不同基底拉伸过程对细胞生长、取向的影响及其骨架重排机制探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在总结以往研究者工作的基础上,使用生物力学,细胞生物学、免疫组织化学、计算机图象处理等多种研究方法,对培养的原代血管平滑肌细胞、EC’V-304细胞株施以不同大小、方向和频率的周期性基底拉伸(10%,0.67Hz;0.15%,0.4Hz),同时结合使用静态基底拉伸和静态基底松弛的不同组合,研究在不同的力学过程中细胞生长和取向的调整;微丝、微管骨架的重排;生长和生理行为的变化等。通过总结实验结果对细胞取向和细胞骨架重排的力信号机制进行了探讨,强调指出了力学信号引起细胞响应并不完全依赖于化学信号机制,而可通过对细胞骨架张力的调整直接引起细胞在形态、取向方面的主动响应。主要工作和得出的相应结论如下:
     1.对应用于本文研究的弹性膜圆管膨胀加载装置、四点弯曲梁单向交变等应变加载装置进行了力学分析,并对其中可能产生不利于实验研究影响的地方作了校正和处理。针对对各装置加载特点改进对照组设置,对照消除基底拉伸以外力学因素的影响。
     2.用组织培养法原代培养兔血管平滑肌细胞,并利用免疫组织化学方法对其进行了鉴定。
     3.对血管平滑肌细胞施以不同应变率的周期拉伸(最大应变分别为lO%、0.1 5%),利用放射免疫法分析血管平滑肌细胞血管紧张素II的分泌:微管吸吮系统分析细胞与基底粘附力;免疫组织化学方法分析应力纤维的排布;流式细胞仪分析细胞分裂指数;利用计算机图象分析系统分析细胞形态和取向结果表明:
     (1) 周期拉伸使平滑肌细胞取向垂直于主应变方向,周期拉伸引起细胞取向调整存在应变阈值。
     (2)周期拉伸对血管平滑肌细胞增殖、表型分化、分泌行为、基底粘附等生理行为均产生影响。
     (3)周期拉伸下细胞取向的发生,与周期拉伸的其他一些生理效应有不同的机制
     4.改变周期拉伸的加载方向,研究血管平滑肌细胞取向的再调整过程,结果表明:细胞对周期拉伸所引起的取向调整有一定的“记忆”现象。
     5.对不同接种形态(圆斑、半平面)的ECV-304细胞施以最大应变10%,0.67HZ的周期拉伸,用FITC.鬼笔环肽标记微丝、FITC-微管仅亚基抗体标记微管,并利
    
    用计算机图象处理系统分析细胞取向、长短径的变化趋势和不同方向上的增殖和迁移情况。结果表明:
    1) 周期拉伸条件下,细胞群体形态的重建表现出与细胞个体取向相似的变化形式,垂直于主应变方向上细胞增殖速度快于应变方向;垂直于主应变方向上的迁移速度快于主应变方向。
     2) 周期拉伸条件下细胞取向的调整与细胞长短径比的变化表现出明确的相关性;周期拉伸使细胞在应变方向上的截距缩短,在应变垂直向上截距增长;应力纤维的重排与细胞取向的调整直接相关。
     6.基于上述结果本文提出了周期拉伸下细胞取向重排的机制可能是周期拉伸中的松弛过程使应力纤维在应变方向上解聚,而相对加强了应力纤维在垂直于应变方向上聚合的假想。
     7.为验证上述假想,并分别研究不同力学状态下细胞的取向和骨架重排,将周期拉伸分解成不同的拉伸和放松过程,设计了一系列对细胞进行拉伸和松弛的实验,结合参考文献和这些实验的结果可以得出:
     1)细胞应力纤维装配在没有其他因素干扰时倾向于沿细胞长轴进行的。周期拉伸作为刺激因素能激发应力纤维、粘着斑的装配(可能通过力敏感离子通道和整合素信号系统等化学信号机制)。
     2)周期拉伸可看作拉伸过程和放松过程的组合,当细胞受到拉伸时,骨架(应力纤维)做出相应的调整,应力纤维的原始长度被延长。被延长后的应力纤维,在周期拉伸的放松过程中会处于松弛状态。
     3)当应力纤维受到松弛作用时,会发生解聚和破坏。
     4)在周期拉伸过程中,倾向于与拉伸方向平行的应力纤维,松弛的程度明显高于那些倾向于与拉伸方向垂直的应力纤维,于是它们因松弛而破坏的概率也相应的高。
     5)在松弛破坏应力纤维的同时,周期拉伸促进它们的再装配(这两个效应是并存的),这样反复的装配一选择性破坏.再装配的结果,最终使垂直于拉伸方向的应力纤维占优势,并使得细胞发生取向的调整。
    8.提出应力纤维松弛过程的理想模型,并通过分析指出放松后的应力纤维的张力状态与应力纤维的原始应变率、应力纤维弹性模量、应力纤维与主应变方向的夹角、应变率有关。
Cyclic stretch of substrate at different magnitude,direction and frequency(1 0%,0.67Hz;0.1 5%,0.4Hz)and diverse combination of static stretch and relaxation was exerted on vascular smooth muscle cells(VSMCs)and ECV-304 cells.The effect of different mechanical courses on the cell morphology,orientation,cytoskeleton rearrangements,and the changes in growth and physiological behavior during was studied by using biomechanics,cell Biology,Immunohistochemistry and computer image processing methods.The abbrevi ative detail s as follow:
     1.Elastomeric·tube—expanding apparatus and four-point—bend loading apparatus,
    which were used for exerting cyclic substrate stretch on cells was standardized based on mechanical analysis.
     2.Primary culture of rabbit vascular smooth muscle cells(VSMC)were used in the study were identified by immunohistochemical method
     3.Exerted cyclic stretch(the largest strain of 10%and O.15%)with different frequency on vascular smooth muscle.Radioimmunochemical method was used for analyzing the angiotensin II secretion of VSMC;immunochemical method was used to study the distribution of stress fiber;flow cytometer was used to study cell division index and computer image analyzing system was used to study cell morphology and orientation.The results showed that:
     (1)Cyclic stretch made orientation of smooth muscle cell perpendicular to main
    stress direction There was a strain threshold for stimulating the orientation adjustment.
     (2)Cyclic stretch had effects on physiological behavior like proliferation,phenotyping,secretion and substrate adhesion of vascular smooth muscle.
     (3)Under cyclic stretch,the mechanism involved in cell orientation differed from other physiological effects.
     4. In order to study the readjustment process in VSMC,the direction of loading was altered 90。.Results showed that the cells had sort of“memory'’phenomenon of orientation adjustment caused by periodic stretch.
    
