卡那霉素A、B组分分离纯化新技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前国内卡那霉素生产过程大多采用732~#强酸性阳离子交换树脂静态吸附、动态洗脱工艺。针对该工艺存在的缺陷,本工作进行卡那霉素A、B组分分离纯化新技术研究。
     卡那霉素A、B属于多元弱碱水溶性化合物。本工作分别采用基于缓冲体系原理的分段线性回归分析、联立方程的算法和基于酸碱滴定通式的Rosenbrock算法,处理卡那霉素A、B电位滴定数据。估算得到的卡那霉素A多元离解常数与文献报道的数值吻合。本论文首次全面报道了卡那霉素B的离解常数:根据卡那霉素A、B的电离度模拟不同pH条件下各价态的分布系数曲线(pH-分布系数曲线)。
     以发酵液为原料,筛选了八种不同类型强酸性和弱酸性阳离子交换树脂。弱酸性大孔型D-186树脂具有卡那霉素吸附总量高、杂质吸附量少和卡B组分富集率高的特点。运用正交试验设计法优化了上柱吸附富集条件(pH7.0,流速2.0V/V/h)和杂质洗脱条件(硫酸铵溶液浓度1.0%(v/v),pH7.5,流速1.25V/V/h)。采用D-186树脂和732树脂四柱串联动态吸附洗脱工艺流程,可以有效富集发酵液中的卡那霉素B组分。在发酵不正常时,能够保证卡碱产品的质量。
     采用D-186树脂从结晶母液中分离卡那霉素A、B组分。运用正交试验设计法优化上柱吸附富集条件(母液稀释浓度1.26万u/ml,pH7.0,流速1.5VN/h)和杂质洗脱条件(硫酸铵溶液浓度1.5%(V/V),pH7.5,流速1.75V/V/h)。采用三柱串联动态吸附洗脱工艺路线,使卡那霉素A、B组分的总回收率分别达到80%和93%以上,杂质去除串达到99%。
     将从发酵液和结晶母液中富集的卡那霉素B组分枓液浓缩后按比例混合(浓度30~35万u/ml,卡B组分含量约占35%),采用阴离子交换树脂H401进行柱层析分离。优化了层析分离操作条件:①粒径80目(0.20mm),交联度2.5的H401阴离子交换树脂:②上柱量为1.05ug/ml:③洗脱剂NH4OH浓度0.6%(V/V):④洗脱流速0.5ml/min。卡A产品纯度达到99.5%,卡B产品纯度达到90%以上。
The domestic current Kanamycin A separating technology is static adsorption and dynamic eluation processing based on 732 strong acid cation-exchange resin. A new extraction and purification technology of Kanamycin A and B was developed in this work.
    Kanamycin A and B are soluble weak polybases. According to the determined data in our potentiometric titration experiments ,the polybasic ionization constants of Kanamycin A and B were estimated by means of two algorithm, Stepwise Linear Regression and Simultaneous Equations Algorithm and Rosenbrock Algorithm. The calculated polybasic ionization constants of Kanamycin A were similar to the reported data. The stepwise ionization constants of Kanamycin B pKa,=5.61, pKa2=6.56, pKa3=7.43, pKa4=8.22, pKaj =9.11, were first reported. The distribution of different Kanamycin A and B charged-ion in different pH conditions was simulated.
    After comparison test of eight cation-exchange resins , D-186 cation resin was sorted out to separate Kanamycin B from the fermented broth, which was characterized of higher adsorption rate of Kanamycin B compared with Kanamycin A and lower impurity adsorption rate. The orthogonal design and analysis of experiments was applied to optimize the operation condition during adsorption ( pHV.O, flow rate 1.5V/V/h. ) and the condition during impurity elution ((NH4)2SO concentration 1.0%(VAO, pH7.5, flow rate 1.25V/V/h ). A new technology of dynamic absorption and dynamic eluation involving one D-186 resin and three 732 resins column was developed, which was able to concentrate Kanamycin B effectively and guarantee the quality of final product of Kanamycin A in abnormal fermentation.
