MicroRNA Let-7、miR-127-5p及miR-218在宫颈鳞癌组织中的表达及临床意义的探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的
     1.检测microRNA let-7a-1、let-7b、let-7c在新鲜宫颈鳞癌组织和癌旁组织中的表达量是否存在差异。
     2.检测microRNA miR-127-5p、miR-218在宫颈鳞癌和癌旁石蜡切片中的表达量是否存在差异,并探讨miR-127-5p、miR-218与先期化疗、临床分期、癌灶大小、病理类型、分化程度、深肌层浸润、淋巴结转移、血管浸润及复发的相关性。
     材料和方法
     1.收集9例未经放化疗的宫颈鳞癌及其配对的癌旁组织新鲜标本。
     2.提取组织中的总RNA,用实时荧光定量PCR方法检测样本中let-7a-1、let-7b、let-7c的相对表达量。
     3.查找8年内北京协和医院行宫颈癌手术治疗的42例患者资料及石蜡包埋的病理标本。
     4.手工显微切割获取目标细胞,提取总RNA。应用实时荧光定量PCR方法检测microRNA miR-127-5p和miR-218。并分析表达量与先期化疗、临床分期、癌灶大小、病理类型、分化程度、淋巴结转移等因素之间的相关性。
     实验结果
     1.let-7a-1在宫颈鳞癌和癌旁组织的平均相对表达量分别是0.8828±0.02075和0.9195±0.02104,统计学分析两组无显著性差异(P>0.05);let-7b在两组的平均相对表达量分别是0.8422±0.03928和0.8891±0.01052;let-7c在两组的平均相对表达量分别是0.9467±0.05266和0.9810±0.07344。统计学分析三基因表达两组中无显著性差异(P>0.05)。
     2.miR-127-5p在宫颈鳞癌和癌旁组织中的平均相对表达量分别是1.4931±0.03744和1.3662±0.05681,统计学分析两组无显著性差异(P>0.05)。miR-218在两组的平均相对表达量分别是1.3403±0.01891和1.3114±0.05458,统计学分析两组无显著性差异(P>0.05)。
     3.miR-127-5p、miR-218在宫颈鳞癌先期化疗组和未行先期化疗组、FIGOⅠ期和FIGOⅡ期、大小病灶组、低分化组和高分化组、非角化鳞癌组和角化鳞癌组、深肌层浸润组组和非深肌层浸润组、复发组与未复发组的表达量在各组内的统计学分析无显著性差异(P>0.05)
     4.miR-127-5p在初治宫颈鳞癌无淋巴结转移组与淋巴结转移组的相对表达量均值分别为1.3070±0.05912和1.1988±0.12589,统计学分析两组无显著性差异(P>0.05)。miR-218在两组的相对表达量均值分别为1.4641±0.07449和1.2988±0.27536,统计学分析两组无显著性差异(P>0.05)。
     5.miR-127-5p在宫颈鳞癌血管未浸润组与浸润组的表达量统计学分析无显著性差异(P>0.05)。miR-218在两组的相对表达量均值分别为1.3583±0.01619和1.2431±0.0708,统计学分析两组有显著性差异(P=0.039)。
     结论
     1.手工显微切割是从宫颈组织标本中纯化目标细胞的有效手段。
     2.石蜡标本也是研究microRNA的丰富资源。
     3.let-7a-1、let-7b、let-7c在宫颈鳞癌和正常宫颈组织中的表达无显著性差异。
     4.miR-127-5p和miR-218在宫颈鳞癌和正常宫颈组织中的表达无显著性差异。
     5.宫颈鳞癌中miR-127-5p的表达与先期治疗、FIGO分期、病灶大小、病理类型、分化程度、深肌层浸润、血管浸润及复发无相关性。
     6.miR-218的高表达与宫颈鳞癌血管浸润显著相关,miR-218的表达与先期治疗、FIGO分期、病灶大小、病理类型、分化程度、深肌层浸润及复发无相关性。
     7.宫颈鳞癌中miR-127-5p、miR-218的表达与淋巴结转移的关系尚不确定,需扩大样本量进一步研究明确。
OBJECTIVES
     1. The aim of this study is to compare the expression level of microRNA let-7a-1、let-7b、let-7c in fresh cervical invasive squamous cell carcimoma tissues(CISCC) to the matched normal cervical tissues(MNCT).
     2. To compare the expression level of microRNA miR-127-5p、miR-218 in paraffin embedded cervical invasive squamous cell carcimoma tissues to the matched normal cervical tissues.
     3. To elucidate corelation of miR-127-5p and miR-218 with neoadjuvant chemotherapy, FIGO stage, tumor size, pathological type, differentiation, deep muscular invasion, lymph node metastasis, vascular invasion, and recurrence in cervical caner.
     METHODS
     In this study, microRNA let-7a-1、let-7b and let-7c were quantified in 9 fresh frozen specimens of cervical squamous carcinoma by real-time quantitative PCR array methods. 42 paraffin-embedded cervical squamous carcinoma specimens and their clinical data were collected. microRNA miR-127-5p and miR-218 were quantified in those specimens by real-time quantitative PCR array methods. Correlation of relative expression level of those two microRNAs and several factors were analyzed by SPSS statistical software.
     RESULTS
     1. The mean expression of let-7a-1 in CISCC and MNCT was 0. 8828±0. 02075 and 0. 9195±0. 02104; the mean expression of let-7b in these two groups was 0. 8422±0. 03928 and 0. 8891±0. 01052; the mean expression of let-7c in these two groups was0.9467±0.05266 and 0. 9810±0. 07344. Expression of the 3 genes was no significant difference between two groups (P>0.05).
     2. The mean expression of miR-127-5p in ISCC and MNCT was 1.4931±0.03744 and 1.3662±0.05681; the mean expression of miR-218 in these two group was 1.3403±0.01891 and 1.3114±0.05458. Expression of these two genes was no significant difference between two groups (P>0.05).
