苏姜猪初情期启动基因的发育性变化及差异显示研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
初情期是动物首次出现发情排卵的年龄,是开始获得繁殖能力的标志。初情期的启动,是由下丘脑GnRH神经元控制。从目前的研究报道看,初情期启动的机制实际上是GnRH脉冲式释放的调控,是非类固醇介导的中枢机制,调控因素包括神经肽、神经递质、神经类固醇。主要参与调控GnRH释放的神经肽有鸦片肽、NPY、促生长激素神经肽(Galanin)、促皮质激素释放激素(CRF);神经递质有去甲肾上腺素(NE)、多巴胺、5-羟色胺、褪黑激素、Y氨基丁酸(GABA),但其具体调控机制还需进一步研究探讨。目前,关于初情期启动相关基因受体NPY-Y1、GPR54、Ob-Rb基因的研究报道较少,特别是关于他们对初情期启动的调控机制几乎没有报道。本研究系统的研究初情期启动相关基因受体NPY-Y1、GPR54、Ob-Rb基因在下丘脑-垂体-卵巢内的组织定位及其组织发育性变化,目的是为深入研究探讨NPY-Y1、GPR54、Ob-Rb在初情期启动中扮演的角色。同时本实验还采用mRNA差异显示(mRNA DD)技术对猪初情期启动的关键因子做进一步的研究,以筛选与猪初情期启动相关的重要基因。主要研究结果如下:
     1.根据GenBank发表的序列设计NPY-Y1、GPR54、Ob-Rb基因特异性引物,采用反转录聚合酶链式反应(RT-PCR)扩增出NPY-Y1、GPR54、Ob-Rb基因的部分cDNA序列,扩增产物克隆入pGEM-T easy载体中进行序列测定。结果:与发表的猪NPY-Y1、GPR54、Ob-Rb基因序列(NO.AF106081,NO.DQ459346,NO.AF092422)同源性均为100%,说明所扩增的序列为本实验所要的,为后续研究奠定了基础。
     2.用原位杂交技术检测苏姜猪母猪初情期前后NPY-Y1 mRNA在下丘脑、垂体和卵巢的分布定位。结果:在苏姜猪初情期前后下丘脑、垂体和卵巢三种组织中,均检测到NPY-Y1 mRNA阳性杂交信号。下丘脑的阳性杂交信号主要集中在丘脑室旁核和下丘脑的弓状核、室旁核、室周核等处;在垂体中分布相对密集;各级卵泡颗粒细胞和内膜细胞中均有阳性杂交信号,间质中也有少量的杂交信号。在三种组织中NPY-Y1 mRNA杂交信号均初情期较弱,初情期前相对较强。结果可以初步证明NPY-Y1在下丘脑-垂体-卵巢轴对雌性生殖的调节中具有关键的调控作用,并且对下丘脑-垂体-卵巢轴具有调控作用。
     3.用原位杂交技术检测苏姜猪母猪初情期前后GPR54 mRNA在下丘脑、垂体和卵巢的分布定位。结果:在苏姜猪初情期前后下丘脑、垂体和卵巢三种组织中,均检测到GPR54 mRNA阳性杂交信号。下丘脑的阳性杂交信号主要集中在弓状核和腹内侧核中,其它区也有一定的表达;在垂体中分布相对密集;各级卵泡颗粒细胞和内膜细胞中均有阳性杂交信号,间质中也有少量的杂交信号,大卵泡的阳性率明显高于小卵泡。在三种组织中GPR54 mRNA杂交信号均初情期较强,初情期前相对较弱些。结果可以初步证明GPR54在下丘脑-垂体-卵巢轴对雌性生殖的调节中具有关键的调控作用,并且对下丘脑-垂体-卵巢轴具有调控作用。
     4.用免疫组织化学的方法测定苏姜猪母猪初情期前后下丘脑、垂体、卵巢内Ob-Rb的分布及定位。结果:Ob-Rb阳性颗粒广泛分布于下丘脑,尤其是弓状核;垂体中Ob-Rb阳性颗粒主要集中于垂体前叶细胞;卵巢中Ob-Rb阳性颗粒出现在各级卵泡的颗粒细胞,而卵母细胞没有阳性颗粒。结果可以初步证明Ob-Rb在下丘脑-垂体-卵巢轴对雌性生殖的调节中也具有关键的调控作用。
     5.用荧光定量PCR技术检测苏姜猪初生、60、120、初情期、180日龄五个不同发育阶段的下丘脑、垂体和卵巢三种组织中NPY-Y1、GPR54、Ob-Rb mRNA的表达丰度变化。结果:(1)下丘脑、垂体与卵巢内NPY-Y1 mRNA表达量从初生到初情期表达量逐渐下降,在初情期达到最低,初情期后呈上升趋势。下丘脑内各个时期NPY-Y1 mRNA表达量均存在显著差异(P<0.05),垂体内120日龄与180日龄之间NPY-Y1 mRNA表达量差异不显著(P>0.05),其它时期NPY-Y1 mRNA表达量均显著差异(P<0.05),卵巢内初情期与180日龄之间NPY-Y1 mRNA表达量差异不显著(P>0.05),其它时期NPY-Y1 mRNA表达量均显著差异(P<0.05)。(2)下丘脑、垂体与卵巢内GPR54 mRNA表达量均从初生到初情期表达量逐渐上升,在初情期达到最高,初情期后呈下降趋势。下丘脑内初情期与初生、180日龄的GPR54 mRNA表达量差异均达到显著水平(P<0.05),垂体内初情期与初生、60日龄、180日龄的GPR54 mRNA表达量差异均达到显著水平(P<0.05),卵巢内初情期与初生、60日龄、120日龄、180日龄的GPR54 mRNA表达量差异均达到显著水平(P<0.05)。(3)下丘脑、垂体与卵巢内Ob-Rb mRNA发育性变化模式与NPY-Y1基本相同,从初生到初情期表达量逐渐下降,在初情期达到最低,初情期后呈上升趋势。下丘脑内120日龄、初情期与180日龄之间Ob-Rb mRNA表达量差异不显著(P>0.05),其它时期NPY-Y1 mRNA表达量均显著差异(P<0.05),垂体内60日龄与120日龄之间Ob-Rb mRNA表达量差异不显著(P>0.05),其它时期NPY-Y1 mRNA表达量均显著差异(P<0.05),卵巢内初情期与180日龄之间Ob-Rb mRNA表达量差异不显著(P>0.05),其它时期Ob-Rb mRNA表达量均显著差异(P<0.05)。结果初步显示了三种受体在猪下丘脑-垂体-卵巢生殖轴中不同发育时期的变化,并且证明发育时期中NPY对GnRH释放起到是抑制作用,而leptin对GnRH起释放作用,低剂量的leptin可促进GnRH-LH的分泌,高浓度则抑制其分泌,这为以后的研究提供了可靠的科学数据。
     6.采用mRNA差异显示技术、Reverse Northern技术以及半定量分析技术,对不同发育时期猪下丘脑差异表达的ESTs进行分离,共得到cDNA差异片断20条,半定量分析显示:其中5条差异条带在出生时呈表达增强相,11条差异条带在初情期时呈表达增强相,其余4条在性成熟时呈表达增强相。测序结果与GenBank数据库比对,二个cDNA与已知基因同源,其余大部分都是功能未知的EST序列。经Reverse Northern验证,有9个cDNA呈阳性,可用于下一步探针定位及表达的研究。
Puberty is a term that animal first time to oestrus and ovulates, which is a sign of the attainment of full fertility. The activation of hypothalamic GnRH neuron controlled the onset of puberty. Recent research showed that the activation of hypothalamic GnRH secretion is a key event of the onset of puberty, and this event works mediated with steroid, which includes Neuropeptide, Neurotransmitters and Neurosteroid. The chief neuropeptide regulate GnRH secretion includeed Opium Peptide, NPY, Galanin, CRF, NE, DA,5-HTA, Melatonin and GABA. But the regulated mechanism required further research. Presently, the research on puberty promoter of NPY-Y1, GPR54 and Ob-Rb is few, especially on their regulated mechanism. This paper first systemic studied the developmental expression and localization of NPY-Y1, GPR54, Ob-Rb promoter gene in hypothalamic-pituitary-ovary axis, and analysed their function in the onset of puberty. The mRNA differential expression of the hypothalamic organism in different development period were also separated to screen key genes correlated to the onset of puberty using RFDD-PCR technique,
     1. NPY-Y1, GPR54, Ob-Rb gene of pig were obtained using reverse transcription polymerase chain reaction amplification (RT-PCR), specific primers were designed according to NPY-Y1, GPR54, Ob-Rb cDNA from GenBank. The RT-PCR product was subcloned into pGEM-T easy vector and the correctness of the sequences was confirmed by sequencing. The results of sequencing analysis showed that their homology with NPY-Y1, GPR54, Ob-Rb cDNA from GenBank (Accession NO. AF106081, NO. DQ459346, NO. AF092422) were all up to 100%. The data indicateed that the NPY-Y1, GPR54, Ob-Rb cDNA were cloned correctly, which would play a great role in research of their physiological functions and mechanism.
