不同聚集态Pt纳米粒子的合成、表面组装及其电化学和特殊红外性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料具有许多不同于常规材料的特殊性质,引起了材料、化学、物理、生物、工程等众多学科的广泛兴趣,是纳米科技的核心问题。铂族金属由于催化活性高、性能稳定而被作为电催化剂广泛应用于能源转换、绿色合成等重要领域。研制纳米尺度的金属材料电催化剂是电催化的热点课题之一。
     本论文以化学法合成金属Pt纳米粒子(Pt_n)。UV-vis光谱和TEM研究表明,Pt_n主要是在加热回流的开始阶段形成。利用双硫醇把合成的Pt_n组装到金基底上,用Fe(CN)_6~(4-/3-)氧化还原电对作探针反应研究了组装过程中电子传导能力,结果表明,二硫醇单层膜阻碍Au基底与Fe(CN)_6~(4-/3-)之间的异相电子传递,但进一步组装Pt_n后,由于量子隧穿效应使得电子的传递能力提高。分别用AFM和XPS对组装体系的表面形貌和组成进行了分析。原位FTIRS和CV结果显示,与本体Pt相比,吸附于Pt_n上的CO有显著的增强红外吸收。同时,由于表面效应和小尺寸效应,CO在Pt_n上的氧化电位较高,呈现出较多的吸附状态。
     本文首次发现,无论在固/液或固/气界面,处于离散状态的Pt纳米粒子表现出增强红外吸收,而团聚的Pt纳米粒子则具有异常红外效应。本文还首次运用透射红外光谱对不同聚集状态Pt纳米粒子的红外性能进行了研究。结果表明,随着Pt纳米粒子从分散态到不同程度的聚集态,吸附CO分子的红外吸收特征给出从增强红外吸收到Fano类型光谱,再到异常红外效应的转化。进一步证明异常红外效应是纳米材料所固有的普遍现象并与纳米材料的尺寸和聚集状态密切相关。研究还发现团聚态的Pt纳米粒子对甲醇氧化具有较好电催化特性。
     本论文研究结果对于深入认识金属纳米粒子性能以及探索异常红外效应产生的根源等具有重要意义,同时对研制直接燃料电池电催化剂有应用价值。
As a new rising discipline, nanomaterial has attracted multidisciplinary interests from material science, chemistry, physics, biology and engineering, etc. because of their unusual properties that could not possessed by corresponding bulk materials. Nanomaterial is the core subject of nano- science and technology. Platinum group metals are widely used in energy conversion and green synthesis duo to their high electrocatalytic activity and stability. The research and preparation of metal electrocatalyst at nanometer scale is one of the key subjects in electrocatalysis.
    In this paper, Pt nanoparticles (Ptn) were prepared by chemical reduction method. The results of UV-vis and TEM showed that Ptn are formed mainly at the initial stage of refluxing. The prepared Pt nanoparticles were then self-assembled on Au substrate using dithiol as cross-linkers. The ability of electronic transfer during the self-assembly of dithiol and Ptn was studied in the presence of redox active probe Fe (CN) 64-/3- couple. The result indicates that the dithiol monolayer serves as a large barrier for the electron transfer. The redox current is increased significantly when Pt nanoparticles are self-assembled on the top of the dithiol monolayer assembly electrode. The surface morphology and composition of assembly electrode were analyzed by AFM and XPS. In situ FTIRS results illustrated that CO adsorbed on Ptn exhibit enhanced IR absorption, and exhibited more adsorption states in comparison with COad on bulk platinum. Electrochemical CV results illustrated that COad oxidized at higher potential becaus
    e of the surface structural effect and nano-size effect of Pt nanoparticles.
    In this paper, for the first time, we have revealed that dispersed Pt nanoparticles for CO adsorption display enhanced IR absorption at either solid | electrolyte or solid | gas interface. However abnormal infrared effects (AIREs) was observed for
    
    
    CO adsorbed on agglomerates of Pt nanoparticles. In order to investigate the origin of the AIREs of nanomaterials, transmission IR spectroscopy was applied to study CO adsorption on Pt nanoparticles with different agglomeration states. The results illustrated that along with the increase of the degree of agglomeration of Pt nanoparticles, the IR spectral patterns of CO adsorbates were transformed from enhanced IR absorption bands to Fano-like spectral line shapes, and further to abnormal anti-absorption IR features. It was demonstrated that the AIREs is a general phenomena of nanomaterials and it is closely related to the size and agglomeration state of nanomaterials. The agglomerates of Pt nanoparticles have also been found to exhibit significant electrocatalytic activity for the oxidation of methanol.
    The investigation in the current paper has contributed to understand deeply the nature of the metal nanomaterials, and is of significant importance in understanding the origin of special optical properties of nanometer materials.
引文
[1] 黄德欢,纳米技术与应用[M],中国纺织大学出版社,2001.
    [2] 张立德,牟季美,纳米材料和纳米结构[M],科学出版社,2001.
    [3] 张志焜,崔作林,纳米技术与纳米材料[M],国防工业出版社,2000.
    [4] 张立德,牟季美,纳米材料学[M],辽宁科技出版社,1994
    [5] Uyeda R.金属烟粒子结晶学[M].金寿日,赵新洛译.西南师范大学出版社,1993.
    [6] Birringer R, Gleiten H, Klein HP, et al., Synthesis of n-metals [J]. Phys.Lett. 1984.102A (8): 365-369.
    [7] 李泉,曾广赋,席时权,纳米粒子[J],化学通报,1995,6:29-34.
    [8] P Ball, L Garwin, et al., Science at the atom scale [J], Nature, 1992, 355: 761-766.
    [9] M Ocana, V L Fomes, Factors affecting the infrared and Raman-spectra of rutile powders [J], Solid State Chem., 1988,75 (2): 364-372.
    [10] 陈卫,孙世刚,纳米材料科学中的谱学研究[J],光谱学与光谱分析,2002,22(3):504—510.
    [11] 赵藻藩,周性尧,张悟铭,赵文宽,仪器分析[M],高等教育出版社,1990。
    [12] N Zhang, N Raman, J K Bailey et al., A new sol-gel route for the preparation of nanometer-scale semiconductor particles that exhibit quantum optical behavior[J], J.Phys.Chem., 1992, 96 (23): 9098-9100.
    [13] 周延怀,冯玉英,陆海彦等,GeO_2-SiO_2纳米复合材料的合成及其光学特性研究[J],光谱学与光谱分析,2000,20(1):23-24.
    [14] C M Mo, L D Zhang, Z Yuan et al., Optical absorption of nanostructured A1_2O_3 [J], NanostructuredMater.1995, 5(1): 95-99.
    [15] B M I Van der Zande, P Laurent, A M Rifat et al. Optical Properties of Aligned Rod-Shaped Gold Particles Dispersed in Poly (vinyl alcohol) Films [J], J.Phys.Chem.B, 1999,103: 5761-5767.
    [16] C A Foss, G L Homyak, J A Stockert et al. Template-Synthesized Nanoscopic Gold Particles: Optical Spectra and the Effects of Particle Size and Shape[J], J.Phys.Chem., 1994,98: 2963-2971.
    [17] W X Tu, H F Liu et al. Rapid synthesis of nanoscale colloidal metal clusters by microwave irradiation[J], J.Mater. Chem., 2000,10:2207-2211.
    [18] C-W Chen, Takashi Takezako, Kazuya Yamamoto et al. Poly (N-vinylisobutyramide)-stabilized platinum nanoparticles: synthesis and
    