     3. Expression of miR-127-5p and miR-218 in neoadjuvant chemotherapy group and non-neoadjuvant chemotherapy group, FIGO stage I group and stage II group, large tumor size group and small tumor size group, poor differentiated group and well differentiated group, keratinized group and non keratinized group, deep muscular invasion group and non-deep muscular invasion group, recurrent group and non-recurrent group was no significant difference within those groups.
     4. The mean expression of miR-127-5p in lymph node metastasis group negative and positive group of primary CISCC was 1. 3070±0.05912 and 1. 1988±0. 12589; the mean expression of miR-218 in these two groups was 1. 4641±0. 07449 and 1.2988±0.27536. Expression of the two genes was no significant difference between two groups (P>0.05).
     5. Expression of miR-127-5p in non-vascular invasion group and vascular invasion group was no significant difference between two groups (P>0.05). The mean expression of miR-218 in these two groups was 1. 3583±0. 01619 and 1. 2431±0. 0708, decreased miR-218 was significantly associated with vascular invasion (P=0.039).
     CONLUSION
     1. Manual microdissection was an effective method for collecting target cells from cervical tissue.
     2. Paraffin-embedded tissues were abundant resources for microRNA research.
     3. The expression of let-7a-1、let-7b and let-7c in cervical squamous cell carcinoma tissues was no significant difference compared to matched normal cervical tissues.
     4. The expression of miR-127-5p and miR-218 in cervical squamous cell carcinoma was no significant difference compared to matched normal cervical tissues.
     5. The expression of miR-127-5p was not significantly associated with neoadjuvant chemotherapy, FIGO stage, tumor size, pathological type, differentiation, deep muscular invasion, vascular invasion and recurrence in cervical caner.
     6. Increased miR-218 expression was significantly associated with vascular invasion (P=0.039). miR-218 expression was not significantly associated with neoadjuvant chemotherapy, FIGO stage, tumor size, pathological type, differentiation, deep muscular invasion and recurrence in cervical caner.
     7. Correlation between miR-127-5p、miR-218 and lymph node metastasis was undetermined, requiring larger sample size.
引文
1.Martin CM,Astbury K,O'Leary JJ.Molecular profiling of cervical neoplasia.Expert Rev Mol Diagn.2006 Mar;6(2):217-29.Review.
    2.Olsen P.H.,Ambros V.The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation.Dev.Biol.1999;216:671-680.
    3.Brennecke J.,Hipfner D.R.,Stark A.,Russell R.B.,Cohen S.M.Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila.Cell.2003;113:25-36.
    4.Reinhart B.J.,Slack F.J.,Basson M.,Pasqulnelli A.E.,Bettinger J.C.,Rougvie A.E.,Horvitz H.R.,Ruvkun G.The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans.Nature.2000;403:901-906.
    5.Ambros V.MicroRNA pathways in flies and worms:growth,death,fat,stress,and timing [Erratum(2003) Cell,114,269.].Cell.2003;113:673-676.
    6.Baehrecke E.H.miRNAs:micro managers of programmed cell death.Curr.Biol.2003;13:R473-R475.
    7.Chen C.-Z.,Li L.,Lodish H.F.,Bartel D.P.MieroRNAs modulate hematopoietic lineage differentiation.Science.2004;303:83-86.Johnston R.J.,Hobert O.A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans.Nature.2003;426:845-849.
    8.Michael M.Z.,O'Connor S.M.,van Holst Pellekaan N.G.,Young G.P.,James R.J.Reduced accumulation of specific microRNAs in colorectal neoplasia.Mol.Cancer Res.2003;1:882-891.
    9. Bao N., Lye K.-W., Barton M.K. MicroRNA binding sites in Arabidopsis class III HD-ZIP mRNAs are required for methylation of the template chromosome. Dev. Cell. 2004; 7:653-662.
    