     2. Before and after puberty, the disposition and localization of NPY-Y1 mRNA in hypothalamus, pituitary and ovary were detected by ISH technology. The detection of masculine hybridization signals of NPY-Y1 mRNA in hypothalamus, pituitary and ovary of Sujiang suggested that NPY-Y1 mRNA was expressed in hypothalamus including hypothalamic paraventricular nucleus (PVN), arcuate nucleus, paraventricular nucleus, periventricular nucleus and so on. NPY-Y1 positive particles of pituitary were concentrating distributed. NPY-Y1 positive particles of ovaries appeared in all types of follicles and intima cells, few in mesenchymal cell. In different tissues, which showed weak NPY-Y1 mRNA hybridization signal in puberty, much strong than before puberty. All results showed NPY-Y1 is key gene required for regulating function of the hypothalamic-pituitary-ovary axis.
     3. Before and after puberty, the disposition and localization of GPR54 mRNA in hypothalamus, pituitary and ovary were also detected by ISH technology. The detection of masculine hybridization signals of GPR54 mRNA in hypothalamus, pituitary and ovary of Sujiang suggested that GPR54 mRNA was expressed in hypothalamus including arcuate nucleus, ventromedial nucleus, there also detecting few hybridization signals of GPR54 mRNA in other section. GPR54 positive particles of pituitary were concentrating distributed. GPR54 positive particles of ovaries appeared in all types of follicles and intima cells, few in mesenchymal cell, and the large follicular showed much strong GPR54 mRNA hybridization signal than little follicular. In different tissues, there showed much strong GPR54 mRNA hybridization signal in puberty than before puberty. All results showed GPR54 is another key gene required for regulating function of the hypothalamic-pituitary-ovary axis.
     4. With immunohistochemical method, the distribution and localization of the expression of Ob-Rb gene were detected in hypothalamus, pituitary and ovaries. The results showed that Ob-Rb positive particles were distributed in hypothalamus generally, especially arcuate nucleus. Ob-Rb positive particles of pituitary were concentrated into pituitarium anterius cells. And Ob-Rb positive particles of ovaries appeared in granular cell, granule cells of all types of follicles, but megagametocyte didn't discover the existence of the positive particles. All this showed that Ob-Rb is capital gene required for regulating function of the hypothalamic-pituitary-ovary axis.
     5. In order to investigated quantitative expression of NPY-Y1, GPR54, Ob-Rb mRNA in hypothalamus, pituitary, ovaries of Su Jiang porcine on newborn,60,120, puberty and 180 days, Fluorescent Quantitation PCR technology was used. The results showed that:(1) the expression abundance of NPY-Y1 mRNA was gradually descending from birth to puberty and after puberty the expression abundance was ascending tendency in all three tissues. In hypothalamus tissue, the expression abundance of NPY-Y1 mRNA between each stage were all significant difference (P<0.05). In pituitary tissue, the expression abundance at the stage of 120 days was no significant difference with the stage of 180 days (P>0.05), between other each stage were significant difference(P<0.05). In ovaries tissue, the expression abundance at the stage of puberty was no significant difference with the stage of 180 days (P>0.05), between other each stage were significant difference(P<0.05); (2) the expression abundance of GPR54 mRNA was gradually ascending from birth to puberty, and after puberty the expression abundance was descending tendency in all three tissues. In hypothalamus tissue, the expression abundance at the stage of puberty was significant difference with the stage of birth and 180 days (P<0.05), In pituitary tissue, the expression abundance at the stage of puberty was significant difference with the stage of birth,60 days and 180 days (P<0.05), In ovaries tissue, the expression abundance at the stage of puberty was significant difference with the stage of birth,60 days,120 days and 180 days (P<0.05).(3) The expression abundance of Ob-Rb mRNA was gradually descending from birth to puberty, and after puberty the expression abundance was ascending tendency in all three tissues. In hypothalamus tissue, the expression abundance at the stage of 120 days, puberty were no significant difference with the stage of 180 days (P>0.05), other each stage were significant difference(P<0.05). In pituitary tissue, the expression abundance at the stage of 60 days were no significant difference with the stage of 120 days (P>0.05), other each stage were significant difference(P<0.05). In ovaries tissue, the expression abundance at the stage of puberty were no significant difference with the stage of 180 days (P>0.05), other each stage were significant difference(P<0.05). This study explored the express regularity of the three receptor in hypothalamic-pituitary-ovary axis in different development period, and identified that NPY-Y1 expressing inhibites GnRH releasing, low dose leptin expressing promotes GnRH-LH Releasing, high dose leptin expressing inhibited GnRH-LH releasing. That will provide reliable science data on future research.