    D-186 resin was also selected to separate Kanamycin A and B from crystallization residue. Then the optimum operation condition of extracting Kanamycin and purging away impurity is also determined. The concentration of diluted crystallization residue was 12600 u/ml, pH 7.0, flow rate 1.5V/V/h; and the concentration of (NH4)2SO4 was 1.5%(V/V), pH 7.5, flow rate 1.75V/V/h. The dynamic absorption and dynamic eluation technology incuding three columns of D-186 resin was established. The recovery rate of
    Kanamycin A and B was respectively 80% and 93%. The elimination rate of impurity was about 99%.
    The collected fractions Kanamycin B from fermented broth and crystallization residue solution were
    mixed and then concentrated to 30-35 X 105u/ml, contained about 35% Kanamycin B. Based on the principle of separation chromatography, Kanamycin B was separated and purified by H401 anion-exchange resin. The optimum technological conditions were determined: the diameter of resin 0.20mm, the linked-degree of resin 2.5 , and the adder quantities 1.05ug/ml (resin), the eluant concentration of NH4OH 0.6%(V/V), the elution rate 0.5 ml/min for a column of 1> 1.8cm X 300cm. The purity of Kanamycin A\B was 99.5% and 90%.
引文
[1]俞文,杨纪根等.抗生素工艺学.沈阳:辽宁科技出版社,1988.
    [2]邬行彦,熊宗贵等.抗生素生产工艺学.北京:化学工业出版社,1982.
    [3]张冶炎主编.抗生素药品检验.人民卫生出版社,1987.
    [4]彭司勋主编(中国药科大学等合编).药物化学.北京:化学工业出版社,1986.
    [5]《国家基本药物》编委会.国家基本药物.人民卫生出版社,1989.
    [6]黄天守主编.化学化工药学大词典.大学图书公司出版.
    [7]1970;12:56
    [8]方国桢.滴定分析.分析试验室,1997,16(6):82~95.
    [9]周恒辉.湘潭大学自然科学学报,1992,14(4):31~34.
    [10]张淑芬,秦梅.一阶导数光谱法测定指示剂类多元酸离解常数.分析化学,1998,26(8):931~934.
    [11]丛培盛,朱仲良,渐进因子分析-pH-分光法测定多元酸的离解常数.高等学校化学学报,1994,15(9):1292~1296.
    [12]黄亚励,张华山等.4,8-二磺酸萘偶恨磺酚离解作用的研究及其与Nb(V)络合物稳定常数的测定.化学试剂,1997,19(2):68~70,94.
    [13]黄亚励,刘红等.3-羟基苯偶氮氯磺酚离解作用的研究及其与V(IV)配合物稳定常数的测定.1999,21(3):138~140.
    [14]王麟生,乐美卿等.偶氮胂显色剂离解常数及其与镧配合物稳定常数的测定.化学试剂,1998,20(4):205~206,243.
    [15]姚成,王镇浦等.钨(VI)-4-(2-苯并噻唑偶氮)邻苯二酚-OP三元络合物显色反应的研究.冶金分析,1997,17(4):1~3,6.
    [16]D.T.索耶、W.R.海纳曼、J.M.毕比.仪器分析实验.南京大学出版社.
    [17]大连理工大学无机化学教研室.无机化学(第三版,上).高等教育出版社.
    [18]华东理工大学分析化学教研组、成都科技大学分析化学教研组.分析化学(第四版).高等教育出版社.
    [19]童钰,罗中杰等.湘潭大学自然科学学报,1992,14(4):1~5.
    [20]刘建华,林文如,林素蜜.弱酸弱碱多元非线性回归电位反滴定.分析试验室,1996,15(5):15~17.
    [21]王致勇,连祥珍.实验无机化学.北京:清华大学出版社,1985:78.
