参数优选算法研究及其在水文模型中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对单纯形算法、Rosenbrock算法和模式搜索算法等多种常规优化方法,模拟退火算法、混沌算法和最大熵优化等多种革新优化算法以及具有很大发展潜力的遗传算法(GA)进行了系统的分析,并针对不同水文模型所出现的大量高维、多峰、非线性、不连续、非凸性等复杂的参数优选问题,建立了改进的加速遗传算法、改进的混合加速遗传算法并对上述改进的加速遗传算法进行数值模拟、系统的理论研究、应用研究并与常规优化方法进行比较,提高了水文模型参数优选的稳健性和解的精度以及遗传算法的速度。主要研究内容如下:
     1.对二进制编码加速遗传算法的杂交算子、变异算子进行改进,建立了改进的加速遗传算法,提高了GA的全局优化能力。
     2.利用混沌变量特定的内在随机性和遍历性,建立了简单混沌优化算法。
     3.在进化过程中,根据种群的实际情况,随时调整杂交、变异算子大小,把这一思想应用于加速遗传算法中,提出基于动态杂交、变异操作的自适应加速遗传算法,克服了算法的早熟收敛,在一定程度上提高了GA的全局优化能力。
     4.二进制编码有时不便于反映所求问题的结构特征,对于一些连续函数的优化问题,GA的局部搜索能力也较差。相邻整数的二进制编码可能具有较大的Hamming距离,这种缺陷将降低遗传算子的搜索效率。格雷码遗传算法虽然可以克服二进制编码的Hamming悬崖这一缺点,但也存在着收敛速度慢等问题。为此,本文提出基于格雷码编码的加速遗传算法,并将格雷码加速遗传算法应用于河流横向扩散系数、结构最优设计和非线性极大极小问题等参数识别问题中,大大提高了格雷码遗传算法解的精度和搜索效率。
     5.二进制编码需频繁的编码和解码,计算量大。实数编码遗传算法虽然不需频繁的编码和解码,但局部搜索能力有时也较差。本文在实编码遗传算法中加入单纯形法、模拟退火法和模式搜索法,提出了单纯形混合加速遗传算法、模拟退火混合遗传算法和模式搜索混合遗传算法,在一定程度上,减少了GA的计算量,提高了GA的搜索效率、全局优化能力和解的精度。
     6.建立了上述两点杂交、两点变异格雷码加速遗传算法的模式定理,给本文所建立的格雷码加速遗传算法提供了理论基础。
     7.对模拟退火算法进行了改进,建立了改进的模拟退火算法,在一定程度上提高了模拟退火算法的搜索效率。
     8.和用基于最大熵原理的变尺度算法(DFP)利实编码加速遗传算法(RAGA),解决了带约束的环境优化问题。
     9.本文对10种优化方法的全局收敛性进行了数值实验和分析比较,结果表明混合加速遗传算法SAGA、JHGA的全局优化性能较好。
     10.给出了12种参数优选方法在水文模型中的应用结果,建立了适合于水文模型尤其是流域水文模型的混合加速遗传算法。
The usual optimization methods of simplex' s algorithm, Rosen Brock algorithm, Hooke-Jeeveshybrid algorithm, the reformation optimization methods of simulated annealing algorithm, chaos algorithm, maximum entropy method and the potential genetic algorithm are systematically analyzed. Improved accelerating genetic algorithm and hybrid accelerating genetic algorithm are proposed for lots of multidimension, multiapex, nonlinear, discontinuity, nonprotruding about complex parameter optimization problem in Hydrological model. Comparisons with some usual optimization methods were made through the application of Hydrological model in practical. Results showed that the above improved accelerating genetic algorithm have the features of convenient, fast, constringency and steady. They could be applied extensively in the optimal problems. The main achievements are as follows:
    1. Crossover operator and mutation operator are modified for binary accelerating genetic algorithm. Improved accelerating genetic algorithm is presented. The total optimization ability is improved.
    2. An chaos algorithm is established by use of the intrinsic stochastic property and ergodicity of chaos movement.
    3. According to population' s fact, crossover operator and mutation operator are adjusted for accelerating genetic algorithm in evolution in time. Adaptive accelerating genetic algorithm for dynamic crossover and mutation operator are presented. Early constringency is conquered. The total optimization ability is improved.
    4. The structure in problem can be difficultly reflected by use of binary code. GA local searching ability is quite worse for continuum function. Near binary code integers could be of large Hamming distance, that will debase genetic algorithm' s searching efficiency. Although gray code genetic algorithm can get over the Hamming distance problem, the convergence speed of gray code genetic algorithm is also slow. So gray code accelerating genetic algorithm is presented for continuum function. For the parameter identification of determining the transverse difussion coefficient of river, the optimum design of structures and minimax problems, gray code accelerating genetic algorithm gets good solution. Searching efficiency and solution' s precision are greatly improved for gray code genetic algorithm.
