新疆几种典型荒漠植物根际微生物特征及内生固氮菌的分离、促生性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物内生固氮菌是近年新发现的不同于经典共生固氮和联合固氮的高效固氮体系。内生固氮菌生活在非豆科植物体内,避免了化合态氮的抑制及土著微生物的竞争,表现出更高的固氮效率。同时其还具有分泌生长素、溶磷,增强植株抗病性等多方面特殊的生物学及生态学作用,在提高宿主的营养及竞争力,增强宿主对生物和非生物胁迫的抗性,促进其环境适应能力方面具有重要的应用价值。本文通过对塔里木河下游几种典型荒漠植物的根际微生物数量、群落组成及其活性的研究,揭示了根际微生物与植物间的相互关系和作用,以及植物生活型对根际效应的影响。在此基础上,从多枝柽柳(Tamarix ramosissima Ledeb.)、黑果枸杞(Lycium ruthenicum Murr.)中分离筛选出了固氮活性高,并具有溶磷、分泌植物生长激素等多种促生性能的内生固氮菌株,为创制应用于荒漠植被保育与恢复的、具有固氮、促生、抗逆的多功能接种剂奠定了基础。主要研究结果如下:
     荒漠植物根际微生物数量、组成与根外有较大差异,并具有不同的根际效应,灌木的根际效应优于草本植物。塔里木河下游典型荒漠植物黑果枸杞、刚毛柽柳(Tamarix hispida Willd.)、花花柴(Karelinia caspia(Pall.)Less.)、盐穗木(Halostachys caspica(Bieb.)C.A.Mey.)具有显著的根际正效应,其根际细菌的R/S为1.26~150.42,以黑果枸杞根际效应最为突出(R/S为150.42)。疏叶骆驼刺(Alhagi sparsifolia Shap.ex Kell.et Shap.)、大叶白麻(Poacynum hendersonii(Hook.f.)Woodson)和河西苣(Hexinia polydichotoma(Ostent.)H.L.Yang)则产生负根际效应。根际生理群微生物氨化细菌和纤维素分解菌均表现出强烈的正根际效应,而硝化细菌未检出。荒漠植物的生长对根际土壤脲酶、碱性磷酸酶具有较强的促进作用,但不同荒漠植物根际对土壤呼吸作用强度、过氧化氢酶活性的影响表现出较大差异。
     从黑果枸杞、多枝柽柳中分离获得58株内生固氮菌株,其固氮酶活性在0.26~388.58 nmolh-1mL-1之间,表明从荒漠灌木植物中可分离到具有较高固氮酶活性的菌株。通过测定溶磷强度最终筛选出25株溶磷能力较强的菌株,溶磷强度为5.457~24.212ug/mL,25株分泌植物生长素能力较高的菌株,其IAA产生量为0.114~1.392ug/mL。13株同时具有固氮、溶磷以及分泌生长素IAA的多种促生性能。其中EB20-THQ菌株促生性能较为稳定、突出。
     应用电镜免疫胶体金染色技术定位人工回接内生固氮菌EB20-THQ菌株在荒漠灌木植物体内的定殖和传导,定位观察表明EB20-THQ菌株能在宿主植物根部定殖。根据16SrDNA序列测定结果及系统进行分析,将5株具有较高促生性能的固氮菌株初步归属为克雷伯氏菌属(Klebsiella)。
Endophytic nitrogen-fixing bacteria was an efficient nitrogen-fixing system, it was different from classical symbiotic nitrogen fixation and joint nitrogen fixation which were newly discovered in recent years. Endophytic nitrogen-fixing bacteria was living in non-leguminous plants, avoiding the inhibition of nitrogen compound and the competition of indigenous microbion, showing a higher efficiency of nitrogen fixation. At the same time, it has a wide range of biological and ecological role of IAA-Producing activity, solubilizing phosphate activity and enhanceing plant disease resistance, and has important application value in improving host nutrition and competitiveness, enhanceing the host of biotic and abiotic stress resistance and promoting the ability to adapt their environment. In this study, the microbial population, community composition and biological activity in rhizospheric soil of several kinds of typical dominant desert plants at the lower reaches of Tarim River, Xinjiang were studied, revealing the interaction between plants and rhizosphere microorganisms, and the affection of plant genotype to the rhizosphere effect. On this basis, isolated the endophytic bacteria from Tamarix ramosissima and Lycium ruthenicum, selected the varieties of functions Plant Growth-Promoting endophytic bacteria strains, These strains had the quality of high nitrogenase activity, solubilizing phosphate activity and IAA-Producing activity, in order to lay the foundation for creating and appling the multifunctional inoculant with the conservation and restoration of desert vegetation. The main results showed:
