D. mechanisms of bone metastasis [J]. the New England Journal of Medicine,2004, N Engl J Med 2004;350:1655-1664.
    [69]Russell K. Portenoy, D. P., Paul Jacobsen. Breakthrough pain:characteristics and impact in patients with cancer pain [J]. Pain,1999a,81(1999) 129-134.
    [70]Russell K. Portenoy, P. L. Management of cancer pain [J]. Lancet,1999b,353: 1695-1700.
    [71]Sanzgiri, R. P., Araque, A. and Haydon, P. G. Prostaglandin E-2 stimulates glutamate receptor-dependent astrocyte neuromodulation in cultured hippocampal cells [J]. Journal of Neurobiology,1999,41:221-229.
    [72]Sasamura, T., Nakamura, S., Iida, Y, Fujii, H., Murata, J., Saiki, I., Nojima, H. and Kuraishi, Y Morphine analgesia suppresses tumor growth and metastasis in a mouse model of cancer pain produced by orthotopic tumor inoculation[J]. European Journal of Pharmacology,2002,441:185-191.
    [73]Schwei, M. J., Honore, P., Rogers, S. D., Salak-Johnson, J. L., Finke, M. P., Ramnaraine, M. L., Clohisy, D. R. and Mantyh, P. W. Neurochemical and cellular reorganization of the spinal cord in a murine model of bone cancer pain [J]. Journal of Neuroscience,1999,19:10886-10897.
    [74]Sevcik, M. A., Ghilardi, J. R., Peters, C. M., Lindsay, T. H., Halvorson, K. G., Jonas, B. M., Kubota, K., Kuskowski, M. A., Boustany, L., Shelton, D. L. and Mantyh, P. W. Anti-NGF therapy profoundly reduces bone cancer pain and the accompanying increase in markers of peripheral and central sensitization [J].
    Pain,2005,115:128-141.
    [75]Shan, S., Hong, C., Mei, H., Ting-Ting, L., Hai-Li, P., Zhi-Qi, Z. and Yu-Qiu, Z. New evidence for the involvement of spinal fractalkine receptor in pain facilitation and spinal glial activation in rat model of monoarthritis [J]. Pain, 2007,129:64-75.
    [76]Shimoyama, M., Tatsuoka, H., Ohtori, S., Tanaka, K. and Shimoyama, N. Change of dorsal horn neurochemistry in a mouse model of neuropathic cancer pain [J]. Pain,2005,114:221-230.
    [77]Sun, S., Cao, H., Han, M., Li, T. T., Pan, H. L., Zhao, Z. Q. and Zhang, Y. Q. New evidence for the involvement of spinal fractalkine receptor in pain facilitation and spinal glial activation in rat model of monoarthritis [J]. Pain, 2007,129:64-75.
    [78]Sung, C. S., Wen, Z. H., Chang, W. K., Chan, K. H., Ho, S. T., Tsai, S. K., Chang, Y. C. and Wong, C. S. Inhibition of p38 mitogen-activated protein kinase attenuates interleukin-1 beta-induced thermal hyperalgesia and inducible nitric oxide synthase expression in the spinal cord [J]. Journal of Neurochemistry,2005,94:742-752.
    [79]Svensson, C. I., Hua, X. Y., Protter, A. A., Powell, H. C. and Yaksh, T. L. Spinal p38 MAP kinase is necessary for NMDA-induced spinal PGE(2) release and thermal hyperalgesia [J]. Neuroreport,2003a,14:1153-1157.
    [80]Svensson, C. I., Hua, X. Y., Protter, A. A., Powell, H. C. and Yaksh, T. L Spinal p38 MAP kinase is necessary for NMDA-induced spinal PGE(2) release and thermal hyperalgesia [J]. Neuroreport,2003b,14:1153-1157.
    [81]Svensson, C. I., Marsala, M., Westerlund, A., Calcutt, N. A., Campana, W. M., Freshwater, J. D., Catalano, R., Feng, Y., Protter, A. A., Scott, B. and Yaksh, T. L. Activation of p38 mitogen-activated protein kinase in spinal microglia is a critical link in inflammation-induced spinal pain processing [J]. Journal of Neurochemistry,2003c,86:1534-1544.