     6. The ESTs of mRNA differential expressing of the hypothalamic organs in different development period were separated using RFDD-PCR technique. The results showed 20 differential cDNA bands were found. The semiquantitative analysis indicated that 5 cDNA bands were expressing strengthly when at the stage of birth. While 11 cDNA bands were expressing up-regulation when at the stage of puberty, other 4 cDNA bands were expressing up-regulation when at the stage of sex maturation. Sequencing these cDNA and blasted with Genbank showed 2 cDNA bands homologous consequence with it, the other were all uncharted EST sequence. Validated using Reverse Northern technique, we have found 9 cDNA bands would as probes on next expressive research.
引文
[1]卢晟盛蒋如明,谭世俭,等.利用初情期前女牛卵母细胞在体外生产胚胎的尝试[J].广西畜牧兽医,2000,16(2):7-8.
    [2]袁运生,章孝荣.瘦素对动物初情期启动的调控[J].中国畜牧兽医,2002,4(2):36-9.
    [3]Day ML, Anderson LH. Current concepts on the control of puberty in cattle[J]. J Anim. Sci., 1998,76(3):1-15.
    [4]田允波,曾书琴,陈学进等.哺乳动物原始卵泡生长启动的调控[J].农业生物技术学报,2006,14(4):618-624.
    [5]Elsaesser F, Parvizi N, Schmitz U. Inhibitory feedback action of oestradiol on tonic secretion of luteinizing hormone in pre-and postpubertal gilts[J]. Anim. Reprod. Sci.,1991,25: 155-168.
    [6]Evans ACO O'Doherty JV Endocrine changes and management factors affecting puberty in gilts[J]. Livestock Production Science,2001,68:1-12.
    [7]Stojilkovi SS, Reinhart J, Catt K J. Gonadotropin-releasing hormone receptors:structure and signal transduction prthways[J]. Endocr Rev.,1994,15:462-499.
    [8]Robert G, Andrea S, Torsten S, et al. Gonadotropin-releasing hormone receptor initiates multiple signaling pathways by exclusively coupling to Gq/11 proteins[J]. The Journal of Biological Chemistry,2000,275(13):9193-9200.
    [9]谢启文.现代神经内分泌学[M].Vol.9.上海:上海医科大学出版社,1999.
    [10]林浩然.促性腺激素释放激素(GnRH)结构与功能及其受体的进化发展[J].中山大学学报(自然科学版)2004,43(6):1-5.
    [11]曾燕.熊GPR54和kisspeptins与青春期启动[J].国际内分泌代谢杂志,2006,4(26):26~28.
    [12]Popa SM, Clifton DK, Steiner RA. A KiSS to remember[J]. Trends Endocrinol Metab,2005, 16:249-250.
    [13]De Roux ND, Genin E, Carel JC, et al. lypogonadotropic hypogonadismdue to loss of function of the KiSSI-derived peptide receptor GPR54[J]. Proc Natl Acad Sci.,2003,100: 10972-10976.
    [14]Tatemoto K. Neuropeptide Y:complete amino acid sequence of the brain peptide[J]. Proc Natl Acad Sci USA,1982,79(18):5485-5489.
    [15]Genazzani AR, Bernardi F. Monteleone P, et al. Neuropeptides, neurotransmitters, neurosteroids, and the onset of puberty [J]. Ann N Y Acad Sci,2000,900(1):1-9.
    [16]Pellieux C, sauthier T, Domenighetti A, et al. Nenropeptide Y(NPY) potentiates phenylephrine-induced mitogen-activated protein kinase activation in primary cardiomyocytes via NPY Y5 receptors[J]. Proc Natl Acad Sci USA,2000,97(4):1595-1600.
    [17]Erickson JC, Clegg KE, Palmiter RD. Sensitivity to leptin and susceptibility to seizures of mice lacking neuropeptide Y[J]. Nature 1996,10(381):415-418
    [18]Stanley SA, Small CJ, Kim MS, et al. Agouti Related Peptide (Agrp) Stimulates the Hypothalamo Pituitary Gonadal Axis in Vivo & in Vitro in Male Rats [J]. Endocrinology,1999, 140(11):5459-5462.
    [19]Genazzani AR, Bemardi F, Monteleone P, et al. Neuropeptides, neurotransmitters, neurosteroids and the onset of puberty[J]. Ann N Y Acad Sci.,2000,900(1):1-9.
    [20]Thorsell A, Dumont Y, Dumont Y. Behavioral insensitivity to restraint stress, absent fear suppress ion of behavior and impaired spatial learning in transgenic rats with hippocampal neur opeptide Y overexpression[J]. Proceedings of the National Academy of Sciences,2000 97(23): 12852-12857.
    [21]Pellieux C, Sauthier T, Domenighetti A, et al. Neuropeptide Y (NPY) potentiates phenylephrine-induced mitogen-activated protein kinase activation in primary cardiomyocytes via NPY Y5 receptors [J]. Proc Natl Acad Sci USA,2000,97(4):1595-1600.
    [22]Marsh DJ, Baraban SC, Hollopeter G, et al. Role of the Y5 neuropeptide Y receptor in limbic seizures[J]. Proc Natl Acad Sci USA,1999,96(23):13518-13523.
    [23]Csillik AE, Okuno E, Csillik B, et al. Resistance to the satiety action of leptin following chronic central leptin infusion is associated with the development of leptin resistance in neuropeptide Y neurones[J]. Journal of neuroendocrinology,2002,14(10):796-804.