    temperature-responsive behavior in aqueous solution[J], colloids and Surfaces A, 2000,169:107-116.
    [19] De Haart LGJ, G Blasse. The observation of exciton emission from rutile single-crystals [J], J.Sol.Stat.Chemistry., 1986,61(1):135-136.
    [20] C M Mo, L D Zhang, C Y Xie et al. Luminescence of nanometer-sized amorphous-silicon nitride solids [J], J.Appl.Phys., 1993,73 (10):5185-5188.
    [21] N Murase, R Jagannathan, Y Kanematsu et al. Fluorescence and EPR Characteristics of Mn~(2+)-Doped ZnS Nanocrystals Prepared by Aqueous Colloidal Method [J], J.Phys. Chem.B, 1999,103: 754-760.
    [22] R L Fork, D W Taylor et al. Unusual optical -emission from microcrystals containg Eu~(2+)-experiment [J], Phys.Rev.B, 1979,19(7):3365-3398.
    [23] K Sooklal, B S Cullum, S M Angel et al. Photophysical Properties of ZnS Nanoclusters with Spatially Localized Mn~(2+) [J], J.Phys. Chem.B, 1996,100:4551-4555.
    [24] M A Chamarro, V Voliotis, R Grousson et al. Optical properties of Mn-doped CdS nanocrystals [J], J. Cryst. Growth., 1996.159:853-856.
    [25] X Yuan, L X Cao, H B Wan et al. Study on the self-packing of SnO2 nanoparticles at the air-hydrosol interface and its composite LB films with arachidie acid [J], Thin Solid Film, 1998,327-329:33-36.
    [26] Y Zhu, H Wang, P P Ong. Evidence of photoluminescence related to subsurface Si-O-Si bonds in sputtered silicon nanoparticles[J], Solid State Communications, 2000,116:427-429.
    [27] P Madhu Kumar, S Badrinarayanan, Murali Sastry et al. Nanocrystalline TiO2 studied by optical, FTIR and X-ray photoelectron spectroscopy: correlation to presence of surface states [J], Thin Solid Film, 2000,358:122-130.
    [28] D Li, D H Wu, X Wang et al. Rapid preparation of porous Fe2O3/SiO2 nanoeomposites via an organic precursor[J], Materials Research Bulletin, 2001,36:2437-2442.
    [29] Y S Kang, D K Lee, P Stroeve et al. FTIR and UV-vis spectroscopy studies of Langmuir-Blodgett films of stearic acid/γ-Fe2O3 nanoparticles[J], Thin Solid Film, 1998,327-329:541-544.
    [30] 蔡树芝,钟汇才,王颖等,纳米硅粉末的制备及红外吸收光谱研究[J],科学通报,1996,41(16): 1451-1453.
    [31] H Gong, S G Sun, J T Li, et al., Surface combinatorial studies of IR properties of nanostructured Ru film electrodes using CO as probe molecule [J], Electrochim. Acta, 2003, 48: 2933-2942.
    [32] G Q Lu, S G Sun, S P Chen et al. Novel properties of dispersed Pt and Pd thin layers supported on GC for CO adsorption studied using in situ MS-FTIR reflection spectroscopy[J],J.Electroanal.Chem., 1997,421:19-23.
    
    
    [33] G Q Lu, L R Cai, S G Sun et al, In situ FTIR spectroscopic studies of CO adsorption on electrodes of nanometer-thin layer of Pt-Ru and Pt-Pd surface alloys [J], Chinese Science Bulletin, 1999, 44(11): 1470-1473.
    [34] G Q Lu, S G Sun, L R Cai et al. In situ FTIR spectroscopic studies of adsorption of CO, SCN-, and poly(o-phenylenediamine) on electrodes of nanometer thin films of Pt, Pd, and Rh: Abnormal infrared effects (AIREs)[J], Langmuir, 2000, 16:778-786.
    [35] M S Zheng, S G Sun, In situ FTIR spectroscopic studies of CO adsorption on electrodes with nanometer-scale thin films of ruthenium in sulfuric acid solutions [J], J.Electroanal. Chem., 2001,500:223-232.
    [36] M S Zheng, S G Sun, S P Chen, Abnormal infrared effects and electrocatalytic properties of nanometer scale thin film of PtRu alloys for CO adsorption and oxidation[J], J.Appl.Electrochem., 2001,31:749-757.
    [37] Z Chen, S G Sun, N Ding, Abnormal infrared effects of nanometer scale thin film material of PtPd alloy in CO adsorption[J], Chinese Sci. Bulletin, 2001, 46:1439-1442.
    [38] W G Lin, S G Sun, Z Y Zhou, et al, Abnormal infrared effects of nanostructured rhodium thin films for CO adsorption at solid/gas interfaces[J], J.Phys. Chem.B, 2002, 106:11778-11783.
    [39] S G Sun, Chapter in Catalysis and Electrocatalysis of nanoparticles [M], E.R. Savinova, C.G. Vayenas and A. Wieckowski(Eds), Marcel Dekker.Inc., New York, 2003.
    [40] K K Nanda, S N Sarangi, S N Sahu et al. Raman spectroscopy of CdS nanocrystalline semiconductors [J], Physica B, 1999,262:31-39.
    [41] A A Sirenko, J R Fox, I A Akimov, In situ Raman scattering studies of the amorphous and crystalline Si nanoparticles [J], Solid State Communications, 2000,113:553-558.
    [42] S W da Silva, M A G Soler, C Gansan et al., Study of the interactions between the surface chemisorbed layer and the surrounding media in magnetite-coated nanoparticles using Raman spectroscopy [J], J.Magnetism and Magnetic Materials., 2001,226-230 Part2: 1890-1892.
    [43] W S Cho, Structural evolution and characterization of BaTiO_3 nanoparticles synthesized from polymeric precursor[J], J.Phys. Chem.Solids, 1998,59(5): 659-666.
    [44] S Lefrant, I Baltog, M Lamy de La Chapelle et al. Studies by SERS spectroscopy of the structural properties of conducting polymers and carbon nanotubes [J], Synthetic Metals, 1999,101:184-187.
    [45] Y Li, Y R Duan, W H Li, Study on Raman spectrum of nanophase anatase [J], Spectrosc Spect Anal, 2000, 20(5):699-701.
    [46] L D Zhang, B Q Li, C M Bo et al. A study of 27A1 nuclear magnetic resonance in nanoscale A1_2O_3[J], Nanostructured Mater., 1995,5(3):299-306.
    [47] I Fall, J Genin. Mossbauer spectroscopy study of the aging and tempering of high
    
    nitrogen quenched Fe-N alloys: Kinetics of formation of Fel6N2 nitride by interstitial ordering in martensite [J], Metall.Mater.Trans. A 27(8), 1996:2160-2177.
    [48] H T Zhang, X H Chen, Synthesis and characterization of nanocrystallite ZnCrFeO_4 [J], Inogr. Chem. Commun., 2003, 6(8):992-995.
    [49] D C Cook, T h Kim, J C Rawers et al. Microstructural development of iron powder during attritor ball-milling in nitrogen [J], Mater. Sci. Forum, 1996,225:533-538.
    [50] G C Papaefthymiou, K J Bryden, J Y Ying, Mossbauer spectral characteristics of nanostructured Pd-Fe films [J], 2002, 311 (3-4): 279-284.
    [51] Y Ahn, E J Choi, S Kim et al. Magnetization and Mossbauer study of cobalt ferrite particles from nanophase cobalt iron carbonate [J], Mater. Lett., 2001, 50(1): 47-52.
    [52] J M Le Breton, J Teillet, O Crisan et al. Structural properties of amorphous and nanocrystallized Fe-Cu-Nb-Si-B and Fe-Gd-Cu-Nb-Si-B ribbons [J], J. Alloy. Compd., 1997, 262-263:381-389.
    [53] G Kataby, Y Koltypin, J Rothe et al. The adsorption of monolayer coatings on iron nanoparticles: Mrssbauer spectroscopy and XANES results [J], Thin Solid Film, 1998, 333:41-49.
    [54] 王元生,杨裕民,黄兆新,二氧化锡纳米粉搀杂及其显微结构[J],材料研究学报,1998,12(5):531-534.
    [55] Y Ito, S Takamura, M Kobiyama, Nano-crystalline gold studied by positron annihilation [J], Phys.Staus.Solidi.,2000, A179(2):297-303.
    [56] T E M Staab, E Zschech, R Krause-Rehberg, Positron lifetime measurements for characterization of nano-structural changes in the age hardenable AICuMg 2024 alloy [J], J. Mater. Sci., 2000, 35(18): 4667-4672.
    [57] P M G Nambissan, P Sen. Probing the site-specific annihilation of positrons in a nanocomposite medium by 2-detector Doppler broadening measurements [J], Phys. Lett.A, 2000, 272 (5-6): 412-415.
    [58] H Peng, S M Liu, L Ma et al. Growing process of CdS nanoclusters in zeolite Y studied by positron annihilation[J], J. Crystal Growth, 2001, 224 (3-4): 274-279.
    [59] C H Shek, J K L Lai, G M Lin. Investigation of interface defects in nanocrystalline SnO2 by positron annihilation [J], J.Phys. Chem. Solids, 1999, 60: 189-193.
    [60] L Zhou, S-Y Zhang, J-C Cheng et al. Optical absorptions of nanoscaled CoTiO_3 and NiTiO_3 [J], Mater.Sci. Engineering, 1997, B49:117-122.
    [61] 刘方新,胡克良,王寅生等,纳米材料ZrO_2的傅里叶变换红外光声光谱研究[J],光学学报,1994,14(7):692-695.
    [62] 王卫乡,刘颂豪,氮化硅薄膜表面平整度特性分析[J],华南师范大学学报(自然科学)版),1996,1:28-38.
    [63] Z. L. Cui, L. F. Dong, Z. K. Zhang, Oxidation behavior of Nano-Fe prepared by hydrogen
    