    
     5.Exerted cyclic stretch(maximal strain 1 0%,0.67Hz)on ECV-304 cell planted in various original shapes(round dot,half plane).Marked microfilament with FITC—phalloidin and microtubules with FITC-a-tubulin antibody.The computer imaging software was used to analyze cell orientation,changes in long/short axis ratio, proliferation and migration in different direction.The results showed:
     (1)Under cyclic stretch,cell proliferated faster in the direction vertical to main strain than in strain direction while migrated faster in the direction vertical to strain than in strain direction.So the reconstruction of cell colony morphology appeared similar with individual cell’S orientation under cyclic stretch.
     (2)Under cyclic stretch,obvious relativity existed between cell orientation
     adjustment and change of the ratio of cellular short/long axis.Intercept in the strain direction was shortened but in the direction verti cal to strain was increased.
    Rearrangement of stress fibers correlated directly with cell orientation adjustment.
     6.Based on these results it is hypothesized that assembly&disassembly of stress
    fibers is involved in the cell orientation rearrangements.It appeared that under cyclic stretch there was disassembly of stress fibers in the direction of strain whereas there was assembling of stress fibers in the vertical direction.
     7.In order to validate this hypothesis a series of experiments to stretch and relax cells were designed.Results of these experiments showed:
     1)Cell’S stress fiber assembly tended to take place along the direction of cellular long axis when there weren’t any disturbing factors.As a stimulating agent,
    periodic stretch could activate assembly of stress fibers and adhesion foci(probably owning to chemical signaling mechanisms such as force—sensitive ion channel and integrin signaling system,etc).
     2)When cells are stretched,cytoskeleton(stress fiber)adjusted accordingly, which elongated the original length of stre
引文
[1] K.J.Gooch, C.J.Tennant. Mechanical forces: their effects on cells and tissues. First edition , New York, Springer-Verlag berlin Heidelberg, 1997, 1-15, 19-55, 123-147
    [2] R Busse, I Fleming. Pulsatile stretch and shear stress: physical stimuli determining the production of endothelium-derived relaxing factors. Journal of Vascular Research, 1998, 35 (2) : 73-84
    [3] Matsumoto T, Kawakami M, Kuribayashi K, et al. Cyclic mechanical stretch stress increases the growth rate and collagen synthesis of nucleus pulposus cells in vitro. Spine, 1999, 24 (4) : 315-9
    [4] Rhoads DN, Eskin SG, McIntire LV. Fluid flow releases fibroblast growth factor-2 from human aortic smooth muscle cells. Arterioscler Thromb Vasc Biol. 2000, 20 (2) : 416-21
    [5] Meaney, D. F. , Bain, et al. Dynamic Stretch Correlates to Both Morphological Abnormalities and Electrophysiological Impairment in a Model of Traumatic Axonal Injury. Journal of Neurotrauma, 2001, 18 (5) : 499-512
    [6] Zou Y, Hu Y, Metzler B, et al. Signal transduction in arteriosclerosis: mechanical stress activated MAP kinases in vascular smooth muscle cells (review). Int J Mol Med, 1998, 1(5) : 827-34
    [7] T Shioi. Cyclic stretch upregulates production of interleukin-8 and monocyte chemotactic and activating factor/monocyte chemoattractant protein-1 in human endothelial cells. Arteriosclerosis, Thrombosis, and Vascular biology, 1998, 18 (6) : 894-901
    [8] Lih Kuo, Michael J. Davis, and Williamm. Chilian. Endothelium-dependent, flow-induced dilation of isolated coronary arterioles. The American Physiological Society, 1990, H1063-H1069
    [9] Ziegler T, Bouzour e K, Harrison VJ, et al. Influence of oscillatory and unidirectional flow environments on the expression of endothelin and nitric oxide synthase in cultured endothelial cells. Arterioscler Thromb Vasc Biol, 1998, 18(5): 686-92
    [10] De Keulenaer GW, Chappell DC, Ishizaka N, et al. Oscillatory and steady laminar shear stress differentially affect human endothelial redox state: role of a superoxideproducing NADH oxidase. Circ Res, 1998, 82(10): 1094-101
    [11] Ueba H, Kawakami M, Yaginuma T. Shear stress as an inhibitor of vascular smooth muscle cell proliferation. Role of transforming growth factor-beta 1 and tissue-type plasminogen activator. Arterioscler Thromb Vasc Biol, 1997, 17 (8) : 1512-6
    Li Q, Muragaki Y, Ueno H, et al. Stretch-induced proliferation of cultured vascular smooth
    