    [82]Svensson, C. I., Brainin-Mattos, J., Luo, Z. D., Powell, H. C. and Yaksh, T. L. p38 MAP kinase contributes to tactile allodynia in osteosarcoma bone cancer pain model [J]. Journal of the Peripheral Nervous System,2005,10:92-92.
    [83]Svensson, C. I., Medicherla, S., Malkmus, S., Jiang, Y., Ma, J. Y., Kerr, I., Brainin-Mattos, J., Powel, H. C., Luo, Z. D., Chakravarty, S., Dugar, S., Higgins, L. S., Protter, A. A. and Yaksh, T. L. Role of p38 mitogen activated protein kinase in a model of osteosarcoma-induced pain [J]. Pharmacology Biochemistry and Behavior,2008,90:664-675.
    [84]Sweitzer, S. M., Colburn, R. W., Rutkowski, M. and DeLeo, J. A. Acute peripheral inflammation induces moderate glial activation and spinal IL-1 beta expression that correlates with pain behavior in the rat [J]. Brain Res,1999, 829:209-221.
    [85]Terayama, R., Omura, S., Fujisawa, N., Yamaai, T., Ichikawa, H. and Sugimoto, T. Activation of microglia and p38 mitogen-activated protein kinase in the dorsal column nucleus contributes to tactile allodynia following peripheral nerve injury [J]. Neuroscience,2008,153:1245-1255.
    [86]Thompson, S. W. N. and Tonge, D. Bone cancer gain without the pain [J]. Nature Medicine,2000,6:504-505.
    [87]Tsuda, M., Shigemoto-Mogami, Y., Koizumi, S., Mizokoshi, A., Kohsaka, S., Salter, M. W. and Inoue, K. P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury[J]. Nature,2003,424:778-783.
    [88]Verge, G. M., Milligan, E. D., Maier, S. F., Watkins, L. R., Naeve, G. S. and Foster, A. C. Fractalkine (CX3CL1) and fractalkine receptor (CX3CR1) distribution in spinal cord and dorsal root ganglia under basal and neuropathic pain conditions [J]. Eur J Neurosci,2004,20:1150-1160.
    [89]Vermeirsch, H., Nuydens, R. M., Salmon, P. L. and Meert, T. F. Bone cancer pain model in mice:evaluation of pain behavior, bone destruction and morphine sensitivity [J]. Pharmacology Biochemistry and Behavior,2004,79: 243-251.
    [90]Wacnik, P. W., Eikmeier, L. J., Ruggles, T. R., Ramnaraine, M. L., Walcheck, B. K., Beitz, A. J. and Wilcox, G. L. Functional interactions between tumor and peripheral nerve:Morphology, algogen identification, and behavioral characterization of a new murine model of cancer pain [J]. Journal of Neuroscience,2001,21:9355-9366.
    [91]Wacnik, P. W., Kehl, L. J., Trempe, T. M., Ramnaraine, M. L., Beitz, A. J. and Wilcox, G. L. Tumor implantation in mouse humerus evokes movement-related hyperalgesia exceeding that evoked by intramuscular carrageenan [J]. Pain,2003,101:175-186.
    [92]Watkins, L. R., Wiertelak, E. P., Goehler, L. E., Smith, K. P., Martin, D. and Maier, S. F. Characterization of Cytokine-Induced Hyperalgesia [J]. Brain Research,1994,654:15-26.
    [93]Watkins, L. R., Martin, D., Ulrich, P., Tracey, K. J. and Maier, S. F. Evidence for the involvement of spinal cord glia in subcutaneous formalin induced hyperalgesia in the rat [J]. Pain,1997,71:225-235.
    [94]Watkins, L. R., Milligan, E. D. and Maier, S. F. Spinal cord glia: new players in pain [J]. Pain,2001,93:201-205.
    [95]Watkins, L. R., Hutchinson, M. R., Johnston, I. N. and Maier, S. F. Glia: novel counter-regulators of opioid analgesia [J]. Trends Neurosci,2005,28: 661-669.