    [24]Toufexis DJ, Yorozu S, Woodside B. Y1 Receptor Activation is Involved in the Effect of Exogenous Neuropeptide Y on Pup Growth and the Early Termination of Lactational Diestrus in the Postpartum Rat[J]. Journal of Neuroendocrinology,2002,14(5):354-360.
    [25]Nanobashvili A, Airaksinen MS, Kokaia M, et al. Development and persistence of kindling epilepsy are impaired in mice lacking glial cell line-derived neurotrophic factor family receptor αa2 [J]. Proc Natl Acad Sci USA,2000,97(22):12312-12317
    [26]Lado-Abeal J, Hickox JR, Cheung TL, et al. Neuroendocrine Consequences of Fasting in Adult Male Macaques:Effects of Recombinant Rhesus Macaque Leptin Infusion[J]. Neuroendocrinology,2000,71(3):196-208.
    [27]Nanobashvili A. Airaksinen MS. Kokaia M et al. Development and persistence of kindling epilepsy are impaired in mice lacking glial cell line-derived neurotrophic factor family receptor α2[J]. Proc Natl Acad Sci USA,2000,97(22):12312-12317.
    [28]Lado-Abeal J, Hickox JR, Cheung TI, et al. Neuroendocrine consequences of fasting in adult male macaques:Effects of recombinant rhesus macaque leptin infusion[J]. Neuroendorinology,2000,71(1):197-208.
    [29]Guillemin R. Hypothalamic hormones a.k.a. hypothalamic releasing factors [J].184, 2005(11-28).
    [30]Majdoubi ME, Sahu A, Plant TM. Changes in hypothalamic gene expression associated with the arrest of pulsatile gonadotropin-releasing hormone release during infancy in the agonadal male rhesus monkey (Macaca Mulatta)[J]. Endocrinology,2000,141 (9):3273-3277.
    [31]Sainsbury A, Schwarzer C, Couzens M, et al. Y4 receptor knockout rescues fertility in ob/ob mice[J]. Genes,2002,16(9):1077-1088.
    [32]Harold GS, Pau KY, Yang SP. Coital and estrogen singals:a contrast in the preovulatory neuroendocrine networks of rabbits and Rhesus Monkeys[J]. Biology of Reproduction,56: 310-319.
    [33]Toufexis DJ, Kyriazis D, Woodside B. Chronic neuropeptide Y Y5 receptor stimulation suppresses reproduction in virgin female and lactating rats[J]. J Neuroendocrinol,2002,14(6): 492-499.
    [34]Pralong EP, Gonzales G, Voirot M. et al. The neuropeptide Y Y1 receptor regulates leptin-mediated control of energy homeostasis and reproductive functions[J]. FASEB J,2002, 16(2):712-714.
    [35]Plant TM. Neurobiological bases underlying the control of the onset of puberty in the rhesus monkey:a representative higher primate[J]. Front Neuroendocrinol,2001,22(2):107-139.
    [36]Kalra SP, Kalra PS. Nutritional Infertility:The Role of the Interconnected Hypothalamic Neuropeptide Y-Galanin-Opioid Network[J]. Frontiers in Neuroendocrinology,1996,17(4): 371-401.
    [37]Billington CJ, Briggs J, Grace M, et al. Effect of intracerebrovetricular injection of NPY on energy metabolism[J]. Am J Physiol 1991,260:321.
    [38]Zarjevski N, Cusin I, Vettor R, et al. Chronic intracerebroventricular neuropeptide-Y administration to normal rats mimics hormonal and metabolic changes of obesity [J]. Endocrinology,1993,133:1753-1758.
    [39]White BD, Martin RJ. Evidence for a central mechanism of obesity in the Zucker rat:role of neuropeptide Y and leptin[J]. Experimental Biology and Medicine,1997,214:222-232.
    [40]Erickson JC, Hollopeter G, Palmiter RD. Attenuation of the Obesity Syndrome of ob/ob Mice by the Loss of Neuropeptide Y [J]. Science 1996,274(5293):1704-1707.
    [41]Gehlert DR. Subtypes of receptors for neuropeptide Y:Implications for the targeting of therapeutics[J]. Life Sci.,1994,55:551-562.
    [42]Kalra SP, Dube MG, Pu S, et al. Interacting appitite-regulating pathways in the hypothalamic regulation of boday weight[J]. Endo Rev,1999,20 (1):68~100.
    [43]Kalraa PS, Kalrab SP. Use of Antisense Oligodeoxynucleotides to Study the Physiological Functions of Neuropeptide Y [J]. Methods,2000,22(3):Methods.
    [44]Bannon AW, Seda J, Carmouche M. Behavioral characterization of neuropeptide Y knockout mice[J]. Brain Research,2000,868(1):79-87
    [45]Flynn MC, Turrin NP, Plata-Salaman,et al. Feeding response to neuropeptide Y-related compounds in rats treated with Y5 receptor antisense or sense phosphothio-oligodeoxynucleotide[J]. Physiol Behav,1999,66:881-884.
    [46]Schaffhauser AO, Striker KA, Brunner L,et al. Inhibition of food intake by neuropeptide YY5 receptor antisenseoligodeoxynucle otides[J]. Diabetes,1997,46(11):1792-1793.
    [47]Kennedy GC. The role of depot fat in the hypothalamic control of food intake in the rat[J]. Proc R Soc London B,1953,140:578-592.
    [48]Hervey GR. The effects of lesions in the hypothalamus in parabiotic rats[J]. J Physiol,1958, 145:336-352.
    [49]Hausberger FX. Parabiosis and transplantation experiments in hereditary obese mice[J]. Anat Rec,1959,130(1):313-340.
    [50]王建辰.家畜生殖内分泌学[M].Vol.193.北京:农业出版社,1993,157-159.
    [51]Zhang Y, Proenca R, Maffei M, et al. Positional cloning of the mouse obese gene and its human homologue[J]. Nature,1994 372 425-432.
    [52]Considine RV. Weight regulation, leptin and growth hormone[J]. Horm Res,1997,48:116-121.
    [53]Hoggard N, Hunter L, Trayhurn P, et al Leptin and reproduction[J]. Proc Nutr Soc,1998,57: 421-427.
    [54]Wauters M, Considine RV, luc Gaal FV. Human leptin:from an adipocyte hormone to an endocrine mediator[J]. Eur J Endocrinol,2000,143:293-311.