    [12] muscle cells and a possible involvement of local renin-angiotensin system and platelet-derived growth factor (PDGF). Hypertens Res, 1997, 20 (3) : 217-23
    [13] Inoue N, Kawashima S, Hirata KI, et al. Stretch force on vascular smooth muscle cells enhances oxidation of LDL via superoxide production. Am J Physiol , 1998, 274 (6 Pt 2) : H1928-32
    [14] Watase M, Awolesi MA, Ricotta J, et al. Effect of pressure on cultured smooth muscle cells. Life Sci, 1997, 61 (10) : 987-96
    [15] Smiesko, V., J. Kozik, et al. Role of endothelium in the control of arterial diameter by blood flow. Blood Vessels, 1985, 22: 247-251
    [16] Li_C, Xu_Q. Mechanical stress-initiated signal transductions in vascular smooth muscle cells. CELLULAR SIGNALLING, 2000, 12 (7) : 435-445
    [17] Yamada, Takako. Stretch-induced morphological changes of human endothelial cells depend on the intracellular level of Ca2+ rather than of cAMP. LIFE SCIENCES, 2000, 67 (21) : 2605-2614
    [18] EMEL SONGU-MIZE, NANCY SEVIEUX, XIANG LIU, et al. Effect of short-term cyclic stretch on sodium pump activity in aortic smooth muscle cells. Am J Physiol Heart Cire Physiol, 2001, 281: H2072-H2078
    [19] Wiesner TF, Berk BC, Nerem RM. A mathematical model of the cytosolic-free calcium response in endothelial cells to fluid shear stress. Proc Natl Acad Sci USA, 1997, 94(8): 3726-31
    [20] Lee CJ, Kwon S, Lee YH, et al. Membrane stretch increases the activity of Ca(2+)-activated k+ channels in rabbit coronary vascular smooth muscles. Yonsei Med J, 2000, 41 (2) : 266-72
    [21] Wu_Z, Wong_K, Glogauer_M, et al. Regulation of stretch-activated intracellular calcium transients by actin filaments. Biochemical and biophysical research communications, 1999, 261(2): 419-425
    [22] Kada_K, Yasui_K, Naruse_K, et al. Orientation Change of Cardiocytes Induced by Cyclic Stretch Stimulation: Time Dependency and Involvement of Protein Kinases. Journal of molecular and cellular cardiology, 1999, 31(1): 247-260
    [23] Mills, I., Cohen, et al. Strain Activation of Bovine Aortic Smooth Muscle Cell Proliferation and Alignment: Study of Strain Dependency and the Role of Protein Kinase A and C Signaling Pathways. JOURNAL OF CELLULAR PHYSIOLOGY, 1997, 170 (3) : 228-234
    [24] Nerem RM, Alexander RW, Chappell DC, et al. The study of the influence of flow on vascular endothelial biology. Am J Med Sci, 1998, 316(3):169-75
    [25] Chiu JJ, Wung BS, Hsieh HJ, et al. Nitric oxide regulates shear stress-induced early growth response-1. Expression via the extracellular signal-regulated kinase pathway in endothelial cells. Circ Res, 1999, 85 (3) : 238-46
    
    
    [26] Foltz IN, Schrader JW. Activation of the stress-activated protein kinases by multiple hematopoietic growth factors with the exception of interleukin-4. Blood, 1997, 89 (9) : 3092-6
    [27] Marczin N, Ryan US, Catravas JD. Methylene blue inhibits nitrovasodilator- and endothelium-derived relaxing factor-induced cyclic GMP accumulation in cultured pulmonary arterial smooth muscle cells via generation of superoxide anion. J Pharmacol Exp Ther , 1992, 263 (1) : 170-9
    [28] ISAO TAMURA, JOEL ROSENBLOOM, EDWARD MACARAK, et al. Regulation of Cyr61 gene expression by mechanical stretch through multiple signaling pathways. Am J Physiol Cell Physiol, 2001, 281: C1524-C1532
    [29] Hamada K, Takuwa N, Yokoyama K, et al. Stretch activates Jun N-terminal kinase/stress-activated protein kinase in vascular smooth muscle cells through mechanisms involving autocrine ATP stimulation of purinoceptors. J Biol Chem, 1998, 273 (11) : 6334-40
    [30] T Koyama, M Oike, Y Ito. Involvement of Rho-kinase and tyrosine kinase in hypotonic stress-induced ATP release in bovine aortic endothelial cells. JOURNAL OF PHYSIOLOGY-LONDON THEN CAMBRIDGE-, 2001, 532 (Pt-3) : 759-769
    [31] J K Bubien, D J Benos, D G Warnock. Stretch modulates amiloride sensitivity and cation selectivity of sodium channels in human Blymphocytes. AMERICAN JOURNAL OF PHYSIOLOGY, 1996, 270 (1 Pt 1) : C224-C234
    [32] Issei Komuro, Sumiyo Kudo, Tsutomu Yamazaki, et al. Mechanical stretch activates the stress-activated protein kinases in cardiac myocytes. The FASEB Journal, 1996, Vol. 10. 631-636
    [33] Ikeda_M, Kito_H, Sumpio_B_E. Phosphatidylinositol-3 kinase dependent MAP kinase activation via p21ras in endothelial cells exposed to cyclic strain. BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1999, 257 (3) : 668-671
    [34] Cucina A, Sterpetti AV, Borrelli V, et al. Shear stress induces transforming growth factor-beta 1 release by arterial endothelial cells. Surgery, 1998, 123 (2) : 212-7
    [35] Rolli M, Kotlyarov A, Sakamoto KM, et al. Stress-induced stimulation of early growth response gene-1 by p38/stress-activated protein kinase 2 is mediated by a cAMP-responsive promoter element in a MAPKAP kinase 2-independent manner. J Biol Chem, 1999, 274 (28) : 19559-64
    [36] PawlakG. Posttranscriptional Down-regulation of ROCKI/Rho-kinase through an MEK-dependent Pathway Leads to Cytoskeleton Disruption in Ras-transformed Fibroblasts. Molecular Biology of the Cell-Bethesda, 2002, 13 (1) : 336-347
    Wirtz, Denis, Tseng, et al. Strain hardening of actin filament networks. Regulation by the dynamic cross-linking protein alpha-actinin. JOURNAL OF BIOLOGICAL CHEMISTRY, 2000,
    