     The rhizospher of the desert plants were quite different from non-rhizosphere in microbial population and composition, and had various rhizosphere effects, shrubs was superior to the herbs in rhizopheric effects. Several desert plants at the lower reaches of Tarim River exerted more obvious positive rhizosphere effects , R/S values reached from1.26 to 150.42, such as Lycium ruthenicum、Tamarix hispida、Karelinia caspica and Halostashys caspica, Lycium ruthenicum was the best one, its R/S values reached to 150.42. On contrary , Alhagi sparsifolia, Apocynum venetum and Hexinia polydichotoma showed negative rhizosphere effects. The physiological groups of ammonifiers and cellulosed ecomposing bacteria also exhibited remakable positive rhizosphere effect, however the nitrobacteria could not be examined.The desert plants growing could improve activity of urease and alkaline phosphatase in the rhizospheric soil. However, the effects of different desert plants on soil respiration intensity and the activity of the hydrogen peroxide showed different.
     Fifty-eight of endophytic nitrogen-fixing bacteria strains were obtained in Lycium ruthenicum and Tamarix ramosissima, and the nitrogenase activity is from 0.26 to 388.58 nmolh-1mL-1. It is proved that endophytic bacterial strains with high nitrogenase activity can be isolated from desert shrubs. Tested the all endophytic bacterial strains isolated indicates that 25 strains have solubilizing phosphate activity by measuring activity of phosphate solubilization, its magnitude is from 5.457 to 24.212μgmL-1, 25 strains have the higher capacity to secrete auxine IAA and the productivity quantum of IAA is from 0.114 to 1.392μgmL-1, and 13 strains have multi-promoting function including azotification, solubilizing phosphate and the capacity to secrete auxine IAA. And the promoted function of the EB20-THQ strain among is stability and predominance.
     Using the immune electronic microscope dyeing to localization the field planting and transimission of the endophytic diazotrophic bacteria EB20-THQ in the desert shrubs and indicates that the EB20-THQ strain can invade into the host of root. Determinating the whole 16SrDNA sequence and analysising the phylogenesis, the 5 endophytic diazotrophic bacteria strains of high growth-promoting belong to Klebsiella.
引文
1.安千里,李久蒂. 1999.植物内生固氮菌[J].植物生理学通讯,35(4):265-272.
    2.程皓,李霞,侯平,等. 2007.塔里木河下游不同覆盖度灌木防风固沙功能野外观测研究[J].中国沙漠,27(6):1022-1026.
    3.方芳,吴承祯,洪伟. 2007.植物根际、根际土壤酶与微生物相关性研究进展[J].亚热带农业研究,3(3):207-215.
    4.冯家忘,曾宪铭,范怀忠,等. 1994.应用免疫金探针定位和定量测定稻种中的水稻细菌性条斑病菌[J].植物病理学报,24(3):233-238.
    5.何明珠,王辉,陈智平. 2006.荒漠植物持水力研究[J].中国沙漠,26(3):403-408.
    6.胡江春,王书锦. 1996.大豆连作障碍研究Ⅰ.大豆连作土壤紫青霉菌的毒素作用研究[J].应用生态学报,7(4):396-400.
    7.胡江春,薛德林,马成新,等. 2004.植物根际促生菌(PGPR)的研究与应用前景[J].应用生态学报,15(10):1963-1966.
    8.黄刚,赵学勇,张铜会. 2007.科尔沁沙地3种灌木根际土壤pH值及其养分状况[J].林业科学,43(8):138-142.