    5. Binary coding need frequent coding and decoding, and the amount of
    
    
    calculation is big. Al though real coding genetic algorithm needn' t frequent coding and decoding, local searching ability of real coding genetic algorithm is sometime difference. Simplex' s algorithm, simulated annealing algorithm or Hooke-Jeeves algorithm is added in real coding genetic algorithm, Simplex hybrid accelerating genetic algorithm, simulated annealing hybrid accelerating genetic algorithm and Hooke-Jeeves hybrid accelerating genetic algorithm are presented, at a certain extent the calculation steps of algorithm is reduced, searching efficiency, global optimization ability and solution' s precision are improved.
    6. Two-point crossover and two-point mutation' s scheme theorem is established for above gray code accelerating genetic algorithm. It provides a theory base for above gray code accelerating genetic algorithm.
    7. Simulated annealing algorithm is improved, an improved simulated annealing algorithm is established and searching efficiency is improved for simulated annealing algorithm.
    8. DFP and RAGA on maximum entropy theory are proposed, an environment optimization problem is good solved.
    9 . The global convergence is numerically tested and analized for ten optimization methods. Result indicating Hybrid accelerating genetic algorithms---SAGA, JI1GA are good for the global convergence.
    10. Calculation result of twelve parameter optimization methods is given for Hydrological model. Hybrid accelerating genetic algorithm are established for Hydrological model especially for basin Hydrological model.
引文
1. Schwefel, H. P and Ma ner, R. (Editors), Proceedings of the 1 st International Conference on Parallel Problem Sloving from Nature (PPSN), Springer-Vverlag, Lecture Notes in Computer Science, Vol. 496, 1991.
    2.[美]D.G.鲁恩伯杰著.夏尊铨等译.线性与非线性规划引论[H].北京:科学出版社,1980.
    3.金菊良,丁晶.遗传算法及其在水科学中的应用[M].四川:四川大学出版社,2000.
    4. Holland J H. Adaptation in Natural and Artificial Systems, the University of Michigan Press, 1975.
    5. Holland J H. 基因算法[M].科学 (中译本), 1992, (11): 24-31.
    6. Deb K Genetic Algorithms in Multi-model Function Optimization, University of Alabama, 1989.
    7. Goldbetg D E Richardson J Genetic Algorthrms with Sharing for Multimodel Function Optimization, In: Proceedings of the Second Interantional Conference on Genetic Algorithms and Their Applicatons. Hillsdale, NJ: Lawrence Enbaum, 1987:41—49.
    8. Schaffer J. D. Multiple Objective Optimization with Vector Evaluated Genetic Algorithms In, Proceedings of the First Internaitonal on Genetic Algorithms and Their Application Hillsdale, WJ, Lawrerice Erlbaum, 1985, 93—100.
    9. Goldberg D. E. optimal initial population size for binary coded genetic algorithms. The clearing house for genetic algorithms university of albama, 1985, 1-10.
    10. Hesser J., Manner R., Towards an optimal mutation probability for genetic algorithms, In: parallel problem sorting from nature, Berlin and Heidelber: springer, 1990, 23-32.
    11. Grefenstette J., Optimization of control parameters for genetic algorithms, IEEE trans, on SMC, 1986, 16(1): 123-128.
    12. Goldberg D E., Genetic algorithms in search, optimization, and machine learning, Addsin-Wesley Publishing Company, INC, New York, 1989.
    13. Goldberg D E., Size population for serial and parallel genetic algorithms. In: proceedings of the Third International Conference on Genetic Algorithms and Their Applications, San Mateo, CA: Morgan Kaufmann, 1989, 70-79.
    14. Schaffer J. D., A study of control parameters affecting online performance
    
    of genetic algorithms for function optimization, In: Proceedings of the Third International Conference on Genetic Algorithms and Their Applications, San Mateo, CA, Morgan Kaufmann, 1989, 51-60.
    15. Syswerda G.., Uniform crossover in genetic algorithms, 3rd Intern. Conf. on Genetic Algorithms, 1989, 3-9.
    16. Muhlebein H Gorges-Schleuter M, Kramer O. Evolution Algorithms in Combinatorial Optimizaion, Parallel Computing, 1988, (7): 65—85.
    17. Kirkpatrick S, Gelatt Jr C D, Vecchi M P. Optimization by simulated annealing. Science, 1983, 220: 671-680.
    18. Aarts E H L, van Laarnoven P J M. Simulated annealing: Theory and Application. Dordrecht: D Reidel Publishing Company, 1987.
    19. Anily S, Federgruen. Probabilistic Analysis of Simulated Annealing Methods. Graduate School of Business, Golumbia University, New York, Preprint, 1985
    20. Hopfield J, Tank D. 'Neural' computation of decisions in optimization problems. Biological Cybernetics, 1985, 52:141-152.
    21. Hopfield J, Tank D. Computing with neural circuits: a model. Science, 1986, 233:625-633.
    22. McClelland J, Rumelhart D. Explorations in Parallel Distributed Processing. Cambridge, MA: MIT Press, 1988.
    23.邢文训,谢金星著.现代优化计算方法[M].北京,清华大学出版社,2000.
    24.邓乃扬等著.无约束最优化计算方法[M].北京:科学出版社,1982.
    25. Rosenbrock, H., H., An automatic method for finding the greatest or least value of a function, Comput. J., 3 (1960): 175-184.