    [37] 275(46): 35886-35892
    [38] Smith_P_G, Garcia_R, Kogerman_L, et al. Strain Reorganizes Focal Adhesions and Cytoskeleton in Cultured Airway Smooth Muscle Cells. EXPERIMENTAL CELL RESEARCH, 1997, 232 (1) : 127-136
    [39] A K Tanswell, M Post. Mechanical strain induces pp60src activation and translocation to cytoskeleton in fetal rat lung cells. JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (12) : 7066-7071
    [40] A J Ingram, L James, L Cai, et al. NO inhibits stretch-induced MAPK activity by cytoskeletal disruption. JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 275 (51) : 40301-40306
    [41] Francis J. Alenghat and Donald E. Ingber. Mechanotransduction: All Signals Point to Cytoskeleton, Matrix, and Integrins. Science's stke. 2002.
    [42] Chappell DC, Varner SE, Nerem RM, et al. Oscillatory shear stress stimulates adhesion molecule expression in cultured human endothelium. Circ Res, 1998, 82 (5): 532-9
    [43] Harrison VJ, Ziegler T, Bouzourene K, et al. Endothelin-1 and endothelin-converting enzyme-1 gene regulation by shear stress and flow-induced pressure. J Cardiovasc Pharmacol,31 suppl 1998, 1():S38-41
    [44] Taber LA. A model for aortic growth based on fluid shear and fiber stresses. J Biomech Eng, 1998, 120 (3) : 348-54
    [45] Katoh, Kazuo, Kano, et al. Stress fiber organization regulated by MLCK and Rho-kinase in cultured human fibroblasts. AMERICAN JOURNAL OF PHYSIOLOGY, 2001, 280 (6-1) : C1669-C1679
    [46] Sadoshima, Jun-Ichi, Takahashi, et al. Roles of mechano-sensitive ion channels, cytoskeleton, and contractile activity in stretch-induced immediate-early gene expression and hypertrophy of cardiac myocytes. PNAS: PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (20) : 9905-9909
    [47] Feng, B., He, et al. Role of cytoskeleton in the mechanisms of stretch-induced cardiomyocytical hypertrophy in vitro. Journal of Medical Colleges of People's Liberation Army, 2001, 16 (1) : 1-3
    [48] Zhao, S., Suciu, et al. Synergistic Effects of Fluid Shear Stress and Cyclic Circumferential Stretch on Vascular Endothelial Cell Morphology and Cytoskeleton. ARTERIOSCLEROSIS, THROMBOSIS, AND VASCULAR BIOLOGY, 1995, 15 (10) : 1781
    [49] M Sokabe. Mechanotransduction and intracellular signaling mechanisms of stretch-induced remodeling in endothelial cells. HEART AND VESSELS, 1997, Suppl 12() : 191-193
    J P Moorman, D Luu, J Wickham, et al. A balance of signaling by Rho family small GTPases
    
    [50] RhoA, Racl and Cdc42 coordinates cytoskelet al morphology but not cell survival. ONCOGENE, 1999, 18 (1) : 47-57
    [51] Sakai K, Mohtai M, Iwamoto Y. Fluid shear stress increases transforming growth factor beta 1 expression in human osteoblast-like cells: modulation by cation channel blockades. Calcif Tissue Int, 1998, 63 (6) : 515-20
    [52] Clemow DB, Steers WD, Tuttle JB. Stretch-activated signaling of nerve growth factor secretion in bladder and vascular smooth muscle cells from hypertensive and hyperactive rats. J Cell Physiol, 2000, 183 (3) : 289-300
    [53] Seko Y, Takahashi N, Shibuya M, et al. Pulsatile stretch stimulates vascular endothelial growth factor (VEGF) secretion by cultured rat cardiac myocytes. Biochem Biophys Res Commun, 1999, 254 (2) : 462-5
    [54] Davies MG, Owens EL, Mason DP, et al. Effect of platelet-derived growth factor receptor-alpha and -beta blockade on flow-induced neointimal formation in endothelialized baboon vascular grafts. Circ Res, 2000, 86 (7) : 779-86
    [55] Standley PR, Obards TJ, Martina CL. Cyclic stretch regulates autocrine IGF-I in vascular smooth muscle cells: implications in vascular hyperplasia. Am J Physiol, 1999, 276 (4 pt 1) : E697-705
    [56] Iwasaki H, Eguchi S, Ueno H, et al. Mechanical stretch stimulates growth of vascular smooth muscle cells via epidermal growth factor receptor. Am J Physiol Heart Circ Physiol , 2000, 278 (2) : H521-9
    [57] Okada M, Matsumori A, Ono K, et al. Cyclic stretch upregulates production of interleukin-8 and monocyte chemotactic and activating factor/monocyte chemoattractant protein-1 in human endothelial cells. Arterioscler Thromb Vasc Biol, 1998, 18 (6) : 894-901
    [58] Hu Y, B K G, Wick G, et al. Activation of PDGF receptor alpha in vascular smooth muscle cells by mechanical stress. FASEB J, 1998, 12 (12) : 1135-42
    [59] Aromatario C, Sterpetti AV, Palumbo R, et al. Fluid shear stress increases the release of platelet derived growth factor BB (PDGF BB) by aortic endothelial cells. Minerva Cardioangiol, 1997, 45 (1-2) : 1-7
    [60] Kanda, Keiichi, Matsuda, et al. Mechanical stress-induced orientation and ultrastructural change of smooth muscle cells cultured in three-dimensional collagen lattices. CELL TRANSPLANTATION, 1994, 3 (6) : 481-492
    [61] P.Shirinsky, Alexander S. Antonov, Konstantin G. Birukov, et al. Mechano-chemical Control of Human Endothelium Orientation and Size. The journal of Cell Biology., 1989, Vol.109, 331-339
    Toshiaki Iba and Bauer E. sumpio. Morphological Response of Human Endothelial Cells
    
