基于因特网的资源共享模型及关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
资源共享理论是当前学术界研究的热点问题,随着互连网络技术的发展,网络资源日趋丰富,基于因特网实现这些资源的高效共享在教育、工程技术、社会、医药、经济、管理领域都有着潜在、广泛的应用。例如,在管理领域,资源共享技术可应用于知识获取、广告营销、决策意见形成、组织间信息交换与传播等许多方面。本文从管理科学的角度分析了影响网络资源共享系统性能的四个因素,即资源共享模型、网络拓扑结构、数据存储以及资源调度。在此基础上,选择这四个问题进行重点研究。经过三年的研究,在阅读大量文献的基础上,取得了一定的研究成果。针对资源共享模型,提出了一种层次式的资源共享模型,该模型符合我国教育资源的组织模式,可用于指导教育资源共享系统的建设;针对互连网络,构造了RPC (k)和RPn (k)网络,这两种互连网络具有许多优良的性质,能够提高资源共享系统的通信效率;针对网络演化问题,建立了一种基于Sierpinski分形垫的确定性复杂网络演化模型,该模型在度分布、集聚系数和网络直径等结构特性方面与许多现实网络相符合,可为资源共享网络理论研究提供描述上的借鉴;针对数据存储问题,提出了一种副本创建策略,该策略可以有效解决由于网络节点存储能力较小引起的副本频繁建立与删除问题;针对资源调度问题,提出了基于强化学习的微粒群算法,该算法可以为资源调度决策提供方法支持。
     经过三年深入的研究,达到了预期的目的,取得了理想的结果,本文的主要研究内容包括以下几个部分:
     1.提出了一种层次式的资源共享模型,设计了基于该模型的副本创建策略。针对中小学教育资源共享问题,设计了层次式的教育资源网格模型,定义了各层节点的功能;通过与欧洲数据网格对比,分析了教育资源网格的特点;基于层次式的教育资源网格,对影响副本创建策略性能的因素进行分析,然后引入网络带宽和文件大小两个参数,提出了一种动态副本创建策略(EDRS);利用数据网格模拟工具OptorSim构建教育资源网格虚拟环境,分析比较了EDRS策略与Caching-lru策略、Caching-lfu策略和基于经济模型的副本创建策略的性能;最后,综合各项指标分析了不同策略对教育资源网格系统性能的影响。结果表明,EDRS策略在教育资源网格应用中有更好的系统性能。
     2.构造了一种基于RP (k)的资源共享网络结构,研究了提高系统服务质量的方法和措施。针对分布式资源共享问题,从网络拓扑结构和通信效率两个角度来探讨降低网络延迟时间和提高网络带宽利用率的方法和措施,设计了一种基于RP (k)网络拓扑的资源共享网络体系结构,详细阐述了实现该网络结构连接的方案。在此基础上,给出了提高系统服务质量的策略,包括节点的加入/离开策略、代理策略、分布式资源检索策略以及节点数据的协同策略。最后,通过理论分析比较,证实了采用RP (k)互连网络的优势和相关策略的有效性。
     3.建立了两种规则的互连网络模型,讨论了其路由算法。Pertersen图由于具有短直径和正则性等特性,在并行计算与分布式计算中具有良好的性能。基于环结构,提出了两种Pertersen图的新扩展方法,构造了互连网络RPC (k)和RPn (k)。研究了这两种互连网络的性质,他们不但具有正则性和良好的可扩展性,还具有比RP (k)互连网络更短的网络直径、更好的可分组性以及更小的网络构造开销。分析了RPC (k)和RPn (k)优于二维Torus以及RP (k)互连网络直径和节点可分组性的条件。设计了RPC (k)和RPn (k)上的单播路由、置换路由、广播路由和多对多路由。研究发现,他们的通信效率比RP (k)网络上对应算法的通信效率均有明显提高。
     4.构建了一种确定性的复杂网络演化模型,将小世界网络与无尺度网络纳入到一个框架之下。人们发现大量真实网络都表现出小世界和无尺度的特性,例如,面向资源共享的P2P网络,由此复杂网络演化模型成为学术界研究的热点问题。基于Sierpinski分形垫,通过迭代的方式构造了两个确定性增长的复杂网络模型:小世界网络模型(S-DSWN)和无尺度网络模型(S-DSFN),给出了确定性网络模型的迭代生成算法,解析计算了其主要拓扑特性,结果表明两个网络模型在度分布、集聚系数和网络直径等结构特性方面与许多现实网络相符合。最后,提出了一个确定性的统一模型(S-DUM),将S-DSWN与S-DSFN纳入到一个框架之下,该模型不仅可为资源共享网络理论研究提供模型描述上的借鉴,而且可以为复杂网络的相关研究提供理论基础。特别地,我们发现这些网络模型都是极大平面图。
     5.为了提高资源共享系统决策模块的性能,设计了基于强化学习的微粒群算法。现代优化计算方法可以为许多系统决策模块提供方法支持,为此我们研究了全局优化进化算法:微粒群算法(Particle Swarm Optimization, PSO)。在微粒群算法中,惯性权重作为一个重要参数可以平衡算法全局和局部搜索能力的关系,改善算法的性能。提出了一种基于强化学习的适应性微粒群算法(RPSO),该算法将不同惯性权重调整策略看成粒子的行动集合,通过计算Q函数值,考察粒子多步进化的效果,选择粒子最优进化策略,动态调整惯性权重,增强算法寻找全局最优的能力。对几种经典函数的测试结果表明:RPSO能够获得好的性能,特别是对多峰函数效果更明显。
     6.设计实现了数据网格任务调度模拟器,为相关策略性能评价提供了一种有效工具。如何评价某一算法的性能,其方法是进行大量的模拟实验。针对数据网格任务调度策略评价问题,归纳定义了数据网格模型及任务调度过程,分析了数据网格的任务执行时间和执行花费,然后基于网格模拟器GridSim,提出了数据网格任务调度模拟器的设计方案,介绍了任务调度模拟器的体系结构、工作流程和关键技术。最后,通过实验表明该任务调度模拟器能很好地满足数据网格优化理论研究的需要,较好地起到帮助寻找最优调度策略的目的。
Resource-sharing theory is a hot issue in academic circles currently. With the development of Internet technology and the rich amount of network resources, efficient sharing of these resources based Internet has the potential wide range of applications in education, engineering, social, medical, economic, and management scopes. For example, in management scope, resource sharing technology can be applied to many other aspects such as knowledge acquisition, advertising marketing, decision-making, inter-organizational information exchange and communication. Four factors affecting the performance of network resource sharing systems are analyzed in this thesis, which are resource-sharing model, network topology, data storage and resource scheduling. On this basis, we select the four key issues to study. During the research, much work has been done. For the resource-sharing model, a hierarchical resource-sharing model is presented, which is in line with our organizational model of educational resources and can be used to guide the construction of educational resource sharing systems; for the Internet, RPC(k) and RPn(k) networks are constructed, both of which have many excellent properties and can improve the communication efficiency of resource sharing systems; for the network evolution, a deterministic complex network evolution model was established based