    10. Calin GA, Liu CG, Sevignani C, Ferracin M, Felli N, Dumitru CD, Shimizu M, Cimmino A, Zupo S, Dono M, Dell'Aquila ML, Alder H, Rassenti L, Kipps TJ, Bullrich F, Negrini M, Croce CM. MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci U S A. 2004 Aug 10; 101(32):11755-60. Epub 2004 Jul 29.
    
    11. Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H, Harano T, Yatabe Y, Nagino M, Nimura Y, Mitsudomi T, Takahashi T. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res. 2004 Jun 1;64(11):3753-6.
    
    12. Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M, Stephens RM, Okamoto A, Yokota J, Tanaka T, Calin GA, Liu CG, Croce CM, Harris CC. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell. 2006 Mar; 9(3): 189-98..
    
    13. Shell S, Park SM, Radjabi AR, Schickel R, Kistner EO, Jewell DA, Feig C, Lengyel E, Peter ME. Let-7 expression defines two differentiation stages of cancer. Proc Natl Acad Sci U S A. 2007 Jul 3; 104(27): 11400-5.
    
    14. Akao Y, Nakagawa Y, Naoe T. Let-7 microRNA functions as a potential growth suppressor in human colon cancer cells. Biol Pharm Bull. 2006 May; 29(5):903-6.
    
    15. Dalmay T. MicroRNAs and cancer J Intern Med. 2008 Apr; 263(4):366-75. Review.
    
    16. Weng-Onn Lui, Nader Pourmand, Bruce K. Patterson and Andrew Fire. Patterns of Known and Novel Small RNAs in Human Cervical Cancer. Cancer Res 2007 67: 6031-6043.
    
    17. Sampson VB, Rong NH, Han J, Yang Q, Aris V, Soteropoulos P, Petrelli NJ, Dunn SP, Krueger LJ. MicroRNA let-7a down-regulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells. Cancer Res. 2007 Oct 15;67(20):9762-70.
    
    18. Lee JW, Choi CH, Choi JJ, Park YA, Kim SJ, Hwang SY, Kim WY, Kim TJ, Lee JH, Kim BG, Bae DS. Altered MicroRNA Expression in Cervical Carcinomas. Clin Cancer Res. 2008 May.
    