    9.李倍金,罗明,张祥林,等. 2008.禾草内生固氮菌的分离及固氮促生效能研究[D].乌鲁木齐:新疆农业大学硕士学位论文.
    10.李春俭,马玮,张福锁. 2008.根际对话及其对植物生长的影响[J].植物营养与肥料学报,14(1):178-183.
    11.李阜棣,喻子牛,何绍江. 1996.农业微生物学实验技术[M].北京:中国农业出版社,299-304.
    12.李久蒂,王继文,李永兴,等. 1994.玉米根际联合固氮菌固氮特性的研究[J].植物学报,36(4):265-270.
    13.李清河,江泽平,张景波,等. 2006.灌木的生态特性与生态效能的研究与进展[J].干旱区资源与环境,20(2):159-164.
    14.李振高,李良谟,潘映华,等. 1995.小麦苗期根系分泌物对根际反硝化细菌的影响[J].土壤学报,32(4):408-413.
    15.李振高,潘映华,李良谟. 1993.不同基因型小麦根际细菌及酶活性的动态研究[J].土壤学报,30(1):1-8.
    16.林启美,赵小蓉,孙焱鑫,等. 2000.四种不同生态系统的土壤解磷细菌数量及种群分布[J].土壤与环境,9(1):34-37.
    17.刘训理,王超,吴凡,等. 2006.烟草根际微生物研究[J].生态学报,26(2):552-557.
    18.陆雅海,张福锁. 2006.根际微生物研究进展[J].土壤,38(2):112-121.
    19.罗明,单娜娜,文启凯,等. 2002.几种固沙植物根际土壤微生物特性研究[J].应用与环境生物学报,8(6):618-622.
    20.罗明,卢云. 2005.植物内生固氮菌研究进展[J].微生物学杂志,25(1):82-88.
    21.罗明,邱沃. 1995.新疆平原荒漠盐碱草地土壤微生物生态分布的研究[J].中国草地,(5):29-33.
    22.梅笑漫. 2002.生物固氮研究中的几个热点问题[J].生物学杂志,19(4):7-9.
    23.苗则彦,赵奎华,刘长远,等. 2003.我国植物内生细菌对病虫害防治研究研究现状[J].辽宁农业科学,(6):31-32.
    24.彭桂香,王华荣,张国霞,等. 2006.糖蜜草内生固氮菌IS-PCR和16SrRNA基因全序列分析[J].华南农业大学学报,26(4):73-76.
    25.沈德龙,冯永君,宋未. 2002.内生成团泛菌YS19对水稻乳熟期光合产物在旗叶、穗分配中的影响[J].自然科学进展,12(8):863-865.
    26.苏俊波. 2006.甘蔗内生固氮菌的分离与鉴定[D].南宁:广西大学硕士学位论文,3-4.
    27.孙海新,刘训理. 2004.茶树根际微生物研究[J].生态学报,24(7):1353-1357.
    28.孙晓璐,杨海莲,宋未,等,1999.水稻根面争论产碱菌1AG4的分离、鉴定及其固氮和对病原菌的拮抗作用[J].植物病理学报,29(4):294-298.
    29.覃丽萍,黄思良,李杨瑞. 2005.植物内生固氮菌的研究进展[J].中国农学通报,21(2):150-153.
    30.田宏,张德罡,姚拓,等. 2005.禾本科草坪草固氮菌株筛选及部分特性初步研究[J].中国草地,
    27(5):47-52.
    31.王让会,2001.干旱区内陆河流域生态脆弱性评价—以新疆塔里木河流域为例[J].生态学杂志,
    20(3):63-68.
    32.王逸群,郑金贵,陈文列,等. 2005.水稻内生固氮细菌的分离及鹑鸡肠球菌在水稻根中的分布[J]. 13(4):296-302.
    33.王瑛,孟亚利,陈兵林. 2006.麦棉套作棉花根际非根际土壤微生物和土壤养分[J].生态学报,26(10):3485-3490.
    34.王子芳,郭俊. 1987.联合固氮细菌在生态系统氮素循环中的意义[J].微生物学报,14(4):171-174.
    35.席琳乔,张虎,姚拓. 2005.联合固氮菌固氮、分泌激素和溶磷能力的测定及对燕麦的促生效应[J].草原与草坪,(3):23-27.