on the Sierpinski fractal graph, which has compatible network structural characteristics with a number of practical network on the model degree distribution, clustering coefficient as well as diameter and can be used for the description reference of the research of resource-sharing network theory; for data storage problems, a replica creating strategy is presented, which can effectively solve the frequent replica creation and deletion issues caused by a weak storage ability of network nodes; for the resource scheduling problem, a particle swarm algorithm is proposed based on the reinforcement learning, which can provide method support for the decision-making of resource scheduling.
     The main achievements of this thesis can be summarized as follows:
     1. A hierarchical resource-sharing model is presented and the replica creating strategy is designed based on the model. For the resource sharing problem of primary and secondary education, a hierarchical educational resource grid model is proposed, which defines the function of nodes in each layer; by comparison with the European data grid, the characteristics of educational resource grid are analyzed; based on the hierarchical educational resource grid, the factors affecting the performance of replica creating strategies are analyzed, and then two parameters of network bandwidth and file size are introduced, a dynamic replica creating strategy (EDRS) is proposed; using of data grid simulation tool OptorSim to build a virtual environment of the educational resource grid, the performance of EDRS strategy, Caching-lru strategy, Caching-lfu strategy and strategy based on economic models are analyzed and compared; finally, effects of different strategies on grid system performance are analyzed by a comprehensive indicators. The results show that EDRS strategy in educational resource grid has a better system performance.
     2. Based on the RP(k) network, a resource-sharing network structure is constructed and a series of methods are studied to improve the quality of system services. For the distributed resource sharing issues, ranging from two angles of network topology and communication efficiency to explore methods and measures of reducing the network latency and improving network bandwidth utilization, it designs a structure topology of resource-sharing network system based on RP(k) network, which detailed expound the solution to realize this network structure. On this basis, a series of strategies to improve system quality of services including the node join / leave strategy, agency strategy, distributed resource retrieval strategy, and collaborative strategy for the node data are given. Finally, by theoretical analysis and comparison, the advantages of the RP(k) network and effectiveness of related strategies are confirmed.
     3. Two kinds of interconnection network model are established and its routing algorithms are discussed. Pertersen diagram has a good performance in parallel computing and distributed computing due to the nature of a short diameter and regularity. Two new extension methods of Pertersen are proposed based on the ring structure, and the RPC(k) and RPn(k) network are constructed. It studies the nature of the two networks, which not only has a regular and good scalability, but also has a smaller network diameter, a better grouped ability as well as a smaller cost of network construction more than the RP(k) network. The conditions of network diameter and grouped ability of RPC(k) and RPn(k) network better than two-dimensional Torus and the RP(k) network are analyzed. Based on the RPC(k) and the RPn(k) network, the routing algorithms are designed, which include point-to-point routing, one-to-all routing, permutation routing, and all-to-all routing. The study finds that their communication efficiency is significantly improved with corresponding algorithms of RP(k) network.