    [62] Subjected to Cyclic Strain in Vitro. Microvascular research, 1991, 42, 245-254
    [63] B E Sumpio, A J Banes, M Buckley, et al. Alterations in aortic endothelial cell morphology and cytoskeletal protein synthesis during cyclic tensional deformation. JOURNAL OF VASCULAR SURGERY, 1988, 7 (1) : 130-138
    [64] Delley PA, Hall MN. Cell wall stress depolarizes cell growth via hyperactivation of rho1. J Cell Biol, 1999, 147 (1) : 163-74
    [65] James H.-C. Wang, Pasc Goldschmidt-Clermont, Frank C.-P. Yin. Contractility Affects Stress Fiber Remodeling and Reorientation of Endothelial Cells Subjected to Cyclic Mechanical Stretching. Annals of Biomedical Engineering., 2000, vol. 28, pp. 1165-1171
    [66] Y. Zhang, O. P. Hamaill, On the discrepancy between whole-cell and membrane patch mechanosensitivity in Xenopus cocytes. J. Physiol. 523, 101-115 (2000)
    [67] Alistair J. Ingram, Leighton James, Lu Cai, et al. NO Inhibits Stretch-induced MAPK Activity by Cytoskeletal Disruption. THE JOURNAL OF BIOLOGICAL. CHEMISTRY, 2000, Vol. 275. No. 51. pp.40301-40306
    [68] Ingber D E, The architechture of life. Scientific American, 1998. 278(1).030-39
    [69] Dimitrije Stamenovic, Jeffrey J. Fredberg, Ning Wang, et al. A Microstructural Approach to Cytoskeletal Mechanics based on Tensegrity. J. theor. Biol., 1996, 181, 125-136
    [70] Ning Wang, Keiji Naruse, Dimitrije Stamenovic, et al. Mechanical behavior in living cells consistent with the tensegrity model. PNAS, 2001, vol. 98 (no.14) 7765-7770
    [71] Chen C S, Mrksich M, Huang S, et al. Geometric control of cell life and death. Science, 1997, 276(5317): 1425-1428
    [72] Ingber DE. How cells(might)sense microgravity. FASEB J.1999.13(suppl). S3-S15
    [73] Yano Y, Saito Y, Narumiya S, Sumpio B E. Involvement of rho p21 in Cyclic Strain-Induced Tyrosine Phosphorylation of Focal Adhesion Kinase (pp125FAK), Morphological Changes and Migration of Endothelial Cells. Biochemical and biophysical research communications, 1996 224(2):508-515
    [74] 韩启德、文允镒,血管生物学 第一版,北京,北京医科大学中国协和医科大学联合出版社,1997,3-24,24-39,85-107,148-160,160-173,205-213
    [75] peter F. Davis, 施永德等(译),流动介导内皮细胞的力传导
    [76] C. T. Huang. et al. A method for inducing equi-biaxial and uniform strains in elastomeric membrane used as cell substrates. J. Biomechanics. 1994.27(2). 227-232
    [77] D. B. Jones. et al. Biomechanical signal transduction of mechanical strain in osteoblast-like cells. Biomaterials 1991. 12: 101-110
    Ichiro Owan. et al. Mechanotransduction in bone: osteoblasts are more responsive to fluid forces
    
    [78] than mechanical strain. Am. J. Physiol. 1997. 273. C810-C815
    [79] 张西正,匡震邦,蔡绍皙等,一种四点弯曲梁单向交变等应变细胞加载装置的研制. 医疗卫生装备. 1999. 83(4). 6-8
    [80] Li Q, Muragaki Y, Hatamura I, et al. Stretch-induced collagen synthesis in cultured smooth muscle cells from rabbit aortic media and a possible involvement of angiotensin II and transforming growth factor-beta. J Vasc Res, 1998, 35 (2) : 93-103
    [81] 司徒镇强,吴军正. 细胞培养. 第一版,北京,世界图书出版社. 1996. 69-116
    [82] Bochaton-piallat M L, Gabbiani F, Gabbiani G. Heterogeneity of rat aortic smooth muscle cell replication during development: Correlation with replicative activity after experimental endothelial denudation in adults. J Submicro Cytol Pathol, 1994, 26 (1): 1-8
    [83] 汤健,唐朝枢. 循环系统的分泌功能. 北京:北京医科大学, 中国协和医科大学联合出版社,1989. 69-74
    [84] 苏予,王红月等. 培养的大鼠主动脉平滑肌细胞合成和分泌心钠素和肾素. 中国循环杂志,1991,6(5):341-343
    [85] K Matrougui, LB Tank , L Loufrani, etal. Involvement of Rho-kinase and the actin filament network in angiotensin II-induced contraction and extracellular signal-regulated kinase activity in intact rat mesenteric resistance arteries. Arteriosclerosis, Thrombosis, and Vascular biology, 2001, 21 (8) : 1288-1293
    [86] Chapman GB, Durante W, Hellums JD, etal. Physiological cyclic stretch causes cell cycle arrest in cultured vascular smooth muscle cells. Am J Physiol Heart Circ Physiol, 2000, 278 (3) : H748-54
    [87] Hipper A, Isenberg G. Cyclic mechanical strain decreases the DNA synthesis of vascular smooth muscle cells. Pflugers Arch, 2000, 440 (1) : 19-27
    [88] 唐丽灵. 周期性机械拉伸对大鼠成骨细胞生理活性和力学性质的影响[学位论文]. 重庆:重庆大学生物工程学院,2002,54, 67-79
    [89] Yoshiko Yano, John Geibel, and Bauer E. Sumpio. Cyclic Strain Induces Reorganization of Integrin (5(1 and (2(1 in Human Umbilical Vein Endothelial Cells. Journal of Cellular Biochemistry, 1997, 64:505-513
    [90] 张惠静、蔡绍皙、卢晓. 整合素在机械应力响应中的作用. 2002. 29(3). 359-364
    [91] Geert W. Schmid-Schonbein, Tadashi Kosawada, Richard Skalak, et al. Membrane Model of Endothelial Cells and Leukocytes. A Proposal for the Origin of a Cortical Stress. Journal of Biomechanical Engineering. 1995. 117:171-178
    W Zhang, B Chen, W Zeng, et al. Differentially expressed genes in vascular endothelial cell line ECV 304 induced by high density lipoprotein. National medical Journal of China
    