    19. I Martinezl,4, AS Gardinerl,4, KF Boardl, FA Monzon2, RP Edwards3 and SA Khan. Human papillomavirus type 16 reduces the expression ofmicroRNA-218 in cervical carcinoma cells. Oncogene (2008) 27, 2575-2582.
    
    20. D.L. Zanette, F. Rivadavia, G.A. Molfettal, F.G. Barbuzano, R. Proto-Siqueira, R.P. Falcao, M.A. Zago, and W.A. Silva-Jr. miRNA expression profiles in chronic lymphocytic and acute lymphocytic leukemia. Brazilian Journal of Medical and Biological Research (2007) 40: 1435-1440.
    
    21. Higuchi R, Fockler C, etal. Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Biotechnology, 1993, 11(9): 1026-1030.
    
    22. Anderson KM, Cheung PH, Kell MD. Rapid generation of homologous internal standards and evaluation of data for quantitaion of messenger RNA by competitive polymerase chain reaction. J Pharmacol Toxicol Methods, 1997,38: 133-140.
    
    23. Raymond CK, Roberts BS. Garrett Engele P, et al. Simple, quantitative primer-extension PCR assay for direct monitoring of microRNAs and short-interfering RNAs[J]. RNA, 2005, 11: 1737-1744.
    
    24. Shi R, Chiang V L. Facile mefltns for quantifying microRNA expression by real-time PCR [J]. Biotechniques, 2005, 39: 519—525.
    
    25. Chen C, Ridzon DA, Broomer AJ. Real-time quantification of microRNAs by stem-loop RT. PCR[J]. Nucleic Acids Res.2005. 33: e179.
    
    26. Doleshal M, Magotra AA, Choudhury B, Cannon BD, Labourier E, Szafranska AE. Evaluation and validation of total RNA extraction methods for MicroRNA expression analyses in formalin-fixed, paraffin-embedded tissues. J Mol Diagn. 2008 May; 10(3):203-11. Epub 2008 Apr 10. Biochem Biophys Res Commun. 2006 December 22; 351(3): 756-763.
    
    27. Seungil Ro, Chanjae Park, Jingling Jin, Kenton M. Sanders, and Wei Yan A PCR-based Method for Detection and Quantification of Small RNAs. Biochem Biophys Res Commun. 2006 December 22; 351(3): 756-763.
    
    28. Bonner R E, Emmert Buck M R, Cole K, Pohida t Chuaqui R, Goldstein S. Liotta L A. Laser capture microdissection: Molecular analysis of tissue. Science, 1997, 278(5342): 1481-1483.
    
    29. Inamura K, Togashi Y, Nomura K, Ninomiya H, Hiramatsu M, Satoh Y, Okumura S, Nakagawa K, Ishikawa Y. Let-7 microRNA expression is reduced in bronchioloalveolar carcinoma, a non-invasive carcinoma, and is not correlated with prognosis. Lung Cancer. 2007 Dec; 58(3):392-6. Epub 2007 Aug 28
    
    30. Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, Labourier E, Reinert KL, Brown D, Slack FJ. RAS is regulated by the let-7 microRNA family. Cell. 2005 Mar 11; 120(5):635-47.
    
    31. Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C, Huang Y, Hu X, Su F, Lieberman J, Song E, let-7 regulates self renewal and tumorigenicity of breast cancer cells, Cell 2007 Dec 14; 131(6):1109-23
    
    32. Phan, R.T., and Dalla-Favera, R. (2004). The BCL6 proto-oncogene suppresses p53 expression in germinal-centre B cells. Nature 432, 635-639.
    
    33. Polo, J.M., Dell'Oso, T., Ranuncolo, S.M., Cerchietti, L., Beck, D., Da Silva, G.F., Prive, GG, Licht, J.D., and Melnick, A. (2004). Specific peptide interference reveals BCL6 transcriptional and oncogenic mechanisms in B-cell lymphoma cells. Nat. Med. 10, 1329-1335.
    