     4. A deterministic complex network evolution model is constructed, which makes the small-world network and the scale-free network into the same framework. It is discovered that a large number of real networks have shown small-world and scale-free features, such as the P2P resource-sharing networks, thereby complex network evolution model becomes a hot issue in academic circles. Based on the Sierpinski fractal pad, the two deterministic growth complex network model are constructed through the iterative way: small-world network model (S-DSWN), and scale-free network model (S-DSFN). The iterative generation algorithm of deterministic network models is given and their main topological characteristics are analyzed. Results show that the two models are compatible with a number of practical networks on characteristics of degree distribution, clustering coefficient and diameter. Finally, a unified deterministic model (S-DUM) is proposed, which makes the S-DSWN and S-DSFN into a framework. The model not only can be used for the description reference of research on the resource-sharing network theory but also provide a theoretical basis for relevant studies of complex networks. In particular, we find that these network models are Maximal planar graph.
     5. In order to improve the performance of the decision-making module in resource sharing systems, a particle swarm algorithm based on the reinforcement learning is studied. Modern optimization methods provide support to a number of system decision-making modules, so we study the global optimization evolutionary algorithm: particle swarm optimization (PSO). In the particle swarm algorithm, inertia weight as an important parameter can balance the relationship of the global and local search ability to improve the performance of the algorithm. An adaptive particle swarm optimization (RPSO) based on the reinforcement learning is presented. The algorithm looks different inertia weight adjustment strategies as an action collection of particles, by calculating the Q function values, examines the effect of particle multi-step evolutionary, selects the optimal particle evolutionary strategy, and adjusts the inertia weight dynamic to enhance the capacity of algorithms and find the global optimum. Several test results of classic functions show that: RPSO is able to obtain good performance, especially for multi-peak function.
     6. A job scheduling simulator of data grid is designed and realized, which provides an effective tool for the performance evaluation of relevant policy. The way to evaluate the performance of an algorithm is a lot of simulation experiments. For the evaluation of job scheduling strategies of data grid, the definition of data grid models and job scheduling process are summarized, the job execution time and costs of data grid are analyzed, and a design scheme of data grid job scheduling simulator is presented based on the simulator GridSim. The architecture, workflow and key technologies of job scheduling simulator are introduced. Finally, experiments show that the job scheduling simulator can satisfy the needs of the grid optimization theory and the purpose of finding optimal scheduling policy.
引文
[1] I Foster, C. Kesselman, S. Tuecke. The Anatomy of the Grid: Enabling Scalable Virtual Organizations[J]. International J. Supercomputer Applications, 2001, 15(3):200-222.
    [2] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg, and Ivona Brandic, Cloud Computing and Emerging IT Platforms: Vision, Hype, and Reality for Delivering Computing as the 5th Utility[J], Future Generation Computer Systems, 2009,25(6):599-616.
    [3] I Foster, C. Kesselman, The Grid: Blueprint for a New Computing Infrastructure[M], Morgan Kaufmann Publishers, 2004.
    [4]栾翠菊.计算网格环境中任务管理的研究[D].杭州:浙江大学,2006.
    [5] A.Chervenak, I.Foster, C.Kesselman, C.Salisbury, S.Tuecke. TheData Grid: Towards and Arehiteeture for the Distributed Management and Analysis of Large Seientific Data Sets[J]. Journal of Network and Computer Applications, 2000, 23(3):187-200.
    [6] W. Hoscheek, J. Jaen-Martinez, A.Samar, H.Stockinger. Data Management in an International Data Grid Project[C]. 2000 International Workshop on Grid Computing, Bangalore, India, 2000.
    [7] Reagan Moore. Using Data Grid Teehnology to Manage Distributed Data[EB/OL]. http://lennier.gsfc.nasa.gov/seeds/WZ_Moore.pdf, 2009.
    [8]孙海燕.数据网格副本管理关键技术研究[D].长沙:国防科学技术大学,2005.
    [9]于明远,华艺华,梁荣华.基于混合微粒群算法的网格服务工作流调度[J].华中大学学报,2008,36(4):45-47.
    [10] Changqin Huang, Deren Chen, Qinghuai Zeng. A DAG-based XCIGS for dependent Tasks in Grid Environments[J]. Lecture Notes in Computer Science, 2004,3044:158-167.
    [11]陈贵海,李振华.对等网络:结构、应用与设计[M].北京:清华大学出版社,2007.
    [12]邢小良.P2P技术及其应用[M].北京:人民邮电出版社,2008.
    [13]陈海波.云计算平台可信性增强技术的研究[D].上海:复旦大学,2008.
    [14] Wikipedia. http://en.wikipedia.org/wiki/Cloud_computing[EB/OL]. 2009.
    [15]陈康,郑纬民.云计算系统实例与研究现状[J].软件学报,2009,20(5):1337-1348.