    [92] -Beijing- , 82(13):921-923 2002
    [93] Y Deng, H Xu, K Huang, X Yang, C Xie, J Wu. Size effects of realgar particles on apoptosis in a human umbilical vein endothelial cell line: ECV-304. Pharmacological research, 2001. 44(6): 513-518
    [94] Pourati J, Maniotis A, Spiegel D, et al. Is cytoskeleton tension a major determinant of cell deformability in adherent endothelial cells? Am. J. Physiol. 274. C1283-C1289
    [95] Fleischer M, Wohlfarth-Bottermann KE. Correlation between tension force generation, fibrillogenesis and ultrastructure of cytoplasmic actomyosin during isometric and isotonic contractions of protoplasmic strands. Cytobiologie. 1975. 10:339-65
    [96] Halliday NL, Tomasek JJ. Mechanical properties of the extracellular matrix influence fibronectin fibril assembly in vitro. Exp. Cell. Res. 1995. 217:109-17
    [97] David A. Calderwood, Sanford J. Shattil, and Mark H. Ginsberg. Integrins and Actin Filaments: Reciprocal Regulation of Cell Adhesion and Signaling. THE JOURNAL OF BIOLOGICAL.CHEMISTRY, 2000, Vol. 275. No. 30. pp.22607-22610
    [98] Wang, Huicong, IP, etal. Cell orientation response to cyclically deformed substrates: Experimental validation of a cell model. JOURNAL OF BIOMECHANICS, 1995, 28 (12) : 1543-1552
    [99] Keith Burridge and Magdalena Chrzanowska-Wodnicka. Focal adhesions, contractility, and signaling. Annu. Rev. Cell Dev. Biol., 1996, 12: 463-519
    [100] Jun-Lin Guan. Signaling through cell adhesion molecules. New York Washington. D.C. CRC Press
    [101] 翟中和. 细胞生物学. 第一版. 北京,高等教育出版社. 2000.
    [102] Hynes RO. Integrins: versatility, modulation, and signaling in cell adhesion. Cell. 1992. 69: 11-25
    [103] Massia SP, Hubbell JA. An RGD spacing of 440 nm is sufficient for integrin (v(3 mediated fibroblast spreading and 140 nm for focal contact and stress fiber formation. J. Cell Biol. 1991. 114: 1089-100
    [104] Woods A, Couchman JR, Johansson S, et al. Adhesion and cytoskeletal organisation of fibroblasts in response to fibronectin fragments. EMBO J. 1986. 5: 665-70
    [105] Woods A, Couchman JR. Protein kinase C involvement in focal adhesion formation. J. Cell Sci. 1992. 101: 227-90
    [106] Ibraghimov-Beskrovnaya O, Milatovich A, Ozcelik T, et al. Human dystroglycan: skeletal muscle cDNA, genomic structure, origin of tissue specific isoforms and chromosomal localization. Hum. Mol. Genet. 1993. 2: 1651-57
    
    
    [107] Miyamoto S, Akiyama SK, Yamada KM. Synergistic roles for receptor occupancy and aggregation in integrin transmembrane function. Science. 1995. 267: 883-85
    [108] La Flamme SE, Akiyama SK, Yamada KM. Regulation of fibronectin receptor distribution. J. Cell Biol. 1992. 117: 437-47. Erratum. J. Cell Biol. 1992. 118 (2): 491
    [109] Helen Priddle, Lance Hemmings, Susan Monkley. et al Disruption of the Talin Gene Compromises Focal Adhesion Assembly in Undifferentiated but Not Differentiated Embryonic Stem Cells. J. Cell Biol. 1998 142: 1121-1133
    [110] Fredrick M. Pavalko, Neal X. Chen. et al. Fluid shear-induced mechanical signaling in MC3T3-E1 osteoblasts requires cytoskeleton-integrin interactions. Am J Physiol Cell Physiol 1998 275: C1591-C1601
    [111] Nix DA, Beckerle MC. Inducible nuclear localization of the focal contact protein, zyxin. Mol. Biol. Cell. 1995. 6: A63
    [112] Harris AK, Wild P, Stopak D. Silicone rubber substrata: a new wrinkle in the study of cell locomotion. Science. 1980. 208: 177-79
    [113] Reinhard J, Scheel AA, Diekmann D, et al. A novel type of myosin implicated in signalling by rho family GTPases. EMBO J. 1995. 14: 697-704
    [114] Ridley AJ, Comoglio PM, Hall A. Regulation of scatter factor/hepatocyte growth factor responses by Ras, Rac, and Rho in MDCK cells. Mol. Cell. Biol. 1995. 15: 1110-22
    [115] Nishiyama T, Sasaki T, Takaishi K, et al. rac p21 is involved in insulin-induced membrane ruffling and rho p21 is involved in hepatocyte growth factor- and 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced membrane ruffling in KB cells. Mol. Cell. Biol. 1994. 14: 2447-56
    [116] H Kosako, T Yoshida, F Matsumura, etal. Rho-kinase/ROCK is involved in cytokinesis through the phosphorylation of myosin light chain and not ezrin/radixin/moesin proteins at the cleavage furrow. ONCOGENE, 2001, 19 (52) : 6059-6064
    [117] Amano, Mutsuki, Katoh, etal. Rho-kinase-mediated contraction of isolated stress fibers. JOURNAL OF CELL BIOLOGY, THE, 2001, 153 (3) : 569-583
    [118] Hirata, Dai , Nakano, etal. Genes that cause aberrant cell morphology by overexpression in fission yeast: A role of a small GTP-binding protein Rho2 in cell morphogenesis. JOURNAL OF CELL SCIENCE, 1998, 111 (2) : 149-159
    [119] M Kobayashi, E Azuma, M Ido, etal. A pivotal role of rho gtpase in the regulation of morphology and function of dendritic cells. JOURNAL OF IMMUNOLOGY, THE, 2001, 167 (7) : 3585-3591
    Sinnett-Smith J. Zachary I, Valverde AM. Bombesin stimulation of p125 focal adhesion
    