    [96]Wen, Y. R., Suter, M. R., Kawasaki, Y, Huang, J., Pertin, M., Kohno, T., Berde, C. B., Decosterd, I. and Ji, R. R. Nerve conduction blockade in the sciatic nerve prevents but does not reverse the activation of p38 mitogen-activated protein kinase in spinal microglia in the rat spared nerve injury model [J]. Anesthesiology,2007,107:312-321.
    [97]Widmann, C., Gibson, S., Jarpe, M. B. and Johnson, G. L. Mitogen-activated protein kinase:Conservation of a three-kinase module from yeast to human [J]. Physiological Reviews,1999,79:143-180.
    [98]Wieseler-Frank, J., Maier, S. F. and Watkins, L. R. Central proinflammatory cytokines and pain enhancement [J]. Neurosignals,2005,14:166-174.
    [99]Yoshizawa, K., Kimoto, T., Fukuda, K., Miura, T., Yamada, T., Masuda, R., Kato, H., Kuzumaki, N., Narita, M. and Suzuki, T. Adjuvant treatment with the NMDA receptor antagonist ifenprodil provides adequate analgesia with fewer adverse effects for cancer pain treatment [J]. Yakugaku Zasshi-Journal of the Pharmaceutical Society of Japan,2008,128:212-214.
    [100]Zhang, R. X., Liu, B., Wang, L. B., Ren, K., Qiao, H. T., Berman, B. M. and Lao, L. X. Spinal glial activation in a new rat model of bone cancer pain produced by prostate cancer cell inoculation of the tibia [J]. Pain,2005,118: 125-136.
    [101]Zhang, R. X., Liu, B., Li, A., Wang, L., Ren, K., Qiao, J. T., Berman, B. M. and Lao, L. Interleukin 1 beta facilitates bone cancer pain in rats by enhancing NMDA receptor NR-1 subunit phosphorylation [J]. Neuroscience,2008,154: 1533-1538.
    [102]Zhang, S. W., Zhou, Z. S. and Song, B. [Activation of astrocytes effects changes of substance P in cornu dorsal medullae spinalis in chronic prostatitis rats] [J]. Zhonghua Nan Ke Xue,2007,13:342-344.
    [103]Zhao, P., Waxman, S. G. and Hains, B. C. Extracellular signal-regulated kinase-regulated microglia-neuron signaling by prostaglandin E-2 contributes to pain after spinal cord injury [J]. Journal of Neuroscience,2007a,27: 2357-2368.
    [104]Zhao, P., Waxman, S. G. and Hains, B. C. Modulation of thalamic nociceptive processing after spinal cord injury through remote activation of thalamic microglia by cysteine-cysteine chemokine ligand 21 [J]. Journal of Neuroscience,2007b,27:8893-8902.
    [105]Zhuang, Z. Y., Gerner, P., Woolf, C. J. and Ji, R. R. ERK is sequentially activated in neurons, microglia, and astrocytes by spinal nerve ligation and contributes to mechanical allodynia in this neuropathic pain model [J]. Pain, 2005,114:149-159.
    [106]Zhuang, Z. Y, Wen, Y R., Zhang, D. R., Borsello, T., Bonny, C., Strichartz, G. R., Decosterd, I. and Ji, R. R. A peptide c-Jun N-terminal kinase (JNK) inhibitor blocks mechanical allodynia after spinal nerve ligation:Respective roles of JNK activation in primary sensory neurons and spinal astrocytes for neuropathic pain development and maintenance [J]. Journal of Neuroscience, 2006,26:3551-3560.
    [107]董航,田玉科,项红兵,田学愎and金小高.骨癌痛模型大鼠患侧腰段脊髓p38a和p38p的细胞定位及其意义[J].中华医学杂志,2007:53-57.
    [108]申文,马正良,黄小冬and曾因明.鞘内注射氟代柠檬酸对骨癌痛小鼠机械痛敏和热痛敏的影响[J].徐州医学院学报,2007:151-155.
    [109]项红兵,杨辉,安珂,田玉科.骨癌痛模型和相关疼痛病理机制研究进展[J].临床麻醉学杂志,2005,21:350-352.
    [110]张瑛,韩济生,王韵.癌症痛的神经生物学机制研究进展[J].生理科学进展,2004,35:224-228.