    arc plasma method [J], Nanostructured Materials, 1995,5(7-8): 829-833.
    [64] 俞圣雯,陈平平,王广厚,LECBD法制备Pb团簇[J],原子与分子物理学报,1998.sl:264-266.
    [65] H E Schaefer, R Wurschum, R Birringer, et al., Nanometer-sized solids, their structure and properties [J], J. of the Less-common. Met., 1988, 110: 161-169.
    [66] 朱勇,李宗全,吴希俊等,金属毫微粉的制备[J],科学通报,1989,34(17):1302-1303.
    [67] A Tam, G G Moe, W Happer, Particle formation by resonant laser light in alkali-metal vapor[J], Phys. Rev. Lett. 1975, 35(24):1630-1633.
    [68] M A Duncan, T G Dietz, R E Smalley, Laser synthesis of metal clusters from metal carbonyl microcrystals [J], J. Am. Chem. Soc. 1981, 103: 5245-5246.
    [69] M Fuchs, K S Schweizer, Structure of colloid-polymer suspensions [J], J. Phys-Condens. Mat., 2002, 14(12): R.239-R269.
    [70] H Shin, M Agarwal, M R De Guire, A H Heuer, Deposition mechanism of oxide thin films on self-assembled organic monolayers [J], Acta. Mater., 1998, 46(3): 801-815.
    [71] J L Shi, Z X Lin, Characterization of nano-sized ZrO2 powder [J], Powder Technology, 1993, 74(1):7-12.
    [72] J L Shi, J H Gao, Z X Lin, Formation of nanosized spherical aluminum hydroxide particles by urea method [J], Solid State Ionics, 1989, 32/33:537-543
    [73] D Jézéquel, J Guenot, N Jouini, et al, Submicrometer zinc-oxide particles- elaboration in polyol medium and morphological-characteristics[J], J. Mater. Res., 1995, 10(1): 77-83
    [74] X Y Xiao, H Baltruschat, Electrochemical deposition and nanostructuring of As at Pt(111) [J], Langmuir, 2003, 19(18): 7436-7444
    [75] 周根陶,郑永飞,刘双怀,一种新的制备超微粉末的方法——沉淀转化法[J],科学通报 1996.41(4):321-323。
    [76] 王元生,李坚,溶胶.凝胶法制备sb掺杂的α-Fe_2O_3纳米晶过程的结构研究[J],无机材料学报,1998,13(5):745-750.
    [77] G Pacheco-Malagon, A Garcia-Borquez, D Coster, et al., TiO2-A13O3 nanocomposites [J], J. Mat. Res.,1995,10 (5): 1264-1269.
    [78] H Brmemann, W Brijoux, R Brinkmann, et al, Formation of colloidal transition-metals in organic phases and their application in catalysis[J], Angew. Chem., Int. Ed. Engl., 1991, 30(10):1312-1314.
    [79] J S Bradley, E W Hill, S Behal, et al., Preparation and characterization of organosols of monodispersed nanoscale palladium-particle size effects in the binding geometry of adsorbed carbon-monoxide [J], Chem.Mater., 1992, 4(6):1234-1239.
    [80] H. Bnnemann, G A. Braun, Enantioselectivity control with metal colloids as catalysts [J], Chem. Eur. J., 1997, 3: 1200-1202.
    [81] K. Esumi, K. Matsuhisa, K. Torigoe, Preparation of Rodlike Gold Particles by UV
    
    Irradiation Using Cationic Micelles as a Template [J], Langmuir, 1995, 11: 3285-3287.
    [82] Y Xie, Y T Qian, W Z Wang et al. A Benzene-Thermal Synthetic Route to Nanocrystalline GaN [J], Science, 1996, 272: 1926-1927.
    [83] Y. D. Li, Y. T. Qian, H. W. Liao, et al. A Reduction-Pyrolysis-Catalysis Synthesis of Diamond [J], Science, 1998, 281: 246-247.
    [84] 苏宜,谢毅,陈乾旺等,纳米ZnS、CdS水热合成及其表征[J],应用化学,1996,13(5):56-57.
    [85] 施尔畏,夏长泰,王步国等,水热法的应用与发展[J],无机材料学报,1996,11(2):193-206.
    [86] 曾燮榕,杨峰,陈大明,康沫狂,氧化锆纳米晶微粉的制备及其性质[J],无机材料学报,1995,10(3):356-358.
    [87] M Boutormet, J Kizling, et al., The preparation of monodisperse colloidal metal particles from micro-emulsions [J], Colloids and Surfaces, 1982, 5(3): 209-225.
    [88] P Lianos, J K Thomas, Cadmium-sulfide of small dimensions produced in inverted micelles [J], Chem. Phys. Lett., 1986, 125 (3): 299-302.
    [89] P Lianos, J K Thomas, Small CdS particles in inverted micelles [J], J. Colloid Interf. Sci., 1987, 117(2): 505-512.
    [90] M P Pileni, I Lisiecki, Nanometer metallic copper particle synthesis in reverse micelles[J], Colloids Surfaces A, 1993, 80 (1): 63-68.
    [91] F G Arriageala, K Osseo-Asare, Synthesis of nanosize silica in a nonionic water-in-oil microemulsion: Effects of the water/surfactant molar ratio and ammonia concentration [J], J. Colloidlnterf. Sci., 1999, 211 (2): 210-220.
    [92] 沈兴海,高宏成,纳米粒子的微乳液制备法[J],化学通报,1995,11:6-9.
    [93] N. Herron, Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties[J], J. Phys. Chem., 1991, 95: 525-532.
    [94] G Gu, W P Ding, G X Cheng et al., Very intensive red-light emission from C-60 trapped in 13X molecular-sieve [J], Appl. Phys. Lett. 1995, 67: 326-328.
    [95] Y X Jiang, S G Sun, N Ding, Novel phenomenon of enhancement of IR absorption of CO adsorbed on nanoparticles of Pd confined in supercages of Y-zeolite [J], Chem. Phys. Lett., 2001, 344: 463-470.
    [96] 姜艳霞,孙世刚,陈声培等,CO在载钯分子筛薄膜电极上的增强红外吸收[J],高等学校化学学报,2001,22:1860-1863.
    [97] 姜艳霞,丁楠,郑明森等,载钯分子筛修饰电极上CO吸附的原位红外反射光谱研究[J],光谱学与光谱分析,2000,20:614-615.
    [98] 王世敏,许祖勋,傅晶,纳米材料制备技术[M],2001,化学工业出版社.
    [99] Y H Lai, Y L Chen, Y Chi, et al., Deposition of Ru and RuO2 thin films employing dicarbonyl bis-diketonate ruthenium complexes as CVD source reagents [J], J Mater.
    