    [120] kinase tyrosine phosphorylation. Role of protein kinase C, Ca2+ mobilization, and the actin cytoskeleton. J. Biol. Chem., 1993.268:14261-68
    [121] Chrissobolis, S., Sobey, etal. Evidence That Rho-Kinase Activity Contributes to Cerebral Vascular Tone In Vivo and Is Enhanced During Chronic Hypertension : Comparison With Protein Kinase C. CIRCULATION RESEARCH, 2001, 88 (8) : 774-779
    [122] Chong LD, Traynor-Kaplan A, Bokoch GM, et al. The small GTP-binding protein Rho regulates a phosphatidylinositol 4-phosphate 5-kinase in mammalian cells. Cell. 1994. 79: 507-13
    [123] Critical Role of Rho-Kinase and MEK/ERK Pathways for Angiotensin II-Induced Plasminogen Activator Inhibitor Type-1 Gene Expression. ARTERIOSCLEROSIS, THROMBOSIS, AND VASCULAR BIOLOGY, 2001, 21 (5) : 868-873
    [124] Kumagai N, Morii N, Fujisawa K. ADP-ribosylation of rho p21 inhibits lysophosphatidic acidinduced protein tyrosine phosphorylation and phosphatidylinositol 3-kinase activation in cultured Swiss 3T3 cells. J. Biol.Chem., 1993. 268:24535-38
    [125] T Ichiki, H Shimokawa, K Egashira, et al. Rho-kinase mediates angiotensin ii-induced monocyte chemoattractant protein-1 expression in rat vascular smooth muscle cells. Hypertension an official journal of the american heart association inc, 2001, 38 (1): 100-104
    [126] Royal, Isabelle, Lamarche-Vane, et al. Activation of Cdc42, Rac, PAK, and Rho-kinase in response to hepatocyte growth factor differentially regulates epithelial cell colony spreading and dissociation. Molecular Biology of the Cell - Bethesda, 2000, 11 (5): 1709-1725
    [127] Begum, Najma, Duddy, et al. Regulation of myosin-bound protein phosphatase by insulin in vascular smooth muscle cells: Evaluation off the role of Rho kinase and phosphatidylinositol-3-kinase-dependent signaling pathways. Molecular endocrinology, 2000, 14 (9): 1365-1376
    [128] Hiroaki Shimokawa , Kunio Morishige , Kenji Miyata, etal. Long-term inhibition of Rho-kinase induces a regressin of arteriosclerotic coronary lesions in a porcine model in vivo. CARDIOVASCULAR RESEARCH, 2001, 51 (1) : 169-177
    [129] Morii N, Teru-uchi T, Tominaga T, et al. A rho gene product in human blood platelets. II. Effects of the ADP-ribosylation by botulinum C3 ADP-ribosyltransferase on platelet aggregation. J. Biol. Chem. 1992. 267: 20921-26
    [130] Tominaga T, Sugie K, Hirata M, et al. Inhibition of PMA-induced, LFA-1-dependent lymphocyte aggregation by ADP ribosylation of the small molecular weight GTP binding protein, rho. J. Cell Biol. 1993. 120: 1529-37
    Rankin S, Rozengurt E. Platelet-derived growth factor modulation of focal adhesion kinase
    
    [131] (p125FAK) and paxillin tyrosine phosphorylation in Swiss 3T3 cells. Bellshaped dose response and cross-talk with bombesin. J. Biol. Chem. 1994. 269: 704-10
    [132] Wilson L, Carrier MJ, Kellie S. pp125FAK tyrosine kinase activity is not required for the assembly of F-actin stress fibres and focal adhesions in cultured mouse aortic smooth muscle cells. J. Cell Sci. 1995. 108: 2381-91
    [133] Fincham VJ, Wyke JA, Frame MC. v-Src-induced degradation of focal adhesion kinase during morphological transformation of chicken embryo fibroblasts. Oncogene. 1995. 10:2247-52
    [134] Avraham S, London R, Fu Y, et al. Identification and characterization of a novel related adhesion focal tyrosine kinase (PAFTK) from megakaryocytes and brain. J. Biol. Chem. 1995. 270: 27742-51
    [135] Lev S, Moreno H, Martinez R. et al. Protein tyrosine kinase Pyk2 involved in Ca2+-induced regulation of ion channel and MAP kinase functions. Nature. 1995. 376: 737-45
    [136] Sasaki H, Nagura K, Ishino M, et al. Cloning and characterization of cell adhesion kinase , a novel protein-tyrosine kinase of the focal adhesion kinase subfamily. J. Biol. Chem. 1995. 270: 21206-19
    [137] Kaplan KB, Swedlow JR, Morgan DO, et al. c-Src enhances the spreading of src-/-fibroblasts on fibronectin by a kinase-independent mechanism. Genes Dev.1995. 9:1505-17
    [138] Bockholt SM, Burridge K. An examination of focal adhesion formation and tyrosine phosphorylation in fibroblasts isolated from src (-), fyn (-), and yes (-) mice. Cell Adhes. Commun., 1995. 3:91-100
    [139] Ingber D E. Tensegrity: the architectural basis of cellular mechanotransdution. Annual Review of Physiology. 1997. 59. 575-599
    [140] Plopper GE, McNamee HP, Dike LE. Convergence of integrin and growth factor receptor signaling pathways within the focal adhesion complex. Mol. Biol. Cell, 1995. 6:1349-65
    [141] Hotchin NA, Hall A. The assembly of integrin adhesion complexes requires both extracellular matrix and intracellular rho/rac GTPases. J. Cell Biol. 1995. 131: 1857-65
    [142] Barry ST, Ridley AJ, Flinn HM, et al. Integrin-mediated assembly of focal adhesions and actin stress fibers is rho-dependent. Cell Adhesion Commun. 1996.
    [143] Chun JS, Jacobson BS. Requirement for diacylglycerol and protein kinase C in HeLa cell-substratum adhesion and their feedback amplification of arachidonic acid production for optimum cell spreading. Mol. Biol. Cell. 1993. 4: 271-81
    [144] Peppelenbosch MP, Qiu RG, de Vries-Smits AM, et al. Rac mediates growth factor-induced arachidonic acid release. Cell. 1995. 81: 849-56
    Nobes CD, Hall A. Rho, rac and cdc42 GTPases regulate the assembly of multimolecular
    