    36.肖育贵,胡震宇. 1997.不同林型土壤微生物种群数量及养分变化分析[J].四川林业科技,18(4):32-35.
    37.熊明彪,何建平,宋光煜. 2002.根分泌物对根际微生物生态分布的影响[J].土壤通报,32(2):145-148.
    38.许光辉,郑洪元. 1986.土壤微生物分析方法手册[M].北京:农业出版社,49-52,91-141,176-182.
    39.许莉萍,罗瑞仙,许东,等. 1990.分泌抗水稻细菌性条斑菌单克隆抗体杂交瘤株的建立及其在种子检验上的应用[J].华南农业大学学报,11(2):9-15.
    40.严成,尹林克,魏岩. 2002.疏叶骆驼刺〔Alhagi sparsifolia (B.Kelleret Shap.) Shap.〕的物候学分析[J].植物资源与环境学报,11(3):24-28.
    41.杨从发,王淑军,陈静,等. 1999.自生固氮菌的分离鉴定[J].淮海工学院学报,8(3):56-58.
    42.杨戈,郭永平. 2004.塔里木河下游末端实施生态输水后植被变化与展望[J].中国沙漠,24(2):167-172.
    43.杨海莲,孙晓璐,宋未. 1999.水稻内生阴沟肠杆菌的定殖研究[J].自然科学进展,9(12):1241-1244.
    44.杨玉盛,何宗明,邹双全. 1998.格氏栲天然林与人工林根际土壤微生物及其生化特性的研究[J].生态学报,18(2):185-202.
    45.姚槐应,黄昌勇. 2006.土壤微生物生态及其实验技术[M].北京:科学出版社,179-190.
    46.姚拓,张德罡,胡自治. 2004.高寒地区燕麦根际联合固氮菌研究I固氮菌分离及鉴定[J].草业学报,13(2):106-111.
    47.姚拓. 2004.高寒地区燕麦根际联合固氮菌研究Ⅱ固氮菌的溶磷性和分泌植物生长素特性测定[J].草业学报,13(3):85-90.
    48.殷水宁,孙广宇. 2007.内生细菌YSN-7提高小麦耐寒性研究[J].西北农业学报,16(5):282-284.
    49.尹林克,张道远,段士民. 2004.中国科学院吐鲁番沙漠植物园植物名录[J].干旱区研究,21(增刊):70-89.
    50.占新华,蒋延惠,徐阳春,等. 1999.微生物制剂促进植物生长机理的研究进展[J].植物营养与肥料学报,5(2):97-105.
    51.张炳欣,张平. 2000.植物根围外来微生物定殖的检测方法[J].浙江大学学报,26(6):624-628.
    52.张福锁,曹一平. 1992.根际动态过程与植物营养[J].土壤学报,29(3):239-250.
    53.张国霞,茅庆,何忠义,等. 2006.陵水普通野生稻(Oryza rufipogon)内生菌的固氮及溶磷特性[J].应用与环境生物学报,12(4):457-460.
    54.张军民. 2007.干旱区生态安全问题及其评价原理—以新疆为例[J].生态环境,16(4):1328-1332.
    55.张丽梅,方萍,朱日清. 2004.禾本科植物联合固氮研究及其应用现状展望[J].应用生态学报,15(9):1650-1654.
    56.章家恩,刘文高,王伟胜. 2002.南亚热带不通植被根际微生物数量与根际土壤养分状况[J].土壤与环境,11(3):279-282.
    57.赵艳,张晓波. 2007.影响植物根际微生物区系之因素研究进展[J].中国农学通报,23(8):425-430.
    58.赵振勇,王让会,张慧芝,等. 2006.塔里木河下游荒漠生态系统退化机制分析[J].中国沙漠,26(2):220-225.
    59.中国科学院南京土壤研究所微生物室编著. 1985.土壤微生物研究法[M].北京:科学出版社,40-65.
    60.周宝利,陈玉成. 2006.植物修复的促进措施及根际微生物的作用[J].环境保护科学,32(3):39-42.