    Chem., 2003, 13(8):1999-2006.
    [100] R A Andrievski, Nanocrystalline high-melting point compound-based materials[J], J. Mater. Sci., 1994, 29 (3): 614-631.
    [101] 刘茜,高濂,严东生等,无团聚SiC粒子复合Sialon陶瓷[J],无机材料学报,1996,11(2):281-285.
    [102] 孙志刚,胡黎明,气相法合成纳米颗粒的制备技术进展[J],化工进展,1997,2:21-24.
    [103] Y Li, J Liu, Y Q Wang, et. al., Preparation of monodispersed Fe-Mo nanoparticles as the catalyst for CVD synthesis of carbon nanotubes[J], Chem. Mater., 2001,13(3): 1008-1014.
    [104] C M Hollabaugh, D E Hull, L R Newkirk, et. al., Rf-plasma system for the production of ultrafine, ultrapure silicon-carbide powder [J], J. Mater Sci., 1983, 18 (11): 3190-3194.
    [105] 王大志,徐康,贾云波等,纳米金刚石及其稳定性[J],无机材料学报,1995,13(10):281-287.
    [106] V L Kuznetsov M N Aleksanarov, I V Zagoruiko, et al., Study of ultradispersed diamond powders obtained using explosion energy [J], Carbon, 1991, 29: 665-668.
    [107] 顾燕芳,胡黎明等,冷冻干燥法制备高活性的氧化铝超细粒子[J],硅酸盐通报, 1994.1:21-25.
    [108] J M McHale, P C McIntyre, K E Sickafus, et al., Nanocrystalline BaTiO3 from freeze-dried nitrate solutions [J], J. Mater. Res. 1996, 11:1199-1209.
    [109] 张文敏,董吉溪,微波制备金属磷酸盐胶体粒子[J],科学通报,1996,41:32-35.
    [110] D C Dong, et al., Preparation of uniform alpha-Fe2O3 particles by microwave induced hydrolysis of ferric salts[J], Mater. Res. Bull. 1995, 30(5): 531-535.
    [111] D C Dong, P J Hong, S S Dai, et al., Preparation of uniform beta-FeO(OH) colloidal particles by hydrolysis of ferric salts under microwave irradiation [J], Mater. Res. Bull. 1995, 30 (5): 537-541.
    [112] 陈祖耀,朱英杰,陈敏等,γ—射线辐照制备金属和金属氧化物纳米级超细粉[J],化学通报,1996,(1):44-45.
    [113] J. Stein, L. N. Lewis, Y. Gao, et al. In situ determination of the active catalyst in hydrosilylation reactions using highly reactive Pt(0) catalyst precursors [J], J. Am. Chem. Soc., 1999, 121: 3693-3703.
    [114] M. T. Reetz, R. Breinbauer, P. Wedemann et al, Nanostructured nickel-clusters as catalysts in [3+2]cycloaddition reactions[J], Tetrahedron, 1998, 54: 1233-1240.
    [115] T. J. Schmidt, M. Noeske, H. A. Gasteiger, et al, Electrocatalytic activity of PtRu alloy colloids for CO and CO/H-2 electrooxidation: Stripping voltammetry and rotating disk measurements [J], Langmuir, 1997, 13: 2591-2595.
    [116] G Schmid, V Maihack, F Lantermann, et al. Ligand-stabilized metal clusters and colloids: Properties and applications[J], J. Chem. Soc. Dalton. Trans., 1996, 5: 589-595.
    
    
    [117] M T Reetz, J G Lohmer, Propylene carbonate stabilized nanostructured palladium clusters as catalysts in Heck reactions[J], Chem. Soc. Chem. Commun. 1996, 16: 1921-1922.
    [118] M T Reetz, R Breinbauer, K. Wanninger, Suzuki and Heck reactions catalyzed by preformed palladium clusters and palladium/nickel bimetallic clusters[J], Tetrahedron Lett., 1996, 37(26): 4499-4502.
    [119] H Bonnemann, G A Braun, Enantioselective hydrogenations on platinum colloids[J], Angew. Chem. Int. Ed.Engl., 1996, 35(17):1992-1995.
    [120] T Martino,J P Wilcoxon, J S Kawola, et al., Synthesis and characterization of coal-liquefaction catalysts in inverse micelles[J], Energ. Fuel., 1994, 8(6): 1289-1295.
    [121] L N Lewis, Chemical catalysis by colloids and clusters[J], Chem. Rev., 1993, 93(8):2693-2730.
    [122] M N Vargafiik, V P Zargorodnikov, I P Stolarov, et al, Giant palladium clusters as catalysts of oxidative reactions of olefins and alcohols[J], J. Mol. Catal. 1989, 53(3): 315-348.
    [123] R Elghanian, J J Storhoff, R C Mucic, et al, Selective Colorimetric Detection of Polynucleotides Based on the Distance-Dependent Optical Properties of Gold Nanoparticles[J], Science, 277: 1078-1081.
    [124] G. Schon, U. Simon, A fascinating new field in colloid science-small ligand stabilized metal-clusters and their possible application in microelectronics[J], Colloid Polym. Sci., 1995, 273(3):202-218.
    [125] M. Antonietti, C. Goltner, Superstructures of functional colloids: Chemistry on the nanometer scale[J], Angew. Chem. Int. Ed. Engl., 1997, 36: 910-928.
    [126] J M Thomas, Colloidal metals-past,present and future[J], Pure Appl. Chem., 1988, 60: 1517-1528.
    [127] V L Colvin, M C Schlamp, A P Alivisatos, Light-emitting-diodes made from cadmium selenide nanocrystals and a semiconducting polymer[J], Nature, 1994, 370: 354-357.
    [128] Y Li, X M Hong, D M Collard, et al., Suzuki cross-coupling reactions catalyzed by palladium nanoparticles in aqueous solution[J], Organic Letters, 2000, 2(15): 2385-2388.
    [129] N Jana, Z L Wang, T Pat, Redox Catalytic Properties of Palladium Nanoparticles: Surfactant and Electron Donor-Acceptor Effects[J], Langmuir, 2000, 16: 2457-2463.
    [130] M C P da Cuhna, J P L De Souza, F C Nart, Reaction Pathways for Reduction of Nitrate Ions on Platinum, Rhodium, and Platinum-Rhodium Alloy Electrodes [J], Langmuir, 2000, 16: 771-777.
    [131] M Michaelis, A Henglein, P Mulvaney, Composite Pd-Ag Particles in Aqueous Solution [J], J. Phys. Chem., 1994, 98: 6212-6215.
    