    [16]王庆波,金幸,何乐.虚拟化与云计算[M].北京:电子工业出版社,2009.
    [17] Wang X F. Complex networks: Topology dynamics and synchronization[J]. International Journal of Bifurcation and Chaos, 2002, 12 (5): 885-916.
    [18] Newman M E J. The structure and function of complex networks[J]. SIAM Review, 2003, 45(2): 167-256.
    [19] Zhao H, Chen M. Network topology inference based on delay variation[C]. In: Proc. of the Int’l Conf. on Advanced Computer Control. Singapore, 2009: 772-776.
    [20] Albert R, Barabási A-L. Statistical mechanics of complex networks[J]. Reviews of Modern Physics, 2002, 74(1): 47-97.
    [21] Donnet D, Friedman T. Internet topology discovery: A survey[J]. IEEE Communications Surveys and Tutorials, 2007,9(4):2?15.
    [22]章忠志.复杂网络的演化模型研究[D].大连:大连理工大学,2006.
    [23] Ion Stoica, Robert Morris, David Liben-Nowell. Chord: a scalable peer-to-peer lookup protocol for internet applications[J]. IEEE/ACM Transactions on Networking, 2003,11(1):17-32.
    [24] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, Scott Schenker. Ascalable content-addressable network[C]. SIGCOMM 2001:161-172.
    [25] Ben Y. Zhao, Ling Huang, Jeremy Stribling, Sean C. Rhea, Anthony D. Joseph, John Kubiatowicz. Tapestry: a resilient global-scale overlay for service deployment[J]. IEEE Journal on Selected Areas in Communications. 2004, 22(1): 41-53.
    [26] Erd?s P, Rényi A. On the evolution of random graphs[J]. Publications of the Mathematical Institute of the Hungarian Academy of Sciences, 1960, 5: 17-61.
    [27]李振华,陈贵海,邱彤庆.分点:无结构对等网络的拓扑关键点[J].软件学报,2008,19(9):2376-2388.
    [28]冯国富,毛莺池,陆桑璐,陈道蓄.PeerRank:一种无结构P2P资源发现策略[J].软件学报,2006,17(5):1098-1106.
    [29] Fay Chang, Jeffrey Dean. Bigtable:A Distributed Storage System for Structured Data[EB/OL]. https://www.usenix.org/events/osdi06/tech/chang/chang_html/,2009.
    [30] Watts D J, Strogatz S H. Collective dynamics of‘small-world’networks[J]. Nature, 1998, 393: 440-442.
    [31] Ozik J, Hunt B-R, Ott E. Growing networks with geographical attachment preference: Emergence of small worlds[J]. Physical Review E, 2004,69:026108.
    [32] Mour A P. S. Thin Watts-Strogatz networks[J]. Physical Review E, 2006, 73:016110.
    [33] Barrat A, Weigt M. On the properties of small-world networks[J]. The European Physical Journal B, 2000, 13:547-560.
    [34] Barabási A-L, Albert R. Emergence of scaling in random networks[J]. Science, 1999, 286: 509-512.
    [35] Barabási A-L, Albert R, Jeong H. Mean-field theory for scale-free random networks[J]. Physica A 1999, 272:173-187.
    [36] Ke Deng, Heping Zhao, Dejun Li. Effect of node deleting on network structure[J]. Physica A: Statistical Mechanics and its Applications, 2007, 379(2):714-726.
    [37] Amaral L A N, Scala A, Barthélémy M et al. Classes of small-world networks[J], Proc. Natl. Acad. Sci. USA, 2000, 97(21): 11149-11152.
    [38] Andrew Chambers, Warren K. Bickel, Marc N. Potenza. A scale-free systems theory of motivation and addiction[J]. Neuroscience & Biobehavioral Reviews, 2007, 31(7): 1017-1045.
    [39] COSTA L. Da F., RODRIGUES F. A., TRAVIESO G., VILLAS BOAS P. R. Characterization of complex networks: A survey of measurements[J]. Advances in Physics, 2007, 56(1):167-242.
    [40]章忠志,周水庚,方锦清.复杂网络确定性模型研究的最新进展[J].复杂系统与复杂性科学,2008,12:29-46.
    [41] S. Boccalettia, V. Latora, Y. Moreno, M. Chavez, D.-U. Hwang. Complex networks: Structure and dynamics[J]. Physics Reports, 2006,424(4-5):175-308.
    [42]赵洪华,陈鸣.基于网络层析成像技术的拓朴推断[J].软件学报,2010,21(1):133-146.
    [43] Jovanovic MA. Modeling large-scale peer-to-peer networks and a case study of Gnutella [MS. Thesis]. University of Cincinnati, 2001.
    [44] Ripeanu M, Foster I, Iamnitchi A. Mapping the Gnutella network: Properties of large-scale peer-to-peer systems and implications for system design[J]. IEEE Internet Computing Journal Special Issue on Peer-to-Peer Networking, 2002,6(1):50?57.