    34. Lujambio A, Ropero S, Ballestar E, Fraga MF, Cerrato C, Setien F, Casado S, Suarez-Gauthier A, Sanchez-Cespedes M, Gitt A, Spiteri I, Das PP, Caldas C, Miska E, Esteler M. Genetic unmasking of an epigenetically silenced miRNA in human cancer cells. Cancer Res 2007; 67:1424-9.
    
    35. Saito Y, Liang G, Egger G, Friedman JM, Chuang JC, Coetzee GA, Jones PA. Specific activation of miRNA-127 with downregulation of the proto-oncogene BCL6 by chroma-tin-modifying drugs in human cancer cells. Cancer Cell 2006; 9:435-43.
    
    36. Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ. (2006). miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34: D140 - 144.
    
    37. Muralidhar B, Goldstein LD, Ng G, Winder DM, Palmer RD, Gooding EL, Barbosa-Morais NL, Mukherjee G, Thome NP, Roberts I, Pett MR, Coleman N. Global microRNA profiles in cervical squamous cell carcinoma depend on Drosha expression levels. J Pathol. 2007 Aug;212(4):368-77.
    1.D.P.Bartel,microRNAs:genomics,biogenesis,mechanism,and function,cell 116(2004)281-297.
    2.Cai X,Hagedorn CH,Cullen BR.Human microRNAs are processed from capped,polyadenylated transcripts that can also function as mRNAs.RNA.2004 Dec;10(12):1957-66.
    3.Khvorova A,Reynolds A,Jayasena SD Functional siRNAs and miRNAs exhibit strand bias.Cell.2003 Oct 17;115(2):209-16
    4.Schwarz DS,Hutvaigner G,Du T,Xu Z,Aronin N,Zamore PD.Asymmetry in the assembly of the RNAi enzyme complex.Cell.2003 Oct 17;115(2):199-208.
    5.Doench JG,Sharp PA.Specificity of microRNA target selection in translational repression.Genes Dev.2004 Mar 1;18(5):504-11.
    6.Vella MC,Choi EY,Lin SY,Reinert K,Slack FJ The C.elegans microRNA let-7 binds to imperfect let-7 complementary sites from the lin-41 3'UTR.Genes Dev.2004 Jan 15;18(2):132-7.
    7.Brennecke J,Stark A,Russell RB,Cohen SM.Principles of microRNA-target recognition.PLoS Biol.2005 Mar;3(3):e85.
    8.Lim LP,Lau NC,Garrett-Engele P,Grimson A,Schelter JM,Castle J,Bartel DP,Linsley PS, Johnson JM. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature. 2005 Feb 17; 433(7027):769-73.
    
    9. John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS Human MicroRNA targets PLoS Biol.2004 Nov;2(11):e363.
    
    10. Rajewsky N. microRNA target predictions in animals. Nat Genet. 2006 Jun; 38 Suppl: S8-13. Review.
    
    11. Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006 Nov; 6(11): 857-66. Review.
    
    12. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, Rassenti L, Kipps T, Negrini M, Bullrich F, Croce CM. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13ql4 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A. 2002 Nov 26; 99(24): 15524-9.
    
    13. Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, Wojcik SE, Aqeilan RI, Zupo S, Dono M, Rassenti L, Alder H, Volinia S, Liu CG, Kipps TJ, Negrini M, Croce CM.miR-15 and miR-16 induce apoptosis by targeting BCL2.Proc Natl Acad Sci U S A. 2005 Sep 27;102(39):13944-9. Epub 2005 Sep 15. Erratum in: Proc Natl Acad Sci U S A. 2006 Feb 14; 103(7):2464.
    
    14. Garzon R, Pichiorri F, Palumbo T, Visentini M, Aqeilan R, Cimmino A, Wang H, Sun H, Volinia S, Alder H, Calin GA, Liu CG, Andreeff M, Croce CM.MicroRNA gene expression during retinoic acid-induced differentiation of human acute promyelocytic leukemia. Oncogene. 2007 Jun 14; 26(28):4148-57.
    