    61.周德庆. 2003.微生物学实验教程[M].北京:高等教育出版社,238-244.
    62.周国英,唐大武,陈晓艳,等. 2002.几种木本植物联合固氮细菌的研究-联合固氮细菌的分离鉴定及固氮活性[J].中南林学院学报,22(1):23-26.
    63.庄丽,陈亚宁,李卫红,等. 2006.渗透胁迫条件下植物茎叶水势的变化-以塔里木河下游胡杨为例[J].中国沙漠,26(6):1002-1008.
    64. Adams P D,Kloepper J W. 2002. Effect of host genotype on indigenous bacterial endophytes of cotton(Gossypium hirsutum L.)[J]. Plant and soil,240(1):181-189.
    65. Alstrom S,Burns R G. 1989. Cyanide production by rhizobacteria as a possible mechanism of plant growth inhibition [J]. Biology and Fertility of Soils,7(3):232-238.
    66. Amandeep S B. 2003. Insolation of endophytic bacteria from Lodgepole pine and Western red cedar and determination of their nitrogen fixing ability [D]. Vancouver:The University of British Columbia,Canada.
    67. Ashbolt N J,Inkerman P A. 1990. Acetic acid bacterial biota of the pink sugar cane mealybug,Saccharococcus sacchari,and its environs [J]. Applied and Environmental Microbiology,56(3): 707-712.
    68. Bakker A W,Schippers B. 1987. Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp-mediated plant growth-stimulation [J]. Soil Biology and Biochemistry,19(4):451-457.
    69. Bellone C H,De Bellone S,Pedraza R O,et al. 1997. Cell colonization and infection thread formation in sugar cane roots by Acetobacter diazotrophicus [J]. Soil Biology and Biochemistry,29(5-6):965-967.
    70. Cavalcante V A,D?bereiner J. 1988. A new acid-tolerant nitrogen-fixing bacterium associated with sugarcane [J]. Plant and Soil,108(1):23-31.
    71. Cavicchioli R,Siddiqui K S,Andrews D,et al. 2002. Low-temperature extremophiles and their applications [J]. Current Opinion in Biotechnology,13(3):253-261.
    72. Cojho E H,Reis V M,Schenberg A C G,et al. 1993. Interactions of Acetobacter diazotrophicus with an amylolytic yeast in nitrogen-free batch culture [J]. FEMS Microbiology Letters,106(3):341-346.
    73. Crouch I J,Smith M T,Van Staden J,et al. 1992. Identification of auxins in a commercial seaweed concentrate [J]. Journal of Plant Physiology,139(5):590-594.
    74. Duijff B J , Gianinazzi P , Lemanceau V. 1997. Involvement of the outer membrane lipopolysaccharides in the endophytic colonization of tomato roots by biocontrol Pseudomonas strain WCS417r. [J]. New Phytologigist,135(2):325-334.
    75. Elbeltagy A,Nishioka K,Sato T,et al. 2001. Endophytic colonization and in Planta nitrogen fixation by a Herbaspirillum sp. isolated from Wild Rice Species [J]. Applied and Environmental Microbiology,67(11):5285-5293.
    76. Fuentes-Ramirez L E , Jimenez-Salgado T , Abarca-Ocampo I R , et al. 1993. Acetobacter diazotrophicus,an indoleacetic acid producing bacterium isolated from sugarcane cultivars of México [J]. Plant and Soil,154(2):145-150.
    77. Glick B R,Bashan Y. 1997. Genetic manipulation of plant growth promoting bacteria to enhance biocontrol of fungal phytopathogens [J]. Biotechnology Advances,15(2):353-378.
    78. Glick B R,Pedersen J C,Hansen B M,et al. 1995. The enhancement of plant growth by free-living bacteria [J]. Canadian Journal Microbiology,41(2):109-117.
    79. Glickmann E,Dessaux Y. 1995. A critical examination of the specificity of the salkowski reagent for indolic compounds produced by phytopathogenic bacteria [J]. Applied and Environmental Microbiology,61(2):793-796.
    80. Gyaneshwar P,James E K,Mathan N,et al. 2001. Endophytic colonization of rice by a diazotropic strain of Serratia marcescens [J]. Journal of Bacteriology,183(8):2634-2645.