    [45] Stutzbach D, Rejaie R. Capturing accurate snapshots of the Gnutella network[C]. In: Proc. of the Global Internet Symp. 2005. 127?132.
    [46] Stutzbach D, Rejaie R. Characterizing the two-tier Gnutella topology[C]. In: Proc. of ACM SIGMETRICS Extended Abstract. ACM Press, 2005.
    [47]王勇,云晓春,李奕飞.对等网络拓扑测量与特征分析[J].软件学报,2008,19(4),981-992.
    [48] Han J, Watson D, Jahanian F. Topology aware overlay networks[C]. In: Makki K, Knightly E, eds. Proc. of the IEEE INFOCOM. Piscataway: IEEE, 2005. 2554?2565.
    [49] Fei T, Tao S, Gao LX, Guérin R. How to select a good alternate path in large peer-to-peer systems[C]. In: Domingo-Pascual J, ed. Proc. of the IEEE INFOCOM 2006. Piscataway: IEEE, 2006. 1?13.
    [50]王雷,林亚平,夏巍.双环Petersen图互联网络及路由算法[J].软件学报,2006,17(05):1115-1123.
    [51] M. Zaharia, S. Keshav. Gossip-based search selection in hybrid peer-to-peer networks[J]. Concurrency and Computation: Practice and Experience,2008, 20(2): 139-153.
    [52] Costa P, Mascolo C, Musolesi M, Picco GP. Socially-Aware routing for publish-subscribe in delay-tolerant mobile ad hoc networks[J]. IEEE Journal of Selected Areas in Communication, 2008,26(5):748?760.
    [53] Han H, Shakkottai S, Hollot CV, Srikant R, Towsley D. Multi-Path TCP: A joint congestion control and routing scheme to exploit path diversity in the internet[J]. IEEE/ACM Trans. on Networking, 2006,16(6):1260-1271.
    [54] Andrew S.tanenbaum, Computer Networks[M], Pearson Education,2002.
    [55] Shudong Jin, Hongbo Jiang. Novel approaches to efficient flooding search in peer-to-peer networks[J]. Computer Networks, 2007,51(10): 2818-2832.
    [56]谢鲲,张大方,谢高岗,文吉刚.基于轨迹标签的无结构P2P副本一致性维护算法[J].软件学报,2007,18(1):105-116.
    [57] Shen HT,Shu YF,Yu B. Efficient semantic-based content search in P2P network[J].IEEE Trans.on Knowledge and DataEngineering, 2004,17(7):813-826.
    [58] Jagadish H V, Ooi B C, Vu Q H, et al. Vbi-tree: A peer-to-peer framework for supporting multi-dimensional indexing schemes[C],Proc of ICDE. Piscatawy, NJ: IEEE, 2006:34-43.
    [59]张蓉,钱卫宁,周傲英.一种支持多维数据范围查询的对等计算索引框架[J].计算机研究与发展,2009,46(4):529-540.
    [60]陈磊,李三立.数据网格中一种填空式副本分配算法[J].电子学报,2006,34(11):1951-1954
    [61] Wu Jan-jan, Lin Yi-fang, Liu Pang-feng. Optimal replica placement in hierarchical Data Grids with locality assurance[J]. Journal of Parallel and Distributed Computing archive, 2008,68(12):1517-1538.
    [62] Kavitha Ranganathan, Adriana Iamnitchi, Ian Foster. Improving Data Availability through Dynamic Model-Driven Replication in Large Peer-to-Peer Communities[C]. Proceedings of the 2nd IEEE/ACM International Symposium on Cluster Computing and the Grid, p.376, May 21-24, 2002.
    [63] Sudharshan Vazhkudai, Steven Tuecke,Ian Foster. Replica Selection in the Globus Data Grid[C]. Proceedings of the 1st International Symposium on Cluster Computing and the Grid,2001,pp.106.
    [64] Rashedur M. Rahman, Reda Alhajj, Ken Barker. Replica selection strategies in data grid[J]. Journal of Parallel and Distributed Computing archive, 2008,68(12): 1561-1574.
    [65] Ceryen Tan, Kevin Mills. Performance characterization of decentralized algorithms for replica selection in distributed object systems[C]. Proceedings of the 5th international workshop on Software and performance, 2005:257-262.
    [66]周婧,王意洁,李思昆.一种基于有限编码的多副本分簇管理方法[J].软件学报,2007,17(6):1456-1467.
    [67] Srikumar Venugopal, Rajkumar Buyya, Kotagiri Ramamohanarao. A taxonomy of DataGrids for distributed data sharing, management, and processing[J]. ACM Computing Surveys (CSUR), 2006,38(1):1-53.
    [68] Glover F. Future paths for integer programming and links to artificial intelligence[J]. Computers and Operations Reseach, 1986,13,533-549.
    [69] Kirkpatrick S, Gelatt Jr C D, Vecchi M P. Optimization by simulated annealing[J]. Science, 1983, 220:671-680.