    
    [132] N Toshima, M Harada, T Yonezawa, et al, Structural analysis of polymer-protected palladium/platinum bimetallic clusters as dispersed catalysts by using extended x-ray absorption fine structure spectroscopy[J], J. Phys. Chem., 1991, 95: 7448-7453.
    [133] J H He, I Ichinose, T Kunitake, et al., Facile fabrication of Ag-Pd bimetallic nanoparticles in ultrathin TiO2-gel films: Nanoparticle morphology and catalytic activity [J], J. Am. Chem. Soc.., 2003, 125(36): 11034-11040.
    [134] D V Leff, P C Ohara, J R Heath, et al, Thermodynamic Control of Gold Nanocrystal Size: Experiment and Theory [J], J. Phys. Chem., 1995, 99: 7036-7041.
    [135] T C Deivaraj, W X Chen, J Y Lee, Preparation of PtNi nanoparticles for the electrocatalytic oxidation of methanol [J], J. Mater. Chem.., 2003, 13(10): 2555-2560.
    [136] D G Duff, P. P. Edwards, B. F. G. Johnson, Formation of a Polymer-Protected Platinum Sol: A New Understanding of the Parameters Controlling Morphology[J], J. Phys. Chem., 1995, 99: 15934-15944.
    [137] T S Ahmadi, Z L Wang, T C Green, et al, Shape-Controlled Synthesis of Colloidal Platinum Nanoparticles [J], Science 1996, 272, 1924-1925.
    [138] S Ozkar, R G Finke, Nanocluster Formation and Stabilization Fundamental Studies: Ranking Commonly Employed Anionic Stabilizers via the Development, Then Application, of Five Comparative Criteria[J], J. Am. Chem. Soc., 2002, 124: 5796-5810.
    [139] Y G Sun, Y N Xia, Shape-Controlled Synthesis of Gold and Silver Nanoparticles Science, 2002, 298: 2176-2179.
    [140] J D Aiken, R G Finke, A review of modem transit/on-metal nanoclusters: their synthesis, characterization, and applications in catalysis[J] J. Mol. Catal. A: Chem., 1999, 145: 1-44.
    [141] M E Labib, The Origin of the surface-charge on particles suspended in organic liquids [J], Colloids Surf., 1988, 29(3): 293-304.
    [142] M T Reetz, W Helbig, S A Quaiser, et al, Visualization of surfactants on nanostructured palladium clusters by a combination of STM and high-resolution TEM [J], Science, 1995, 267: 367-369.
    [143] G K Yang, K S Peters, V Vaida, Strength of the metal-ligand bond in LCR(CO)_5 measured by photoacoustic calorimetry [J], Chem. Phys. Lett., 1986, 125(5-6): 566-568.
    [144] Y. Lin, R. G. Finke, Novel Polyoxoanion-and Bu4N+-Stabilized, Isolable, and Redissolvable, 20-30-ANG Ir300-900 Nanoclusters: The Kinetically Controlled Synthesis, Characterization, and Mechanism of Formation of Organic Solvent-Soluble, Reproducible Size, and Reproducible Catalytic Activity Metal Nanoclusters[J], J. Am. Chem. Soc., 1994, 116: 8335-8353.
    [145] C Amiens, D De Caro, B Chaudret, et al, Selective synthesis, characterization, and spectroscopic studies on a novel class of reduced platinum and palladium particles
    
    stabilized by carbonyl and phosphine ligands[J], J. Am. Chem. Soc., 1993, 115: 11638-11639.
    [146] A Duteil, G Schmid, W Meyer-Zaika, Ligand stabilized nickel Colloids [J], J. Chem. Soc., Chem. Commun., 1995, 31-32.
    [147] F Dassenoy, K Philippot, T Ould Ely, et al, Platinum nanoparticles stabilized by CO and octanethiol ligands or polymers: FT-IR, NMR, HREM and WAXS studies [J], New J. Chem., 1998, 22: 703-711.
    [148] S. Chen, K. Kimura, Synthesis of Thiolate-Stabilized Platinum Nanoparticles in Protolytic Solvents as Isolable Colloids[J], J. Phys. Chem.B, 2001, 105: 5397-5403.
    [149] G Schmid, B Morun, L O Maim, Pt-309 phen-star-36, a 4-shell platinum cluster [J], Angew. Chem., Int. Ed. Engl., 1989, 28(6):778-780.
    [150] G. Schmid, V Maihack, F Lantermann, et al., Ligand-stabilized metal clusters and colloids: Properties and applications[J], J. Chem. Soc., Dalton Trans., 1996, 589-595.
    [151] G Schmid, S Emde, V Maihack, et al, Synthesis and catalytic properties of large ligand stabilized palladium clusters[J], J. Mol. Catal. A: Chem.,1996, 107:95-104.
    [152] A Rodriguez, C Amiens, B Chaudret, et al, Synthesis and Isolation of Cuboctahedral and Icosahedral Platinum Nanoparticles. Ligand-Dependent Structures[J], Chem. Mater., 1996, 8:1978-1986.
    [153] R Franke, J Rothe, J Pollmarm,et al, A Study of the Electronic and Geometric Structure of Colloidal Ti0.0.5THF[J], J. Am. Chem. Soc., 1996, 118: 12090-12097.
    [154] H Bonnemann, B Korall, Ether-soluble Ti and bis(eta-6-arene)Titanium complexes from the reduction of TIC14 with triethylhydroborate[J], Angew. Chem., Int. Ed. Engl., 1992, 31: 1490-1492.
    [155] H Bonnemann, W Brijoux, The preparation, characterization and application of organosols of early transition metals[J], Nanostruct Mater., 1995, 5: 135-140.
    [156] H Bonnemann, W Brijoux, R Brinkmarm, et al, Preparation, characterization, and application of fine metal particles and metal colloids using hydrotriorganoborates [J], J. Mol. Catal. A: Chem., 1994, 86:129.
    [157] H Bonnemarm, G Braun, W Brijoux, et al, Nanoscale colloidal metals and alloys stabilized by solvents and surfactants: Preparation and use as catalyst precursors [J], J. Organomet. Chem., 1996, 520: 143-162.
    [158] O Vidoni, K Philippot, C Amiens, et al, Novel, spongelike ruthenium particles of controllable size stabilized only by organic solvents[J], Angew. Chem., Int. Ed. Engl., 1999, 38: 3736-3738.
    [159] H Hirai, Y Nakao, N Toshima, Preparation of colloidal rhodium in polyvinyl-alcohol by reduction with methanol[J], J. Macromol. Sci., Chem., 1978, A12:1117-1141.
    [160] H Hirai, Y Nakao, N Toshima, Preparation of colloidal transition-metals in polymers by
    
    reduction with alcohols or ethers[J], J. Macromol. Sci., Chem., 1979, A13(6): 727-750.
    [161] A Borsla, A M Wilhelm, H Delmas, Hydrogenation of olefins in aqueous phase, catalyzed by polymer-protected rhodium colloids: kinetic study[J], Catal. Today, 2001, 66:389-395.
    [162] H Hirai, Formation and catalytic functionality of synthetic polymer noble metal colloid [J], J. Macromol. Sci., Chem.,1979, A13(5): 633-649.
    [163] H Hirai, Y Nakao, N Toshima, Colloidal rhodium in poly(vinylpyrrolidone) as hydrogenation for internal olefins[J], Chem. Lett., 1978, 5:545-548.
    [164] N Toshima, M Kuriyama, Y Yamada, et al., Colloidal platinum catalyst for light-induced hydrogen evolution from water-a particle size effect[J], Chem. Lett., 1981, (6):793-796.
    [165] J. H. Youk, J. Locklin, C. Xia, et al, Preparation of gold nanoparticles from a polyelectrolyte complex solution of terthiophene amphiphiles[J], Langmuir, 2001, 17: 4681-4683.
    [166] C.-W. Chen, M. Akashi, Synthesis, characterization, and catalytic properties of colloidal platinum nanoparticles protected by poly(N-isopropylacrylamide) [J], Langmuir, 1997, 13: 6465-6472.
    [167] C W Chen, T Takezako, K Yamamoto, et al, Poly(N-vinylisobutyramide)-stabilized platinum nanoparticles: synthesis and temperature-responsive behavior in aqueous solution [J], Colloids Surf., A2000, 169:107-116.
    [168] A Dalmia, C L Lineken, R F Savinell, Synthesis of Ion Conducting Polymer Protected Nanometer Size Platinum Colloids[J], J. Colloidlnterface Sci., 1998, 205: 535-537.
    [169] T Teranishi, M.Miyake, Size control of palladium nanoparticles and their crystal structures[J], Chem. Mater., 1998, 10: 594-600.
    [170] T Teranishi, M Hosoe, M Miyake, Formation of monodispersed ultrafine platinum panicles and their electrophoretic deposition on electrodes[J], Adv. Mater., 1997,9:65.
    [171] A Jentys, N H Pham, H Vinek, Synthesis and characterization of mesoporic materials containing highly dispersed cobalt [J], Microporous. Mater., 1996, 6(1): 13-17.
    [172] F Bonet, V Delmas, S Grugeon, et al, Synthesis of monodisperse Au, Pt, Pd, Ru and Ir nanoparticles in ethylene glycol[J], Nanostruct. Mater.,1999,11:1277-1284.
    [173] W Yu, W Tu, H Liu, Synthesis of Nanoscalc Platinum Colloids by Microwave Dielectric Heating[J], Langmuir, 1999,15:6-9.
    [174] W Yu, M Liu, H Liu, J Zheng, Preparation of Polymer-Stabilized Noble Metal Colloids [J], J. Colloidlnterface Sci., 1999, 210: 218-221.
    [175] T Teranishi, M Hosoe, T Tanaka, et al, Size Control of Monodispersed Pt Nanoparticles and Their 2D Organization by Electrophorctic Deposition [J], J. Phys. Chem. B, 1999, 103: 3818-3827.
    [176] X Y Fu, Y Wang, N Z Wu, et al, Shape-Selective Preparation and Properties of
    