    [55]Kronfeld-Schora N, Zhaoa J, Silvia BA. Steroid-Dependent Up-Regulation of Adipose Leptin Secretion In Vitro During Pregnancy in Mice[J]. Biology of Reproduction,2000,63: 274-280
    [56]Mantzoros CS, Flier JS, Rogol AD. A Longitudinal Assessment of Hormonal and Physical Alterations during Normal Puberty in Boys. V. Rising Leptin Levels May Signal the Onset of Puberty[J]. J. Clin Endocrinol Metab,1997,82(4):1066-1070.
    [57]Lebrethon MC, Vandersmissen E, Gerard A, et al. Junien and J.P.Bourguignon. In Vitro stimulation of the prepubertal rat gonadotropin-releasing hormone pulse generator by leptin and neuropeptide Y through distinct mechanisms [J]. Endocrinology,2000,141:1464-1469.
    [58]Gualillo O, Hago F, Menendez MG, et al. Prolactin stimulates leptin secretion by rat white adipose tissue[J]. Endocrinology 1999(140):5149-5153.
    [59]Michael C, Henson V. Daniel Castracane. Leptin and pregency[J]. Biol of Reprod,2000,63: 1219-1228.
    [60]Garcia-Mayor RV, Andrade MA, Rios M, et al. Serum leptin levels in normal children: relationalship to age,gender,body mass Index,pituitary-gonadal hormones, and pubertal stage[J]. J Clin Endocrinol Metab,1997,82(9):2849-2855.
    [61]Mantzoros CS. Role of leptin in reproduction[J]. Ann N Yacad,2000,900:174-183.
    [62]Yu WH, Kimura M, Walczewska A, et al. Role of leptin in hypothalamic-pituitary function[J]. Proc Natl Acad Sci USA,1997,94:1023-1028.
    [63]Todd BJ, Ladyman SR, Grattan DR. Suppression of pulsatile luteinizing hormone secretion but not luteinizing hormone surge in leptin resistant obese zucker rats[J]. J Neuroendocrinol, 2003,15:61-68.
    [64]董秀华,赵跃然.Leptin对青春期作用的研究进展[J].国外医学计划生育分册,2002,21(1):28-31.
    [65]邹余粮,吕淑兰,曹缵孙等.促排卵周期中瘦素的变化与生殖激素的关系[J].第四军医大学学报,2002,23:818-820.
    [66]Hislop MS, Ratanjee BD, Soule SG, et al. Effect of anabolic-androgenic steroid use or gonadal testosterone suppression on serum leptin concentration in men[J]. Endocrinol,1999,41: 40-46.
    [67]Tarja LB, Jarna MM, Mikko L. Serum and follicular fluid leptin during in vitro fertilization: Relationship among leptin increase, body fat mass, and reduced ovarian response[J]. J Clin Endocrinol Metab,1999,84:3135-3139.
    [68]Ahima RS, Dushay J, Sarah N, et al. Leptin accelerates the onset of puberty in mormal female mice[J]. J Clin Invest,1997,99:391-395.
    [69]Yu WH, Kimura M, Walczewska A, et al. Role of leptin in hypothalamic-pituitary function[J]. Proc Acad Sci USA,1997,94:1023-1028.
    [70]Zamorano PL, Mahesh VB, De-Sevilla LM, et al. Expression and localization of the leptin receptor in endocrine and neuroendocrine tissues of the rat[J]. Neuroendocrinology,1997,65(10): 223-228
    [71]Kalra SP Xu B, Dube MG Leptin and ciliary neurotrpic factor inhibit fasting-induced suppression of luteining hormone release in rats:role of neuropeptide Y[J]. Neurosci Lett,1998, 240(1):45.
    [72]Erickson JC, Hollopeter G, Palmiter RD. Attenuation of the obesity syndrome of ob/ob mice by the loss of neuropeptide Y[J]. Science,1996,274:1704-1707.
    [73]Gluckmana PD, Hanson MA. Evolution, development and timing of puberty [J]. Trends in Endocrinology & Metabolism,2006,17(1):7-12
    [74]Chehab FF, mounzih K, Lu R, et al. Early onset reproductive function in normal femal mice treated with leptin[J]. Science,1997,275:88-90.
    [75]Chung CC, Thronton JE, Kuijper JL, et al. Leptin is a metabolic gate for the onset of puberty in the female rat[J]. Endocrinology,1997,138:855-858.
    [76]Mantzoros. Rising leptin levels may signal the onset of puberty[J]. J Clin Endocrinology, 1997,82:1066-1070.
    [77]Tartalia LA, Demebski, M Weng X, et al. Identification and expression cloning of a leptin receptor, OB-R[J]. Cell,1995,83:1263-1271.
    [78]Burguera B, Couse ME, Long J, et al. The long form of the leptin receptor (OB-Rb) is widely expressed in the human brain[J]. Neuroendocrinology,2000,61:187-195.
    [79]Couse M, Buruera B, Parisi JE, et al. Localization of leptin receptor in human brain[J]. Neuroendocrinology,1996,66:145-150.
    [80]雷治海,王红星,武枫林等.猪大脑皮质、海马结构、梨状叶和杏仁核内leptin长形受体mRNA的分布定位[J].畜牧兽医学报,2002,34(1):206-210.
    [81]王红星,雷治海,丁裴等.猪下丘脑内leptin长形受体mRNA的分布定位[J].南京农业大学学报,2002,25(1):80-83.
    [82]Javed I, Sueli P, Robet V. et al. Localization of leptin receptor-like immunoreactivity in the corticotropes, somatotropes, and gonadotropes in the ovine anterior pituitary [J]. Endocrinology, 2000,141:1515-1520.
    [83]Mercer JG, Hoggard N, Williams LM, et al. Localization of leptin receptor mRNA and the long form splice variant (OB-Rb) in mouse hypothalamus and adjacent brain regions by in situ hybridization[J]. FEBS Letters,1997 387:113-116.
    [84]Zamorano PL, Mahesh VB, De Sevilla LM, et al. Expression and localization of the leptin receptor in endocrine neuroendocrine tissues of the rat[J]. Neuroendocrinology,1997,65: 223-228.
    [85]Jin L, Zhang SY, Burgueara BG, et al. Leptin and leptin receptor expression in rat and mouse pituitary cells [J]. Endocrinology,2000,141(1):333-339.