    [22]中山大学主编.无机化学实验.北京:高等教育出版社,1978:78.
    [23]大连理工大学.无机化学实验.北京:高等教育出版社,1990:26.
    [24]王.化学实验基础.北京:人民卫生出版社,1988:37.
    [25]Gran G. Analyst, 1952, 77; 661.
    [26]倪永年.标准加入法在酸碱分析中的应用.分析化学,1993,21(7):93.
    [27]张云.无需标准溶液的酸碱滴定计算分析研究.高等学校化学学报,1993,14(11):1514~1517.
    
    
    [28]冯新邦,汪葆浚等.计算机与应用化学,1988,5(2):136.
    [29]魏永巨,丁儒乾.计算机与应用化学,1990,7(1):49.
    [30]朱永春,张辉,姜凤茹.弱酸电离常数和电离度测定方法的改进.大学化学,1994,9(2):37~38.
    [31]魏永巨,李克安.电位滴定法测定弱酸电离常数与混合酸组分浓度的一种通用处理方法.分析试验室,1991,1(2):25~27.
    [32]陈宝林.最优化理论与算法.清华大学出版社:1989,397.
    [33]薛嘉庆(东北工学院).最优化原理与方法.冶金工业出版社:1992,145.
    [34]席少霖,赵凤治.最优化计算方法.上海科学技术出版社:1983,159.
    [35]杨冰编著.实用最优化方法及计算机程序.哈尔滨船舶工程学院出版社:1994,96.
    [36][美]D.M.希梅尔不劳著,张义桑等译.实用非线性规划.科学出版社:1983,176.
    [37]谭浩强,龙耀庭主编.FORTRAN77科学计算子程序汇编.清华大学出版社:1993.
    [38][美]James N.Butler著,陆淑引等译.离子平衡及其数学处理.南开大学出版社:1989,215.
    [39]忻新泉编著.计算机在化学中的应用.南京大学出版社:1986.
    [40]彭崇慧、冯建章等.定量化学分析.北京大学出版社:1997,51.
    [41]武汉水利电力大学 钟金昌主编.计算机在分析化学中的应用.中国电力出版社:1997,38.
    [42]范勋培主编.化学中的数值计算方法与CAD.上海交通大学出版社:1996,35.
    [43]胡毓达编著.实用多目标最优化.上海科学技术出版社:1990,146.
    [44]周承高,廖圆编.优化方法及其程序设计.中国铁道出版社:1989,168.
    [45]严希康,赵丽等.大孔弱酸性树脂对卡那霉素吸附行为的研究.中国抗生素杂志,1993,18(4):278~283.
    [46]AKE OLIN and BO WALLEN, TALANTA, 1978, 25, 720.
    [47]王孙准,刘满英,杨俊英.多元酸解离常数计算方法的改进及其计算程序.计算机与应用化学,1991,8(2):152~154.
    [48]G.L.Breneman, J.Chem. Educ., 1974, 51, 812.
    [49]Marie-Noelle Pons, Jean-Louis Greffe and Jaces Bordet, Talanta: 1983, 30(3), 205.
    [50]Marquardt, D.W., J.Soc. Ind.Appl.Math., 1963, 11, 431.
    [51]姜群等.酸碱平衡智能信息处理系统.计算机与应用化学,1986,3(2):126~129.
    [52]电位滴定—计算机最优化法测定混合多元酸组分浓度与电离常数.计算机与应用化学,1990,7(1):49~51.
    [53]Fernando Rived. Marti Roses. Elisabeth Bosch. Analytica Chimical Acta, 1998,374,309~324.
    [54]谢文华等.分析化学.1996,24(9):1069~1073.
    [55]范晓媛等.辽宁化工.1997,26(3):107~108.
    [56]倪永年.高等学校化学学报.1985,8(6):693~695.
    [57]周激等,吴耀焕等.金属离子选择电极测定弱酸的离解常数.分析实验室,1999,18(4):80~82.