    Oxalate-Stabilized Pt Colloid [J], Langrnuir, 2002, 18: 4619-4624.
    [177] J. M. Petroski, Z. L. Wang, T. C. Green, et al, Kinetically Controlled Growth and Shape Formation Mechanism of Platinum Nanoparticles [J], J. Phys. Chem. B, 1998, 102: 3316-3320.
    [178] M Boutonnet, J Kizling, P Stenius, et al., The preparation of monodisperse colloidal metal particles from micro-emulsions [J], Colloids Surf., 1982, 5 (3): 209-225.
    [179] M Boutormet, J Kizling, R Touroude, et al., Monodispersed colloidal metal particles from nonaqueous solutions-catalytic behavior for the hydrogenation of but-1-ene of platinum particles in solution [J], P. Stenius, Appl. Catal., 1986, 20: 163-177.
    [180] C Larpent, H Patin, Catalytic hydrogenations in biphasic liquid-systems.2, utilization of sulfonated tripod ligands for the stabilization of colloidal rhodium dispersions [J], J. Mol. Catal., 1988, 44 (2): 191-195.
    [181] C Larpent, F Brisse-Le Menn, H Patin, Colloidal rhodium suspensions stabilized by various hydrotropic or surface-active triphenylmethyl trisulfonates and their use in biphasic catalysis [J], New J. Chem., 1991, 15 (5): 361-366.
    [182] P D Landrsé M Lemaire, D Richard, et al., A stereoselective reduction of dibenzo-18-crown-6 ether [J], J. Mol.Catal., 1993, 78 (3): 257-261.
    [183] P. D Landré, D. Richard, M. Draye, et al., Colloidal rhodium-a new catalytic-system for the reduction ofdibenzo-18-crown-6 ether [J], J. Catal., 1994, 147 (1): 214-222.
    [184] K Nasar, F Fache, M Lemaire, et al., Stereoselective reduction of disubstituted aromatics on colloidal rhodium [J], J. Mol.Catal., 1994, 87 (1): 107-115.
    [185] W Yu, H Liu, Quantity Synthesis of Nanosized Metal Clusters [J], Chem. Mater., 1998, 10: 1205-1207.
    [186] M A Watzky, R G Finke, Transition Metal Nanocluster Formation Kinetic and Mechanistic Studies. A New Mechanism When Hydrogen Is the Reductant: Slow, Continuous Nucleation and Fast Autocatalytic Surface Growth [J], J. Am. Chem.Soc., 1997, 119: 10382-10400.
    [187] M A Watzky, R G Finke, Nanocluster Size-Control and "Magic Number" Investigations. Experimental Tests of the "Living-Metal Polymer" Concept and of Mechanism-Based Size-Control Predictions Leading to the Syntheses of Iridium(O) Nanoclusters Centering about Four Sequential Magic Numbers [J], Chem. Mater., 1997, 9: 3083-3095.
    [188] J D Aiken, Y Lin, R G Finke, A perspective on nanocluster catalysis: polyoxoanion and (n-C4H9)4N+ stabilized Ir(0)300 nanocluster' soluble heterogeneous catalysts' [J], J. Mol. Catal. A: Chem., 1996, 114: 29-51.
    [189] Y Lin, R G Finke, A more general-approach to distinguishing homogeneous catalysis-discovery of polyoxoanion-stabilized and Bu4N~-stabilized, isolable and redissolvable, high-reactivity IR-approximate-to-190-450 nanocluster catalysts [J], Inorg.
    
    Chem., 1994, 33 (22): 4891-4910.
    [190] J D Aiken, R G Finke, Polyoxoanion-and Tetrabutylammonium-Stabilized Rh(O)n Nanoclusters: Unprecedented Nanocluster Catalytic Lifetime in Solution [J], J. Am. Chem.Soc., 1999, 121: 8803-8810.
    [191] J D Aiken, R G Finke, Polyoxoanion-and Tetrabutylammonium-Stabilized, Near-Monodisperse, 40±6 Rh(0)-1500 to Rh(0)~3700 Nanoclusters: Synthesis, Characterization, and Hydrogenation Catalysis [J], Chem. Mater., 1999, 11: 1035-1047.
    [192] K Kopple, D Meyerstein, D Meisel, Mechanism of the catalytic hydrogen production by gold sols. Hydrogen/deuterium isotope effect studies [J], J. Phys. Chem., 1980, 84: 870.
    [193] M R Mucalo, R P Cooney, FTIR spectra of carbon-monoxide adsorbed on platinum sols [J], J. Chem. Soc., Chem. Commun., 1989, (2): 94-95.
    [194] H Hirai, H Wakabayashi, M Komiyama, Polymer-protected copper colloids as catalysts for selective hydration ofacrylonitrile [J], Chem. Lett., 1983, (7): 1047-1050.
    [195] P Vanrheenen, M Mckelvy, W S Glaunsinger, et al, Synthesis and magnetic-properties of platinum micro-crystals [J], B. Am. Phys. Soc., 1981, 26 (3): 415-415.
    [196] A B R Mayer, R W Johnson, S H Hausner, et al, Colloidal silver nanoparticles protected by water-soluble nonionic polymers and "soft" polyacids J. Macromol. Sci., Pure Appl. Chem., 1999, A36: 1427-1441.
    [197] A B R Mayer, S H Hausner, J E Mark, Colloidal silver nanoparticles generated in the presence of protective cationic polyelectrolytes [J], Polym. J., 2000, 32:15-22.
    [198] A B R Mayer, J E Mark, Colloidal gold nanoparticles protected by water-soluble homopolymers and random copolymers [J], Eur. Polym. J., 1998, 34: 103-108.
    [199] A B R Mayer, J E Mark, Colloidal gold nanoparticles protected by cationic polyelectrolytes [J], J. Macromol. Sci., Pure Appl. Chem., 1997, A34: 2151-2164.
    [200] A B R Mayer, M Antonietti, Transition metal nanoparticles protected by amphiphilic block copolymers as tailored catalyst systems [J], Colloid Polym. Sci., 1997, 275: 333-340.
    [201] L Balogh, D A Tomalia, Poly (Amidoamine) Dendrimer-Templated Nanocomposites. 1. Synthesis of Zerovalent Copper Nanoclusters [J], J. Am. Chem. Soc., 1998, 120: 7355-7356.
    [202] M Zhao, L Sun, R M Crooks, Preparation of Cu Nanoclusters within Dendrimer Templates [J], J. Am. Chem. Soc., 1998, 120: 4877-4878.
    [203] M Zhao, R M Crooks, Homogeneous hydrogenation catalysis with monodisperse, dendrimer-encapsulated Pd and Pt nanoparticles [J], Angew. Chem. Int. Ed. Engl. 1999, 38: 364-366.
    [204] V Chechik, R M Crooks, Dendrimer-encapsulated Pd nanoparticles as fluorous phase-soluble catalysts [J], J. Am. Chem. Soc., 2000, 122: 1243-1244.
    