    [86]Buyse M, Ovesjo ML, Goiot H, et al. Expression and regulation of leptin receptor proteins in afferent neurons of the vagus nerve [J]. European Journal of Neuroscience,2001,14:64-72.
    [87]Lin J, Bard CR, Matteri RL, et al. Long form leptin receptor mRNA expression in the brain, pituitary and other tissues in the pig[J]. Domest Anim Endocrinol,2000,19(1):53-61.
    [88]Chen SC, Cunninghan JJ, Smeyne RJ, et al. Expression of OB receptor splice variants during prenatal development of the mouse[J]. J Recept Signal Transduct Res,2000,20 (1): 87-103.
    [89]Matsudal J, Hatta T, Naora H, et al. Development changes in long-form leptin:receptor expression and localization in rat brain[J]. Endocrinology,1999,140(11):5233-5238.
    [90]Udagawa J, Hatta T, Naora H, et al. Expretion of the long form of leptin receptor (OB-Rb) mRNA in the brain of mouse embryos and newborn mice[J]. Brain Res,2000,868(2):251-258.
    [91]Lin J, Barb CR, Krealing R R, et al. Developmental changes in the long form leptin receptor and related neuropeptide gene expression in the pig brain[J]. Biol Reprod,2001,64:1614-1618.
    [92]Guay F, Palin MF, Matte JJ, et al. Effects of breed, parity, and folicacid supplement on the expression of leptin and its receptor's genes in embryonic and endometrial tissues from pigs at day 25 of gestation [J]. Biol Reprod,2001,65(3):921-927.
    [93]Cheung CC, Thornton JE, Nurani SO, et al. A reassessment of leptin's role in triggering the onset of puberty in the rat and mouse [J]. Neuroendocrinology,2001,74(1):12-21.
    [94]Lee DK, O'Neill GP, O'Neill GP, et al. Discovery of a receptor related to the galanin receptors[J]. FEBS Letters,1999 446(0):103-107.
    [95]Muira Al, Chamberlainb L, Elshourbagyc NA, et al. a Novel Human G Protein-coupled Receptor, Activated by the Peptide KiSS-1[J]. J Biol. Chem,2001,276(31):28969-28975.
    [96]Ohtaki T, Shintani Y, Honda S, et al Metastasis suppressor gene KiSS-1 encodes peptide ligand of a G-protein-coupled receptor[J]. Nature,2001,411:613-617.
    [97]Kotani M, Vandenbogaerde A, Vandenbogaerde A, et al The metastasis suppressor gene Kiss-1 encodes kisspeptins,the natural ligands of the orphan G protein-coupled receptor GPR54 [J]. J Biol Chem,2001,276(37):34631-34636.
    [98]Stafford LJ, Ma W, Ma W, et al Identification and characterization of mouse metastasis-suppressor KiSSI and its G-protein coupled receptor [J]. Cancer Research,2002 62 (19):5399-5404.
    [99]Funes S, Hedrick JA, Vassileva G, et al. The KiSS-1 receptor GPR54 is essential for the development of the murine reproductive system[J]. Biochem Biophys Res Commun.,2003:, 312(4):1357-1363.
    [100]Grumbach, Melvin M. A Window of Opportunity:The Diagnosis of Gonadotropin Deficiency in the Male Infant[J]. Journal of Clinical Endocrinology & Metabolism,2005,90(5): 3122-3127.
    [101]Pitteloud N, Acierno JS, J r Astrid U, et al. Reversible Kallmann Syndrome, Delayed Puberty, and Isolated Anosmia Occurring in a Single Family with a Mutation in the Fibroblast Growth Factor Receptor 1 Gene[J]. Journal of Clinical Endocrinology & Metabolism,2005, 90(3):1317-1322.
    [102]Parhar IS, Ogawa S, Sakuma Y. Laser cap tured single digoxigenin-labeled neurons of gonadotrop in-releasing hormone types reveal a novel G p rotein2coup led recep tor (GPR54) during maturation in cichlid fish[J]. Endocrinol,2004,145(8):3613-3618.
    [103]Seminara SB, Messager S, Chatzidaki EE, et al. The GPR54 gene as a regulator of puberty[J]. N Engl J Med.,2003,349(17):1614-1627.
    [104]王兰芳,乐国伟.研究基因差异表达的新方法:mRNA差异显示技术[J].饲料研究,2001,6:1~3.
    [105]Xia T, Jang YH, Zhou HT, et al. Progress in mRNA differential display[J]. Development and Reproductive Biology,1996,5(1):60-72.
    [106]王夏.快速,有效筛选新的功能基因——差异显示技术[J].微生物学通报,2003,30(4):123-124.
    [107]Liang P. Distribution and cloning of eukaryotic mRNA by means of differential display refinemeng and optimization [J]. Nucleic Acid Research,1993,21:3269-3275.
    [108]朱冰,刘殿武,崔俊生等荧光标记mRNA差异显示法研究中药对肝星状细胞基因表达的影响[J].山东中医杂志,2003,22(2):111-113.
    [109]王刚石,王孟薇,尤纬缔等.荧光标记mRNA差异显示技术[J].中国应用生理学杂志,2000,4(16):373-376.
    [110]Bauer D. How to improve primer design use of mRNA differential display[J]. Nucleic Acids Research,1993,21(18):4272-4280.
    [111]王征旭,曾锦章,洪毅等.应用mRNA差异显示技术克隆新的肝癌相关基因的研究[J].中华实验外科杂志,2000,17(5):413-415.
    [112]景润春,易平.水稻野败型细胞质雄性不育系统花药的RRM特异引物差异展示分析[J].作物学报,2001,27(6):842-846.
    [113]Zimmermann JW, Schultz RM. Analysis of gene expression in the primer plantation mouse embryo:Use of mRNA differential display[J]. Proc Nucleic Acid Sci, USA,1994(9):5456-5460.
    [114]Malhotra K, Foltz L, Mahoney WC, et al. Interaction and effect of annealing temperature on primers used in differential display RT-PCR[J]. Nucleic Acids Res.,1998 26(3):854-856.
    [115]Chapman MS, Qu N, Pascoe S, et al. Isolation of differentially expressed sequence tags from steroid-responsive. cells using rnRNA differential display[J]. Mol Cell Endocrinol,1995, 108(1):1-7.
    [116]Mol L, Miller HM, Li J, et al. Improvements to the differential display method for gene analysis[J]. Biochemical and biophysical research communications,1994199(2):564-569
    [117]Sung YJ, Denman RB. Use of two reverse transcriptases eliminates false-positive results in differential display[J]. BioTechniques,1997,23(3):462-468.