    15. Welch C, Chen Y, Stallings RL. MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene. 2007 Jul 26; 26(34):5017-22.
    
    16. Chang TC, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH, Feldmann G, Yamakuchi M, Ferlito M, Lowenstein CJ, Arking DE, Beer MA, Maitra A, Mendell JT. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell. 2007 Jun 8; 26(5):745-52. Epub 2007 May 31.
    
    17. Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, Labourier E, Reinert KL, Brown D, Slack FJ. RAS is regulated by the let-7 microRNA family. Cell. 2005 Mar 11; 120(5):635-47.
    
    18. Akao Y, Nakagawa Y, Naoe T. let-7 microRNA functions as a potential growth suppressor in human colon cancer cells. Biol Pharm Bull. 2006 May; 29(5):903-6.
    
    19. Meng F, Henson R, Wehbe-Janek H, Smith H, Ueno Y, Patel T. The MicroRNA let-7a modulates interleukin-6-dependent STAT-3 survival signaling in malignant human cholangiocytes. J Biol Chem. 2007 Mar 16; 282(11):8256-64.
    
    20. Brueckner B, Stresemann C, Kuner R, Mund C, Musch T, Meister M, Sultmann H, Lyko F. The human let-7a-3 locus contains an epigenetically regulated microRNA gene with oncogenic function. Cancer Res. 2007 Feb 15; 67(4): 1419-23.
    
    21. Lee YS, Dutta A.The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. Genes Dev. 2007 May 1; 21(9): 1025-30. Epub 2007 Apr 16.
    
    22. Hebert C, Norris K, Scheper MA, Nikitakis N, Sauk JJ. High mobility group A2 is a target for miRNA-98 in head and neck squamous cell carcinoma. Mol Cancer. 2007 Jan 14;6:5
    
    23. Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C, Huang Y, Hu X, Su F, Lieberman J, Song E, let-7 regulates self renewal and tumorigenicity of breast cancer cells, Cell 2007 Dec 14; 131(6): 1109-23
    
    24. O'Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT. c-Myc-regulated microRNAs modulate E2F1 expression. Nature. 2005 Jun 9; 435(7043):839-43.
    
    25. He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S, Powers S, Cordon-Cardo C, Lowe SW, Hannon GJ, Hammond SM. A microRNA polycistron as a potential human oncogene. Nature. 2005 Jun 9; 435(7043):828-33.
    
    26. Matsubara H, Takeuchi T, Nishikawa E, Yanagisawa K, Hayashita Y, Ebi H, Yamada H, Suzuki M, Nagino M, Nimura Y, Osada H, Takahashi T. Apoptosis induction by antisense oligonucleotides against miR-17-5p and miR-20a in lung cancers overexpressing miR-17-92. Oncogene. 2007 Sep 6; 26(41):6099-105.
    
    27. Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M, Campiglio M, Menard S, Palazzo JP, Rosenberg A, Musiani P, Volinia S, Nenci I, Calin GA, Querzoli P, Negrini M, Croce CM MicroRNA gene expression deregulation in human breast cancer Cancer Res. 2005 Aug 15;65(16):7065-70.
    
    28. Si ML, Zhu S, Wu H, Lu Z, Wu F, Mo YY. miR-21 -mediated tumor growth. Oncogene. 2007 Apr 26; 26(19):2799-803. Epub 2006 Oct 30.
    
    29. Zhu S, Si ML, Wu H, Mo YY. MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J Biol Chem. 2007 May 11; 282(19):14328-36.
    
    30. Meng F, Henson R, Lang M, Wehbe H, Maheshwari S, Mendell JT, Jiang J, Schmittgen TD, Patel T. Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology. 2006 Jun; 130(7):2113-29.
    
    31. Tran N, McLean T, Zhang X, Zhao CJ, Thomson JM, O'Brien C, Rose B. MicroRNA expression profiles in head and neck cancer cell lines. Biochem Biophys Res Commun. 2007 Jun 22; 358(1):12-7.Epub 2007 Apr 9.
    