    81. Hafeez F Y,Malik K A. 2000. Manual on Biofertilizer Technology [M]. Pakistan:National Institute for Biotechnology and Genetic Engineering,1-20.
    82. Hallmann J. 2001. Plant Interaction with Endophytic Bacteria [M]// Jeger M J,Spence N J. Biotic interaction in plant-pathogen associations. Oxon:CAB International,87-119.
    83. Hurek T,Reinhold-Hurek B. 2003. Azoarcus sp. Strain BH72 as a model for nitrogen-fixing grass endophytes [J]. Journal of Biotechnology,106(2-3):169-178.
    84. Kloepper J W,Beauchamp C J,Gupthar A S,et al. 1992. A review of issues related to measuring colonization of plant roots by bateria [J]. Revue canadienne de microbiologie,38(12):1219-1232.
    85. Kowalchuk G A,Buma D S,De Boer W,et al. 2002. Effects of above-ground plant species composition and diversity on the diversity of soil-borne microorganisms [J]. Antonie van Leeuwenhoek,81(1-4):509-520.
    86. Krause A,Ramakumar A,Bartels D,et al. 2006. Complete genome of the mutualistic,N2-fixing grass endophyte Azoarcus sp. strain BH72 [J]. Nature biotechnology,24(11):1385-1391.
    87. Lyuch J M,Whipps J M. 1990. Substrate flow in the rhizosphere [J]. Plant and Soil,129(1):1-10.
    88. Magalh?es Cruz L,Maltempi de Souza E,Weber O B,et al. 2001. 16S Ribosomal DNA characterization of nitrogen-fixing bacteria isolated from banana (Musa spp.)and Pineapple (Ananas comosus(L.)Merril)[J]. Applied and Environmental Microbiology,67(5):2375-2379.
    89. Martin R. 1990. Contribution of rhizophere to the maintenance and growth of soil microbial biomass [J]. Soil Biology and Biochemistry,22(20):141-147.
    90. Mocali S,Bertelli E,Di Cello F,et al. 2003. Fluctuation of bacteria isolated from elm tissues during different seasons and from different plant organs [J]. Research in Microbiology,154(2):105-114.
    91. Murary A H. 1996. Effect of simple phenolic compounds of heather(Calluna vulgaris) on rumen microbial activity in Vitro [J]. Journal of Chemical Ecology,22(8):1493-1505.
    92. Naim J D,Chanway C P. 2002. Temporary loss of antibiotic resistance by marked bacteria in the rhizosphere of spruce seedings [J]. FEMS Microbiology Ecology,40(3):167-170.
    93. Pan B,Vessey J K. 2001. Response of the enddophytic diazotroph gluconacetobacter diazotrophicus on solid media to changes in atmospheric partial O2 pressure [J]. Applied and Environmental Microbiology,67(10):4694-4700.
    94. Prosser J I. 2002. Molecular and functional diversity in soil micro-organisms [J]. Plant and Soil,244(1-2):9-17.
    95. Reis V M,Olivares F L,De Oliveira A L M,et al. 1999. Technical approaches to inoculate micropropagated sugar cane plants were Acetobacter diazotrophicus [J]. Plant and Soil,206(2):205-211.
    96. Rennie R J. 1981. A simple medium for isolation of acetylene-reducing(dinitrogen fixing)bacteria from soil [J]. Canadian Journal of Microbiology,27(1):8-14.
    97. Thakuria D,Talukdar N C,Goswami C,et al. 2004. Characterization and screening of bacteria from rhizosphere of rice grown in acidic soils of Assam [J]. Current Science,86(7):978-985.
    98. Timmusk S,Grantcharova N,Wagner E G H. 2005. Paenibacillus polymyxa invades plant roots and forms biofilms [J]. Applied and Environmental Microbiology,71(11):7292-7300.
    99. Ye B,Saito A,Minamisawa K. 2005. Effect of Inoculation with Anaerobic Nitrogen-Fixing Consortium on Salt Tolerance of Miscanthus sinensis [J]. Soil Science and Plant Nutrition,51 (2):243-249.