    [118]黄培堂,贾熙华,卢柏松等.mRNA差异显示技术的应用与改进[J].军医进修学院学报2000,21(3):163-166.
    [119]苏青,罗敏,陆志强等.非同位素mRNA差异显示方法的建立及应用[J].上海第二医科大学学报,2000,20(5):405-407.
    [120]Von DER, Kammer H, Albrecht C, et al. Identification of genes regμLated by muscarinic acetylcholine receptors:application of an improved and statistically comprehensive mRNA differential display technique[J]. Nucleic Acids Research,,1999,27(10):2211-2218.
    [121]Lohmann J, Schickle H, Bosch TCG. REN display, a rapid and efficient method for nonradioactive differential display and mRNA isolation[J]. Biotechniques,1995,18(2):200~202.
    [122]Robert P. Differential display without radioactivity-a modified procedure[J]. Bio Techniques,1996,21(3):408-412.
    [123]毛爱军,王台,宋艳茹.用差异显示反转录PCR银染技术研究植物基因表达的差异[J].生物化学与生物物理进展,2001,28(5):736-739.
    [124]Lievens S, Doormachtig S, Holsters M. A critical evaluation of differential display as a tool to identify genes involved in legume nodμLation:looking back looking forward[J]. Nucleic Acids Research,2001,29(17):3459~3468.
    [125]Frost MR, Guggenheim JA. Mammalian polyadenylation sites:implications for differential display[J]. Nucleic Acids Research,1999,27(5):1368~1391.
    [126]Zendman AJ, Comelissen IM, Weidle UH, et al. TM7XN1, a novel human EGF-TM7-like cDNA, delected with mRNA differential display using human melanoma cell lines with different metastatic potential[J]. FEBS Lett,1999,446(2~3):292~298.
    [127]Schroeder AA, Lawrence CE, Abrahamsen MS. Differential mRNA display cloning and characterization of a cryptosporidium parvum gene expressed during intracellμLar development[J]. J Parasitol,1999,85(2):213~220.
    [128]Li MD, Matter RL, Macdonald GJ, et al. Overexpression of subynit of thyoid stimμLating homone in meishan swine identified by differential display[J]. Joural of Animal Science,1996, 74:2104~2111.
    [129]Ponsuksili S, Wimmers K, Schellander K. Application of differential display to identify porcine liver ESTs[J]. Gene,2001,280(1-2):75~85.
    [130]Li W, Zhang J, Yu W, et al. Expression of stage specific genes during zygotic gene activation in preimplantation mouse embryos[J]. Zoolog Science,2003 20(11):1389~1393.
    [131]Wesolowski SR, Raney NE, Ernst CW. Developmental changes in the fetal pig transcriptome[J]. Physiology and Genomics,2004,16(2):268~274.
    [132]Clouscard-Martinato C, Mulsant P, Robic A, et al. Characterization of FSH-regulated genes isolated by mRNA differential display from pig ovarian granulose cells[J]. Anim Genet,1998,29: 98-106.
    [133]Kuneke G, Parvizi N, Elsaesser F. Effect of maloxone and pulsatile luteinizing-hormone-releasing hormone infusions on oestradiol-induced luteinizing hormone surges in immature gilts[J]. J.Reprod.Fertil.,1993,97:395-401.
    [134]Evans ACO, O'Doherty JV. Endocrine changes and management factors affecting puberty in gilts[J]. Livestock Production Science,2001,68:1-12.
    [135]薛庆善.体外培养的原理与技术[M]:北京科学出版社,2001,516-517.
    [136]Kuneke G, Parvizi N, Elsaesser F. Effect of maloxone and pulsatile luteinizing-hormone-releasing hormone infusions on oestradiol-induced luteinizing hormone surges in immature gilts[J]. J.Reprod.Fertil.,1993,97:395-401.
    [137]Evans ACO, O'Doherty JV. Endocrine changes and management factors affecting puberty in gilts[J]. Livestock Production Science,2001,68:1-12.
    [138]Pellieu C, sauthier T, Domenighetti A, et al. Nenropeptide Y(NPY) potentiates phenylephrine-induced mitogen-activated protein kinase activation in primary cardiomyocytes via NPY Y5 receptors[J]. Proc Natl Acad Sci USA,2000,97(4):1595-1600.
    [139]Chronwall BM, DiMaggio DA, Massari VJ, et al. The anatomy of neuropeptide-Y-containing neurons in rat brain[J]. Neuroscience,1985,15(4):1159-81.
    [140]Colmers WF, Bleakman D. Effects of neuropeptide Y on the electrical properties of neurons[J]. Trends Neurosci.,1994,17(9):373-9.
    [141]Larhammar D. Structural diversity of receptors for neuropeptideY, peptide YY and. pancreatic polypeptide[J]. Regulatory Peptides,1996,65(3):165-174.
    [142]孙妍.GPR54/kisspeptin的生殖内分泌作用研究进展[J].国际病理科学与临床杂志,2005,25(5):438-440.
    [143]Muira Al, Chamberlainb L, Elshourbagyc NA, et al. a novel human G protein-coupled receptor, activated by the peptide KISS-1 [J]. J Biol. Chem,2001,276:28969-28975.
    [144]Lee DK, Nguyen T, O'Neill GP, et al. Discovery of a receptor related to the galanin receptors[J]. FEBS Letters,1999,446(1):103-107.
    [145]Zhang Y, Ricardo P, Margherita M, et al. Positional cloning of the mouse obese gene and its human homologue[J]. Nature,1994,372:425-432.
    [146]Burguera B, Couce M E, Long J, etal. The long form of the leptin receptor (Ob-Rb) is widely expressed in the human brain[J]. Neuroendocrinology,2000,71(3):187-195.
    [147]Mercer JG, Hoggard N, Williams L M, etal. Localization of leptin receptor mRNA and the long form splice variant(Ob-Rb) in mouse hypothalamus and adjacent brain regions by in situ hybridization[J]. FEBS Letters,1996,387:113-116.
    [148]Heiman ML, Sloop KW, Chen Y, etal. Extension of neuroendocrine axes to include leptin[J]. Janim Sci,1999,77:33-42.
    [149]Dumont Y, Fournier A, St-Pierre S, et al Comparative characterization and autoradiographic distribution of neuropeptide Y receptor subtypes in the rat brain[J]. Journal of Neuroscience,1993,13:73-86.