    [70] Holland J H. Adaptation in natural and artificial systems[M]. MIT Press, 1975.
    [71] Dorigo M. Optimization, learning and natural algorithms[D]. PhD Thesis, Department of Electronics, Politecnico di Milano, Italy,1992.
    [72] Kennedy J, Eberhart RC. Particle swarm optimization[C].Proceedings of the 1995 IEEE International Conference on Neural Networks,1995:1942-1948.
    [73] Yuhui Deng, Frank Wang, Adrian Ciura. Ant colony optimization inspired resource discovery in P2P Grid systems[J]. The Journal of Supercomputing, 2009,49(1):4-21.
    [74] Kai-Hsiang Yang, Chi-Jen Wu, Jan-Ming Ho. AntSearch: An Ant Search Algorithm in Unstructured Peer-to-Peer Networks[J]. IEICE Trans Commun,2006, 9:2300-2308.
    [75] Ruay-Shiung Chang, Jih-Sheng Chang, Po-Sheng Lin. An ant algorithm for balanced job scheduling in grids[J].Future Generation Computer Systems, 2009,25(1):20-27.
    [76]杨博.网格任务调度与优化机制研究[D].长沙:中南大学,2008.
    [77] Khaled Talukder, Michael Kirley and Rajkumar Buyya. Multiobjective Differential Evolution for Scheduling Workflow Applications on Global Grids[J]. Concurrency and Computation: Practice and Experience,2009,21(13):1742-1756.
    [78] Xiaofeng Wang, Chee Shin Yeo, Rajkumar Buyya, Jinshu Su. Reliability-Driven Reputation Based Scheduling for Public-Resource Computing Using GA[C]. Proceeding of the 23rd IEEE International Conference on Advanced Information Networking and Applications (AINA 2009), Bradford, UK, May 26-29, 2009.
    [79] Y Gao, H Rong, JZ Huang. Adaptive grid job scheduling with genetic algorithms[J]. Future Generation Computer Systems, 2005, 21(1):151-161.
    [80] Kim S, Weissman JB. A genetic algorithm based approach for scheduling decomposable data Grid applications[C]. ICPP. IEEE Computer Society: Silver Spring, MD, 2004; 406–413.
    [81]季一木,王汝传.基于粒子群的网格任务调度算法研究[J].通信学报,2007,28(10):60-66.
    [82] P. Kere, J. Jalkanen. Parallel Particle Swarm-Based Structural Optimization in a Distributed Grid Computing Environment[C], Proc. 48th AIAA/ASME/ASCE/AHS/ ASC Structures, Structural Dynamics and Materials Conference, 2007,1884.
    [83] ZhangLei, Chen Yuehui, Sun Runyuan, Jing Shan,Yang Bo. A task scheduling algorithm based on pso for grid computing[J]. A task scheduling algorithm based on pso for grid computing, 2008,4(1):37-43.
    [84]陈磊,李三立.网格数据复本管理的动态自适应软件体系结构[J].软件学报,2006,17(6):1436-1447.
    [85] Kavitha Ranganathan, Iran Foster. Identifying Dynamic Replication Strategies for a High-performance Data Grid[C]. In: Proceedings of the International Grid Computing Workshop, Berlin: Springer-Verlag, 2001.75-86.
    [86] Ming T, Lee BS, Yeo CK, Tang XY. Dynamic replication algorithms for the multi-tier Data Grid[J]. Future Generation Computer Systems, 2005,21(5):775–790.
    [87] David G Cameron, Ruben Carvjal-Schiaffino. Evaluating Scheduling and Replica Optimization Strategies in OptorSim[C]. In: 4th International workshop on Grid Computing (Grid-2003). Phenix, USA: IEEE CS Press, 2003.52-59.
    [88]孙海燕,王晓东,周斌,贾焰,王怀民,邹鹏.基于存储联盟的双层动态副本创建策略—SADDRES[J].电子学报,2005,33(7):1222-1226.
    [89] Rashedur M. Rahman, Ken Barker, Reda Alhajj. Replica Placement in Data Grid: Considering Utility and Risk[C]. In: Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC-2005). Calgary, Canada: IEEE CS Press, 2005. 354-359.
    [90] R. M. Rahman, K. Barker, and R. Alhajj. Replica Placement Design with Static Optimality and Dynamic Maintainability[J]. In: Proceedings of the Sixth IEEE International Symposium on Cluster Computing and the Grid (CCGRID-2006). Washington, DC, USA: IEEE Computer Society, 2006. 434-437.
    [91]高莉莎,罗军舟,东方,宋爱波.基于Mesh结构的网格资源发现机制[J].通信学报,2006,27(11):114-118.
    [92] Gnutelliums LLC. Gnutella protocol specification version 0.4[EB/OL]. http://www9.limewire.com/developer/gnutella_protocol_0.4.pdf, 2009.