    
    [205] M Zhao, R M Crooks, Dendrimer-encapsulated Pt nanoparticles: Synthesis, characterization, and applications to catalysis [J], Adv. Mater., 1999, 11: 217.
    [206] M E Garcia, L A Baker, R M Crooks, Preparation and characterization of dendrimer-gold colloid nanocomposites [J], Anal Chem. 1999, 71: 256-258.
    [207] K Esumi, A Suzuki, A Yamahira, et al, Role of poly(amidoamine) dendrimers for preparing nanoparticles of gold, platinum, and silver [J], Langmuir, 2000, 16: 2604-2608.
    [208] K Esumi, R Nakamura, A Suzuki, et al, Preparation of platinum nanopartieles in ethyl acetate in the presence of poly(amidoamine) dendrimers with a methyl ester terminal group [J], Langmuir, 2000, 16: 7842-7846.
    [209] K Esumi, T Hosoya, A Suzuki, et al, Preparation of hydrophobically modified poly(amidoamine) dendrimer-encapsulated gold nanoparticles in organic solvents [J], J. Colloid Interface Sci., 2000, 229: 303-306.
    [210] W Wang, S Efrima, O Regev, Directing Oleate Stabilized Nanosized Silver Colloids into Organic Phases [J], Langmuir, 1998, 14: 602-610.
    [211] L M Liz-Marzan, I Lado-Tourino, Reduction and Stabilization of Silver Nanoparticles in Ethanol by Nonionic Surfactants [J], Langrnuir, 1996, 12: 3585-3589.
    [212] S Chen, H Yao, K Kimura, Reversible Transference of Au Nanoparticles across the Water and Toluene Interface: A Langmuir Type Adsorption Mechanism [J], Langmuir, 2001, 17: 733-739.
    [213] H Bnnemann, W Brijoux, R Brinkmann, et al, Formation of colloidal transition-metals in organic phases and their application in catalysis [J], Angew. Chem., Int. Ed. Engl. 1991, 30: 1312-1314.
    [214] H Bnnemann, R Brinkmann, R Kppler, et al, A general approach to NR4-circle-plus-stabilized metal colloids in organic phases [J], J. Richter, Adv. Mater., 1992, 4 (12): 804-806.
    [215] H Bnnemann, W Brijous, R Brinkmann, et al, Highly dispersed metal-clusters and colloids for the preparation of active liquid-phase hydrogenation catalysts [J], J. Mol. Catal., 1992, 74: 323-333.
    [216] H H Huang, F Q Yan, Y M Kek, Synthesis, Characterization, and Nonlinear Optical Properties of Copper Nanoparticles [J], et al, Langmuir, 1997, 13: 172-175.
    [217] C C Wang, D H Chen, T C Huang, Synthesis of palladium nanoparticles in water-in-oil microemulsions [J], Colloids Surf., A2001, 189: 145-154.
    [218] H Ishizuka, T Tano, K Torigoe,et al, Preparation of monodispersed colloidal gold by reduction of AuCl_4-cationic surfactant complexes [J], Colloids Surf., 1992, 63: 337-340.
    [219] K Esumi, N Sato, K Torigoe, et al, Size contral of gold particles using surfactants [J], J. Colloid Interface Sci., 1992, 149 (1): 295-298.
    
    
    [220] D M Chernyshov, L M Bronstein, H Brner, et al, Synthesis and Induced Micellization of Pd-Containing Polystyrene-block-poly-m-vinyltriphenylphosphine Diblock Copolymers [J], Chem. Mater, 2000, 12: 114-121.
    [221] M Antonietti, E Wenz, L Bronstein,et al, Synthesis and characterization of noble metal colloids in block copolymer micelles [J], Adv. Mater., 1995, 7 (12): 1000-1001.
    [222] M V Seregina, L M Bronstein, O A Platonova, et al, Preparation of Noble-Metal Colloids in Block Copolymer Micelles and Their Catalytic Properties in Hydrogenation [J], Chem. Mater, 1997, 9:923-931.
    [223] S N Sidorov, L M Bronstein, P M Valetsky, et al, Stabilization of Metal Nanoparticles in Aqueous Medium by Polyethyleneoxide-Polyethyleneimine Block Copolymers [J], J. Colloid Interface Sci., 1999, 212: 197-211.
    [224] S Klingelhfer, W Heitz, A Greiner, et al, Preparation of Palladium Colloids in Block Copolymer Micelles and Their Use for the Catalysis of the Heck Reaction [J], J. Am. Chem. Soc., 1997, 119: 10116-10120.
    [225] J Le Bars, U Specht, J S Bradley, et al, A Catalytic Probe of the Surface of Colloidal Palladium Particles Using Heck Coupling Reactions [J], Langmuir, 1999, 15: 7621-7625.
    [226] K Esumi, M Suzuki, T Tano,et al., Dispersion of uniformly sized palladium particles in organic-solvents [J], Colloids Surf., 1991, 55: 9-14.
    [227] K Esumi, T Tano, K Meguro, Preparation of organo palladium particles from thermal decomposition of its organic complex in organic solvents [J], Langmuir, 1989, 5: 268-270.
    [228] S Mosseri, A Henglein, E Janata, Reduction of dicyanoaurate(Ⅰ) in aqueous solution: formation of nonmetallic clusters and colloidal gold [J], J. Phys. Chem., 1989, 93: 6791-6795.
    [229] A D Belapurkar, S Kapoor, S K Kulshrestha, et al, Radiolytic preparation and catalytic properties of platinum nanoparticles [J], Mater. Res. Bull., 2001, 36: 145-151.
    [230] B G Ershov, E Janatan, M Michaelis, et al, Reduction of aqueous copper(2+) by carbon dioxide(1-): first steps and the formation of colloidal copper [J], J. Phys. Chem., 1991, 95: 8996-8999.
    [231] M Michaelis, A Henglein, Reduction of palladium (Ⅱ) in aqueous solution: stabilization and reactions of an intermediate cluster and palladium colloid formation [J], J. Phys. Chem., 1992, 96: 4719-4724.
    [232] K Torigoe, K Esumi, Preparation of colloidal gold by photoreduction of tetracyanoaurate(1-)-cationic surfactant complexes [J], Langmuir, 1992, 8: 59-63.
    [233] Y Zhou, C Y Wang, Y R Zhu, et al, A Novel Ultraviolet Irradiation Technique for Shape-Controlled Synthesis of Gold Nanoparticles at Room Temperature [J], Chem.
    