    32. Ciafre SA, Galardi S, Mangiola A, Ferracin M, Liu CG, Sabatino G, Negrini M, Maira G, Croce CM, Farace MG. Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun. 2005 Sep 9; 334(4):1351-8
    
    33. Pekarsky Y, Santanam U, Cimmino A, Palamarchuk A, Efanov A, Maximov V, Volinia S, Alder H, Liu CG, Rassenti L, Calin GA, Hagan JP, Kipps T, Croce CM. Tcll expression in chronic lymphocytic leukemia is regulated by miR-29 and miR-181. Cancer Res. 2006 Dec 15; 66(24):11590-3.Mott JL, Kobayashi S, Bronk SF, Gores GJ. mir-29 regulates Mcl-1 protein expression and apoptosis. Oncogene. 2007 Sep 13; 26(42):6133-40.
    
    34. Cummins JM, Velculescu VE.Implications of micro-RNA profiling for cancer diagnosis. Oncogene. 2006 Oct 9; 25(46):6220-7.
    
    35. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR.MicroRNA expression profiles classify human cancers. Nature. 2005 Jun 9; 435(7043):834-8.
    
    36. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR.MicroRNA expression profiles classify human cancers. Nature 2005 Jun 9; 435(7043):834-8.
    
    37. Bottoni A, Zatelli MC, Ferracin M, Tagliati F, Piccin D, Vignali C, Calin GA, Negrini M, Croce CM, Degli Uberti EC. Identification of differentially expressed microRNAs by microarray: a possible role for microRNA genes in pituitary adenomas. J Cell Physiol. 2007 Feb; 210(2):370-7.
    38. Lee EJ, Gusev Y, Jiang J, Nuovo GJ, Lemer MR, Frankel WL, Morgan DL, Postier RG, Brackett DJ, Schmittgen TD. Expression profiling identifies microRNA signature in pancreatic cancer, Int J Cancer. 2007 Mar 1; 120(5): 1046-54
    
    39. Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H, Harano T, Yatabe Y, Nagino M, Nimura Y, Mitsudomi T, Takahashi T. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival, Cancer Res. 2004 Jun 1;64(11):3753-6.
    
    40. Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M, Stephens RM, Okamoto A, Yokota J, Tanaka T, Calin GA, Liu CG, Croce CM, Harris CC, Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell. 2006 Mar; 9(3): 189-98.
    
    41. Roldo C, Missiaglia E, Hagan JP, Falconi M, Capelli P, Bersani S, Calin GA, Volinia S, Liu CG, Scarpa A, Croce CM. MicroRNA expression abnormalities in pancreatic endocrine and acinar tumors are associated with distinctive pathologic features and clinical behavior. J Clin Oncol. 2006 Oct 10; 24(29):4677-84. Epub 2006 Sep 11.
    
    42. Bloomston M, Frankel WL, Petrocca F, Volinia S, Alder H, Hagan JP, Liu CG, Bhatt D, Taccioli C, Croce CM. MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA 2007 May 2; 297(17): 1901 -8.
    
    43. Shell S, Park SM, Radjabi AR, Schickel R, Kistner EO, Jewell DA, Feig C, Lengyel E, Peter ME. Let-7 expression defines two differentiation stages of cancer. Proc Natl Acad Sci U S A. 2007 Jul 3; 104(27): 11400-5. Epub 2007 Jun 28.
    
    44. Cho WC, Cheng CH. Oncoproteomics: current trends and future perspectives. Expert Rev Proteomics. 2007 Jun; 4(3):401-10. Review.
    
    45. Cho WC. Contribution of oncoproteomics to cancer biomarker discovery. Mol Cancer. 2007 Apr 2; 6:25. Review.
    
    46. Cho WC. A future of cancer prevention and cures: highlights of the Centennial Meeting of the American Association for Cancer Research. Ann Oncol. 2008 Feb; 19(2):205-11.