    [93] Ian Clarke, Scott G. Miller, Theodore W. Hong, Oskar Sandberg, Brandon Wiley. Protecting Free Expression Online with Freenet[J]. IEEE Internet Computing, 2002,6(1):40-49.
    [94] CLARKE, I., SANDBERG, O., WILEY, B., AND HONG,T.W. Freenet: A distributed anonymous information storage and retrieval system[C]. In Proceedings of the ICSI Workshop on Design Issues in Anonymity and Unobservability (Berkeley, California, June 2000). http://freenet.sourceforge.net.
    [95]冯国富,张金城,姜玉泉,顾庆,陆桑璐,陈道蓄.无结构P2P覆盖网络的拓扑优化[J].软件学报,2007,18(11):2819-2829.
    [96] Liu Fang-Ai, Liu Zhi-Yong, Qiao Xiang-Zhen. A practical interconnection network RP(k) and its routing algorithms[J]. Science in China (Serial F), 2001,44(6): 461-473.
    [97] Das S.K., Ohring S., Baneriee A.K.. Embedding into hyper Petersen network: Yet another Hypercube-like topology[J]. Journal of VLSI Design, 1995, 2(4): 335-351
    [98] Yeh C.H., Behrooz P.. Routing and embeddings in cyclic Petersen network: An efficient extension of the Petersen graph[C]. In: Proceedings of International Conference on Parallel Processing, Japan,1999, 258-265.
    [99] Saxena P.C.,Gupta S., Rai J.. A delay optimal coterie on the k-dimensional folded Petersen graph[J]. Journal of Parallel Distributed Computing,2003,63(11): 1026-1035
    [100]刘方爱,刘志勇,乔香珍.一类层次环网络的构造及路由算法[J].计算机学报,2002,25(12):1397-1404.
    [101]王雷.高性能并行计算机互联网络容错模型及路由算法.长沙:湖南大学,2005.
    [102]王雷,林亚平,陈治平.基于Petersen图互连的超立方体网络及其路由算法[J].系统仿真学报,2007,19(6):1339-1343.
    [103]刘方爱,刘志勇,乔香珍.光RP(k)网络上Hypercube通信模式的波长指派算法[J].软件学报,2003,14(3):575-581.
    [104] Newman M E J, Watts D J. Renormalization group analysis of the small-world network model[J]. Physics. Letters. A, 1999, 263:341-346.
    [105] Newman M E J, Watts D J. Scaling and percolation in the small-world network model[J]. Physical Review E, 1999, 60:7332-7342.
    [106] Liu jianguo, Dang yanzhong, Wang zhongtuo. Multistage random growing small-world networks with power-law degree distribution[J]. Chinese Physics Letters, 2006, 23(3):46-749.
    [107] Li Xing, Chen Guangrong. A local-world evolving network model[J]. Physica A, 2003, 328: 274-286.
    [108] Barabási AL, Ravasz E, Vicsek T. Deterministic scale-free networks[J]. Physica A, 2001, 299: 559-564.
    [109] Comellas F, Ozón J, Peters J G. Deterministic small-world communication networks[J]. Inf. Process. Lett. 2000,76: 83-90.
    [110] Dorogovtsev S N, Goltsev A V, Mendes J F F. Pseudofractal scale-free web[J]. Physical Review E,2002, 65: 066122.
    [111] Andrade J S, Herrmann HJ, Andrade R F S, et al. Apollonian Networks: Simultaneously scale-free, small world, Euclidean, space filling, and with matching graphs[J]. Physical Review Letters 2005, 94:018702.
    [112] Zhang Z Z, Comellas F, Fertin G. High-dimensional apollonian networks[J]. J.Phys.A: Math.Gen, 2006, 39:1811-1818.
    [113] Zhang Z Z, Lili Rong, Francesc Comellas. High-dimensional random apollonian networks[J]. Physica A, 2006, 364:610-618.
    [114] Zhongzhi Zhang, Lili Rong, Shuigeng Zhou. Evolving apollonian networks with small-world scale-free topologies[J]. Physical Review E, 2006, 74:046105.
    [115] Zhongzhi Zhang, Shuigeng Zhou. Incompatibility networks as models of scale-free small-world graphs[J]. Eur. Phys. J. B, 2007, 60, 259-64
    [116] Zhang Zhongzhi, Rong Lili, Guo Chonghui. A deterministic small-world network created by edge iterations[J]. Physica A, 2006,363(2):567-572.
    [117] Jost J, Joy M P. Evolving networks with distance preferences[J]. Physical Review E, 2002, 66:036126.
    [118] Majewski M. A tutorial of the realistic visualization of 3D Sierpinski fractals[J]. Comput. & Graphics,1998,22(1):129-142.
    [119] Zhongzhi Zhang. Maximal planar scale-free Sierpinski networks with small-world effect and power law strength-degree correlation[J]. EPL, 2007,79:38007.
    [120] Ravasz E, Barabási A-L. Hierarchical organization in complex networks[J]. Physical Review E, 2003,67:026112.