    [145] focal complexes associated with actin stress fibers, lamellipodia,, and filopodia. Cell. 1995. 81: 53-62
    [146] Sampath, R., Gallagher, P. J., Pavalko, F. M. Cytoskeletal interactions with the leukocyte integrin(2 cytoplasmic tail. Activation-dependent regulation of associations with talin and (-actinin Journal of biological chemistry , 1998 273(50):33588-33594
    [147] Lin YC, Grinnell F. Decreased level of PDGF-stimulated receptor autophosphorylation by fibroblasts in mechanically relaxed collagen matrices. J. Cell Biol. 1993. 122: 663-72
    [148] Zachary I, Sinnett-Smith J, Turner CE. Bombesin, vasopressin, and endothelin rapidly srimulate tyrosine phosphorylation of the focal adhesion-associated protein paxillin in Swiss 3T3 cells. J. Biol.Chem., 1993. 268:22060-65
    [149] Vuori K, Ruoslahti E. Association of insulin receptor substrate-1 with integrins. Science, 1994. 266:1576-78
    [150] Sastry SK, Lakonishok M, Thomas DA. Integrin alpha subunit ratios, cytoplasmic domains, and growth factor synergy regulate muscle proliferation and differentiation. J. Cell Biol., 1996. 133:169-84
    [151] Sastry SK, Horwitz AF. Integrin cytoplasmic domains: mediators of cytoskeletal linkages and extra-and intracellular initiated transmembrane signaling. Curr. Opin. Cell Biol., 1993. 5:819-31
    [152] Meredith JE Jr. Fazeli B, Schwartz MA. The extracellular matrix as a cell survival factor. Mol. Biol. Cell, 1993. 4:953-61
    [153] Frisch SM, Vuori K, Ruoslahti E. Control of adhesion-dependent cell survival by focal adhesion kinase, J. Cell Biol ., 1996.
    [154] Xu L, Owens LV, Sturge GC. Attenuation of the expression of the focal adhesion kinase induces apoptosis in tumor cells. Cell Growth Diff., 1996. 7:413-18
    [155] Fuller B. Tensegrity. Portfolio Artnews Annu . 1961. 4. 112-127
    [156] Connelly R, Back A. Mathematics and tensegrity. American Scientist. 1998. 86(2). 142-159
    [157] Ingber D E, Folkman J. Tension and compression as basic determinants of cell form and function: utilization of a cellular tensegrity mechanism. Stein ed . Cell shape Determinants : Regulation and Regulatory Role. Orlando, FL. Academic Press. 1989. 1-32
    [158] Bailly E, Celati C, Bornens M. The cortical actomyosin system of cyto chalasin D-treated lymphoblasts. Exp. Cell Res. 1991. 196 (2). 287-293
    [159] Huang S, Chen C S, Ingber D E. Control of cyclin D1, p27kip1 and cell cycle progression in human capillary endothelial cells by cell shape and cytoskeletal tension. Mol. Biol. Cell. 9. 3179-3193
    
    
    [160] Mooney D, Hansen L, Langer R, et al. Extracellular matrix controls tubulin monomer levels in hepatocytes by regulating protein turnover. Mol. Biol. Cell. 1994. 5 (12). 1281-1288
    [161] Wang N, Butler J P, Ingber D E. Mechanotransduction across the cell surface and through the cytoskeleton. Science, 1993, 260 (5111): 1124-1127
    [162] Coughlin M F, Stamenovic D. A tensegrity model of the cytoskeleton in spread and round cells. Journal of Biomechanical Engineering. 1998. 120 (12). 770-777
    [163] Zaner K S, Valberg P A. Viscoelasticity of F-actin measured with magnetic microparticle. J. Cell Biol. 1989. 109 (5). 2233-2243
    [164] Chen HC, Appeddu PA, Parsons JT. Interaction of focal adhesion kinase with cytoskeletal protein talin . J.Biol.Chem., 1995. 270:16995-99
    [165] Frank Rose, Cristopher Kürth-landwehr, Ulf Sibelius, etal. Role of Actin Depolymerization in the Surfactant Secretory Response of Alveolar Epithelial Type II Cells. Am. J. Respir. Crit. Care Med., 1999, Vol.159 (No.1) 206-212
    [166] Rosales O, Sumpio B. Pulsatile stretch of endothelial cells in vitro stimulates phosphoinositide pathway. JOURNAL OF CELLULAR BIOCHEMISTRY , 1991 -(SUPPL.):120
    [167] Brophy, C. M., Mills, I., Rosales, O., Isales, C. Phospholipase C: A Putative Mechanotransducer for Endothelial Cell Response to Acute Hemodynamic Changes. 1993 Biochemical and Biophysical Research Communications , 190(2):576
    [168] Rousseau S, Houle F, Kotanides H, etal. Vascular endothelial growth factor (VEGF)-driven actin-based motility is mediated by VEGFR2 and requires concerted activation of stress-activated protein kinase 2 (SAPK2/P38) and geldanamycin-sensitive phosphorylation of focal adhesion kinase. J Biol Chem, 2000, 275 (14) : 10661-72
    [169] 黄岂平,王红兵,卢晓等,周期应变对动脉平滑肌细胞分泌血管紧张素II的影响. 生物物理学报 1999 vol 15 No.3 sept
    [170] Masakuni Noda, Tetsuo Katoh, Noriko Takuwa, et al. Synergistic stimulation of parathyroid Hormone related peptide gene expression by mechanical stretch and angiotensin II in rat aortic smooth muscle cells. J. Bio. Chem, 1994. 269 (27): 17911-17917
    [171] Cowan DB, Lye SJ, Langille BL. Regulation of vascular connexin43 gene expression by mechanical loads. Circ Res, 1998, 82 (7) : 786-93-
    [172] Matsuda N, Yokoyama K, Takeshita S, et al. Role of epidermal growth factor and its receptor in mechanical stress-induced differentiation of human periodontal ligament cells in vitro. Arch Oral Biol. 1998, 43 (12): 987-97
    王红兵、黄岂平、卢晓等. 机械拉伸对血管平滑肌细胞粘附及生长的影响. 生物化学与
    
    [173] 生物物理进展. 2001. Vol 28(1) 103-107
    [174] U Savla, P H Sporn, C M Waters. Cyclic stretch of airway epithelium inhibits prostanoid synthesis. AMERICAN JOURNAL OF PHYSIOLOG , 1997 273(5 Pt 1):L1013-L1019
    [175] Jingyuan Xu, Yiider Tseng, and Denis Wirtz. Strain Hardening of Actin Filament Networks-regulation by the dynamic cross-linking protein (-actinin. the Journal of Biological.Chemistry, 2000, Vol. 275. No. 46. pp. 35886-35892
    [176] 张西正、匡震邦、蔡绍皙等,单微吸管测量细胞切向粘附力方法的研究 实验力学 2000, vol 15 No 1.