    Mater., 1999, 11: 2310-2312.
    [234] Y Yonezawa, T Sato, S Kuroda, et al, Photochemical formation of colloidal silver-peptizing action of acetone ketyl radical [J], J. Chem. Soc., Faraday Trans., 1991, 87 (12): 1905-1910.
    [235] N Toshima, T Takahashi, H Hirai, Colloidal platinum protected by polymerized micelle-preparation and application to catalysis for photochemical hydrogen generation from water [J], Chem. Lett., (1): 1986, 35-38.
    [236] S A Yeung, R Hobson, S Biggs, et al, Formation of gold sols using ultrasound [J], J. Chem. Soc., Chem. Commun., 1993, (4): 378-379.
    [237] Y Nagata, Y Watanabe, S Fujita, et al, Formation of colloidal silver in water by ultrasonic irradiation [J], J. Chem. Soc., Chem. Commun., 1992, (21): 1620-1622.
    [238] R A Caruso, M Ashokkumar, F Grieser, Sonochemical formation of colloidal platinum [J], Colloids Surf., A 2000, 169: 219-225.
    [239] T Fujimoto, S Terauchi, H Umehara, et al, Sonochemical Preparation of Single-Dispersion Metal Nanoparticles from Metal Salts [J], Chem. Mater., 2001, 13: 1057-1060.
    [240] E Takagi, Y Mizukoshi, R Oshima, et al, Preparation of platinum nanoparticles by sonochemical reduction of the Pt (Ⅱ) ion [J], Langmuir, 1999, 15: 2733-2737.
    [241] K Okitsu, H Bandow, Y Maeda, et al, Sonochemical Preparation of Ultrafine Palladium Particles [J], Chem. Mater., 1996, 8: 315-317.
    [242] J S Bradley, E W Hill, S Behal, et al, Preparation and characterization of organosols of monodispersed nanoscale palladium. Particle size effects in the binding geometry of adsorbed carbon monoxide [J], Chem. Mater., 1992, 4: 1234-1239.
    [243] D De Caro, J S Bradley, Investigation of the surface structure of colloidal platinum by infrared spectroscopy of adsorbed CO [J], New. J. Chem., 1998, 22: 1267-1273.
    [244] A Duteil, R Queau, B Chaudret, et al, Preparation of organic solutions or solid films of small particles of ruthenium, palladium, and platinum from organometallic precursors in the presence of cellulose derivatives [J], Chem. Mater., 1993, 5: 341-347.
    [245] J S Bradley, J M Millar, E W Hill, et al, Surface-chemistry on colloidal metals-spectroscopic study of adsorption of small molecules [J], Faradays Discuss., 1991, 92: 255-268.
    [246] D De Caro, J S Bradley, Surface spectroscopic study of carbon monoxide adsorption on nanoscale nickel colloids prepared from a zerovalent organometallic precursor [J], Langmuir, 1997, 13: 3067-3069.
    [247] T Ould Ely, C Amiens, B Chaudret, et al, Synthesis of Nickel Nanoparticles. Influence of Aggregation Induced by Modification of Poly(vinylpyrrolidone) Chain Length on Their Magnetic Properties [J], Chem. Mater., 1999, 11: 526-529.
    
    
    [248] D deCaro, V Agelou, A Duteil, et al, Preparation from organometallic precursors, characterization and some reactivity of copper and gold colloids sterically protected by nitrocellulose, polyvinylpyrrolidone or polydimethyl phenylene oxide [J], New. J. Chem., 1995, 19: 1265-1274.
    [249] J Osuna, D De Caro, C Amiens, et al, Synthesis, Characterization, and Magnetic Properties of Cobalt Nanoparticles from an Organometallic Precursor [J], J. Phys. Chem., 1996, 100: 14571-14574.
    [250] M T Reetz, W Helbig, Size-Selective Synthesis of Nanostructured Transition Metal Clusters [J], J. Am. Chem. Soc., 1994, 116: 7401-7402.
    [251] M T Reetz, S A Quaiser, A new method for the preparation of nanostructured metal-clusters [J], Angew. Chem., Int. Ed. Engl., 1995, 34 (20): 2240-2241.
    [252] 田昭武,电化学研究方法[M],科学出版社,1984.
    [253] 周伟舫,电化学测量[M],上海科学技术出版社,1985.
    [254] A J Bard,L R Faulkner著,谷林英等译,电化学方法原理及应用[M],化学工业出版社,1988.
    [255] 查全性,电极过程动力学[M],科学出版社,1987.
    [256] J Feinleib, Electroreflectance in metals [J], Phys. Rev. Lett., 1966, 16: 1200-1202.
    [257] P Fleischman, P J Hendra, A J McQuillian, Raman-spectra of pyridine adsorbed at a silver electrode [J], Chem. Phys. Lett., 1974, 26 (2): 163-166.
    [258] A Bewick, K Kunimatsu, B S Pons, Infrared-spectroscopy of the electrode-electrolyte interphase [J], Electrochim Acta, 1980, 25(4): 465-468.
    [259] R Parsons, D M Kolb and Lynch, Eds., Electronic and Molecular Structure of Electrode-Electrolyte Interfaces, Elsevier [M], 1983.
    [260] 田昭武,电化学实验方法进展[M],厦门大学出版社,1988.
    [261] 林仲华,叶思宁,黄明东等,电化学中的光学方法[M],科学出版社,1990.
    [262] H. D. Abruna, Eds., Electrochemical Interface: Modem technique for in-situ Interface Characterization [M], VCH. New York, 1991.
    [263] R Adzic, E Yeager, B D Cahan, Optical and electrochemical studies of underpotential deposition of lead on gold evaporated and single-crystals electrodes [J], J. Electrochem. Soc., 1974, 121: 474-484.
    [264] J Augustynski, L Balsenc in Modem Aspects of Electrochemistry [M], Edited by J O'M. Bookris, and B E Conwav. 13. 1984. 253.
    [265] 孙世刚,陈声培,陈宝珠等,固/液界面电化学体系与超高真空电子能谱双向转移及研究体系的建立及其对Pt/Biad电催化表面的研究[J].高等学校北学学报,1995,16(6):952-954.
    [266] F T Wagner, in J Lipkowski and P N Ross (Eds.) Structure of Electrified Interfaces [M], VCH publishers, Inc. 1993.
    
    
    [267] S L Yao, X Gao, S C Chang, et al, Atomic-resolution scanning tunneling microscopy and infrared spectroscopy as combined in situ probes of electrochemical adlayer structure: carbon monoxide on rhodium (111) [J], J. Am. Chem. Soc., 1991, 113: 6049-6056.
    [268] Z Q Tian, B Ren, B W Mao, Extending surface Raman spectroscopy to transition metal surfaces for practical applications .1. Vibrational properties of thiocyanate and carbon monoxide adsorbed on electrochemically activated platinum surfaces [J], J. Phys. Chem. 1997, 101: 1338-1346.
    [269] T M Vess, D N Wertz, Spectrelecchemistry using a movable electrode [J], J. Electroanal. Chem., 1991, 313: 81-94.
    [270] C Gutierrez, J A Caram, B Beden, In situ spectroscopic study of the adsorption of carbon-monoxide on a polycrystalline ruthenium electrode by EMIRS and PMRS [J], J. Electroanal. Chem., 1991, 305 (2): 289-299.
    [271] K Nishimura, K Kunimatsu, M Enyo, Electrocatalysis on Pd+Au alloy electrodes.3. IR spectroscopic on the surface species derived from CO and CH_3OH in NaOH solution [J], J. Electroanal. Chem., 1989, 260 (1): 167-169.
    [272] P S Bagus, C J Nelin, W Muller, et al, Field-induced vibrational frequency-shifts of CO and CN chemisorbed on Cu (100) [J], Phys. Rev. Lett., 1987, 58 (6): 559-562.
    [273] K Kunimatsu, H Seki, W G Golden, et al, Electrode electrolyte interphase study using polarization modulated FTIR reflection-absorption spectroscopy [J], Surf. Sci., 1985, 158: 596-608.
    [274] J G Love, A J McQuillan, Potential dependent FTIR spectra of carbon monoxide adsorbed at the platinum electrode/absolute methanol solution interface [J], J. Electroanal. Chem., 1989, 274: 263-270.
    [275] K Kunimatsu, W G Golden, H Seki,et al, Carbon monoxide adsorption on a platinum electrode studied by polarization modulated FT-IRRAS. 1. Carbon monoxide adsorbed in the double-layer potential region and its oxidation in acids [J], Langmuir, 1985, 1: 245-250.
    [276] K Kunimatsu, H Seki, W G Golden, et al, Carbon monoxide adsorption on a platinum electrode studied by polarization-modulated FT-IR reflection-absorption spectroscopy: Ⅱ. Carbon monoxide adsorbed at a potential in the hydrogen region and its oxidation in acids [J], Langmuir, 1986, 2: 464-468.