    [150]Chronwall BM, DiMaggio DA, Massari VJ, et al. The anatomy of neuropeptide-Y-containing neurons in rat brain[J]. Neuroscience,1985,15(4):1159-1181.
    [151]Hatakeyama S, Kawai Y, Ueyama T, et al. Nitric oxide synthase-containing magnocellular neurons of the rat hypothalamus synthesize oxytocin and vasopressin and express Fos following stress stimuli [J]. Journal of Chemical Neuroanatomy,1996,11(4):243-256.
    [152]Erickson JC, Clegg KE, Palmiter RD, et al. Sensitivity to leptin and susceptibility to seizures of mice lacking neuropeptde Y[J]. Nature,1996,381(6581):415-418.
    [153]Tichopad A, Michael W, Didier A. Tissue specific expression pattern of bovine prion gene: quantification using real-time RT-PCR[J]. Molecular and Cellular Probes,2003,17:5~10.
    [154]Bustin S. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays [J]. J Mol Endocrinol,2000,25:169~193.
    [155]Morrison T, Weis J, Wittwer C T. Quantification of low-copy transcripts by continuous SYBR Green I monitoring during amplification[J]. BioTechni ques,1998,24:954-962.
    [156]David G. Gene quantification using real-time quantitative PCR:An emerging technology hits the main stream [J]. Ex perimental Hematology,2002,30(503-512).
    [157]陈树林,孙志宏,卿素珠等.GnRH神经元在发情期奶山羊下丘脑中的免疫组化定位[J].中国农学通报,2005,21(2):1-6.
    [158]Nanobashvili A. Airaksinen MS. Kokaia M et al. Development and persistence of kindling epilepsy are impaired in mice lacking glial cell line-derived neurotrophic factor family receptor a2[J]. Proc Natl Acad Sci USA,2000,97(22):12312-12317.
    [159]Shahab M, Mastronaardi C, Stephanie B, et al. Increased hypothalamic GPR54 signaling: A potential mechanism for initiation of puberty in primates [J]. Proc Natl Acad Sci USA,2005, 102(6):2129-2134.
    [160]Josephine N. Nocillado Berta Levavi-Sivan, et al. Temporal expression of G-protein-coupled receptor 54(GPR54), gonadotropin-releasing hormones (GnRH), and dopamine receptor D2(drd2) in pubertal female grey mullet, Mugil cephalus[J]. Genral and comparative endocrinology,2007,150:278-287.
    [161]Wauter M, Robert V C, Luc F V G. Human leptin:from an adipocyte hormone to anendocrine mediator[J]. Eur J of Endocrinology,2000,143:293-311.
    [162]周杰,赵茹茜,韦习会,等.二花脸和大白猪脂肪leptin和下丘脑中Ob-Rb基因表达的发育性变化[J].中国科学,2003,33(6):525-531.
    [163]Harold GS, Pau KY, Yang S P. Coital and estrogen singals:a contrast in the preovulatory neuroendocrine networks of rabbits and Rhesus Monkeys[J]. BioRepro,1997,56:310-321.
    [164]Ahima RS, Prabacaran D, Mantzoros C, et al. Role of leptin in the neuroendocrine response to fasting[J]. Nature,1996,382:250-252.
    [165]周杰,赵茹茜,韦习会,等.二花脸和大白猪脂肪leptin和下丘脑中Ob-Rb基因表达的发育性变化[J].中国科学,2003(6):525-531.
    [166]Liang P, Pardee AB. Differential display of eukaryotic messenger RNA by means of the Polymerase Chain Reaction[J]. Science,1992,257(14):967-971.
    [167]李亮.乌骨鸡肝脏差异显示DD表达序列标签ESTs的筛选及分析鉴定:[学位论文][D].四川:四川农业大学,2004.
    [168]毛爱军,王台,宋艳茹.用差异显示反转录PCR银染技术研究植物基因表达的差异[J].生物化学与生物物理进展,2001,28(5):736~739.
    [169]Aderem A, Ulevitch RJ. Toll2like receptor in the induction of the innate immune response [J]. Nature,2000,406 (6796):782-787.
    [170]sibsiM B, Ravid R, Gveric D, et al. Van Noort JM. Broad expression of Toll-like receptors in the human central nervous system[J]. J Neuropathol Exp Neurol,2002,61(11):1013-1021.
    [171]Nishimura M, Naito S. Tissue-specific mRNA expression profiles of human Toll-like receptors and related genes[J]. Biol Pharm Bull,2005,28(5):886-892.
    [172]Laflamme N, Rivert S. Toll-like receptor 4:the missing link of the cerebral innate immune response triggered by circulating gram-neg-ative bacterial cell wall components[J]. FASEB J, 2001,15(1):155-163.
    [173]MUzio M, Natoli G, Sccani S, et al. The human tool signaling pathway:divergence of nuclear factor Kappa B and JNK/SAPK activation upstream of tumor necrosis factor receptor associated factor 6 (TRAF6)[J]. J Exp Med,1998,187(12):2097-2101.
    [174]Zhang GL, Ghosh S. Toll-like receptor mediated NF2κβB activation:a phylogenetically conserved paradigm in innate immunity [J]. J Clin Invest,2001,107 (1):13-19.
    [175]Guha M, Mackman N. LPS induction of gene expression in human monocytes[J]. Cell Signal,2001,13 (2):85-94.
    [176]Brightbill DH, Libraty DH, Krutzik SR, et al. Host defense mechanisms triggered by microbial lipoproteins through toll-like receptors[J]. Science,1999,285 (5428):732-736.
    [177]Flo TH, Halaas O, Lien E, et al. Human toll-like receptor2 mediates monocyte activation by Listeria monocytogenes, but not by group B streptococci or lipopolysaccharide[J]. J Immunol, 2000,164(4):2064-2069.
    [178]Aliprantis AO, Yang RB, Mark MR, et al. Cell activation and apoptosis by bacterial lipoproteins through toll-like receptor 2[J]. Science,1999,285 (5428):736-739.
    [179]Yokoyama Y,Sato S,Futagami M et al. Prognostic significance of vascular endothelial growth factor and its receptors in endometrial carcinoma. GynecolOncol,2000,77:413-418
    [180]Suhardja A, Hoffman H. Role of growth factors and their receptors in proliferation of microvascular endothelial cell.Microsc Res Tech,2003,60:70-75.