    [121] West D B. Introduction to Graph Theory[M]. Upper Saddle River: Prentice-Hall, 2001.
    [122] Zhou T, Yan G, Wang BH. Maximal planar networkswith large clustering coefficient and power-law degree distribution[J]. Physical Review E, 2005, 71: 046141.
    [123] Hubermna B A,Adajmic L A. Growth dynamics of the World-Wide Web[J]. Nature,1999, 401(6749):131.
    [124] Wagner A,Fell D A. The small world inside large metabolic networks[C]. Proc. R. Soc. Lond. B, 2001, 268, 1803-1810.
    [125] X. Li, K. H. Dam, Comparing particle swarms for tracking extrema in dynamic environment[C]. in proc. Congress on evolutionary computation, 2003,1772-1779.
    [126] Shi Y, Eberhart R C. A modified particle swarm optimizer[C]. IEEE World Conf. on Computational Intelligence. Piscataway: IEEE Press, 1998: 69-73.
    [127]胡建秀,曾建潮.微粒群算法中惯性权重的调整策略[J].计算机工程,2007,33(11):192-195.
    [128] Shi Y, Eberhart R C. Fuzzy adaptive particle swarm optimization [C]. Proc of the IEEE Conf. on Evolutionary Computation. Piscataway: IEEE Press, 2001: 101-106.
    [129] Zhang L P, Yu H J, Hu S X. A new approach to improve particle swarm optimization [C]. Lecture Notesin Computer Science. Chicago:Springer-Verlag, 2003:134-139.
    [130]刘建华,樊晓平,瞿志华.一种基于相似度的新型粒子群算法[J].控制与决策,2007,22(10):1155-1159.
    [131]韩江洪,李正荣,魏振春.一种自适应粒子群优化算法及其仿真研究[J].系统仿真学报,2006,18 (10):2969-2971.
    [132] Chatterjee A, Siarry P. Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization[J]. Computers and Operations Research, 2006, 33(3): 859-871.
    [133] Huaxiang Zhang, Jing Lu. Adaptive evolutionary programming based on reinforcement learning[J]. Information Sciences, 2008, 178: 971-984.
    [134] Sutton R S, Barto A G. Reinforcement Learning: An Introduction[M]. Cambridge: MIT Press, 1998.
    [135]张化祥,陆晶.基于Q学习的适应性进化规划算法[J].自动化学报,2008,31(7):819-822.
    [136]吕艳萍,李绍滋,陈水利,郭文忠,周昌乐.自适应扩散混合变异机制微粒群算法[J].软件学报,2007,18(11):2740-2751.
    [137] Buyya R, Murshed M. GridSim: A toolkit for the modeling and simulation of distributed resource management andscheduling for grid computing[J]. Concurrency and Computation: Practice and Experience 2002; 14(13–15):1175–1220.
    [138] Bell W, Cameron D, Capozza L, Millar P, Stockinger K, Zini F. Simulation of dynamic Grid replication strategies in OptorSim[C]. Proceedings of the 3rd International Workshop on Grid Computing (GRID), Baltimore, U.S.A. IEEE CS Press: Los Alamitos, CA, U.S.A., 18 November 2002.
    [139] Mihai Dobre C, Stratan C. Monarc simulation framework[C]. Proceedings of the RoEduNet International Conference,Timisoara, Romania, 27–28 May 2004.
    [140] Legrand A, Marchal L, Casanova H. Scheduling distributed applications: The SimGrid simulation framework[C]. Proceedings of the 3rd International Symposium on Cluster Computing and the Grid, Tokyo, Japan, 12–15 May 2003.
    [141] Song HJ, Liu X, Jakobsen D. The MicroGrid: A scientific tool for modeling computational grids[C]. Proceedings of IEEE Supercomputing Conference, Dallas, U.S.A., 4–10 November 2000.
    [142] Sulistio A, Buyya R. A toolkit for modeling and simulating data Grids: an extension to GridSim[J]. Concurrency and Computation: Practice and Experience, 2008,20:1591–1609.
    [143] Srikumar Venugopal and Rajkumar Buyya, An SCP-based Heuristic approach for Scheduling Distributed Data-Intensive Applications on Global Grids[J]. Journal of Parallel and Distributed Computing, 2008, 68(4):471-487.
    [144] Kyong Hoon Kim, Rajkumar Buyya and Jong Kim. Power Aware Scheduling of Bag-of-Tasks Applications with Deadline Constraints on DVS-enabled Clusters[C]. Proceedings of the 7th IEEE International Symposium on Cluster Computing and the Grid (CCGrid 2007, IEEE CS Press, Los Alamitos, CA, USA), May 14-17, 2007, Rio de Janeiro, Brazil.
    [145] Srikumar Venugopal, Krishna Nadiminti, Hussein Gibbins, Rajkumar Buyya. Designing a Resource Broker for Heterogeneous Grids[J]. Software: Practice and Experience,2008,38(8):793-825.