    26. Hooke, R. and Jeeves, T. A., "Direct search" Solution of numerical and statistical problems, J. Ass. Comput. Mach.., 8 (1961): 212-229.
    27. Spendley, W., Hext, G. R. and Himsworth, F. R., Sequential application of simplex designs in optimization and evolutionary operation, Technometrics, 4 (1962): 441-461.
    28. Powell, M. J. D., An efficient method for finding minimum of a function of several variables without calculating derivatives, Camput. J., 7(1964), 155-162.
    29. Davidon, W. C., Variable metric method for minimization, AEC Research and Development Report, ANL 5990, 1959.
    30. Marquardt, D. W., An algorithm for least squares estimation of nonlinear parameters, SIAM J., 11(1963), 431-441.
    31.张建云等.模型参数优化方法及其应用[J].水文,1999 (增刊)61-65.
    32. Shubert B O. A Sequentiat Mathod Seeking the Global Maximum of Function. SLAN J Numer Anal, 1972(9): 379-388.
    
    
    33. Basso P. Iterative Methods for the localization of the Maximum. SIAM J Numer Anal, 1982 (19): 781-792.
    34. Shen Z, Zhn Y. An Interval vorsion of Shubert's Interative Method for the Localization of the Golbal Maximum. Computing 1987(38): 275-280.
    35. Templeman. A. B. AND li Xingsi. A maximum entropy approach to constrained non-linear programming. Engineering Optimization 1987, 12(3): 191-205.
    36.李兴斯.结构优化设计的最大熵法[J].计算结构力学及其应用,1989,6 (1) 36-46.
    37.李兴斯.一类不可微优化问题的有效解法[J].中国科学(A辑),1994,4 (24):371-377.
    38.杨仲侯,杨海霞,金峰.结构优化设计与最大熵原理[J].河海大学学报,1995,23 (1):8-15.
    39.黄震宇,沈祖和.解一类非线性极大极小问题的熵函数方法[J].科学通报,1996,41 (17):1550-1554.
    40. Glover F. Future paths for integer programming and links to artificial intelligence. Computers and Operations Research, 1986, 13:533-549.
    41. Glover F. Tabu search: part Ⅰ. ORSA Journal on Computing, 1989, 1: 190-206.
    42. Glover F. Tabu search: part Ⅱ. ORSA Journal on Computing, 1990, 2: 4-32.
    43.金菊良,魏一鸣,杨晓华,等.基于遗传算法的神经网络及其在洪水灾害承灾体易损性建模中的应用[J].自然灾害学报,1998,7 (2):53-60.
    44 金菊良,魏一鸣,杨晓华.基于遗传算法的洪水灾情评估神经网络模型探讨[J].灾害学,1998,13 (2):6-11.
    45 苑希民、刘树坤、陈浩等.基于人工神经网络的多泥沙洪水预报[J].水科学进展,1999,10 (4):393-398.
    46 avis, L.: Genetic Algorithms and Simulated Annealing, San Mateo, California, USA: Morgan Kaufmann Publishers, 1987.
    47 Wu X X, Chen Z Introduction of chaos theory [M], Shanghai Science and Technology Bibliographic Publishing House, 1996.
    48 李兵,蒋慰孙.混沌优化方法及应用[J].控制理论与应用,1997,14 (4):613-615.
    49 张春慨,徐立云,邵惠鹤等.改进混沌优化及其在非线性约束优化问题中的应用[J].上海交通大学学报,2000,34 (5):593-599.
    50 Fogarty, T. C.: Evolutionary Computing. Proceedings of AISB Workshop on Evolutionary Computing 1996, volume 1143 of Lecture Notes in Computer Science, Berlin, Heidelberg, New York: Springer-Verlag, 1996.
    51 Branin, F. K.: A widely convergent method for finding multiple solutions of simultaneous nonlinear equations. IBM J. Res. Develop., pp. 504-522, Sept., 1972.
    52 Caruana, R. A., Eshelmann, L. A. and Schaffer, J. D.: Representation and hidden bias Ⅱ: Eliminating defining length bias in genetic seach via shuffle crossover.
    
    in Eleventh International Joint Conference on Artificial Intelligence, Sridharan, N. S. (Ed.), vol. 1, pp. 750-755, San Mateo, California, USA: Morgan Kaufmann Publishers, 1989.
    53 Chipperfield, A. J. and Fleming, P. J.: Parallel Genetic Algorithms: A Survey. Technical Report No. 518, Department of Automatic Control and Systems Engineering, University of Sheffield, 1994.
    54 Chipperfield, A. J., Fleming, P. J. and Pohlheim, H.: A Genetic Algorithm Toolbox for MATLAB. Proc. Int. Conf. Sys. Engineering, Coventry, UK, 6-8 Sept., pp. 200-207, 1994.
    55 Chipperfield, A., Fleming, P. J., Pohlheim, H. and Fonseca, C. M.: Genetic Algorithm Toolbox for use with Matlab. Technical Report No. 512, Department of Automatic Control and Systems Engineering, University of Sheffield, 1994
    56 Easom, E. E.: A survey of global optimization techniques. M. Eng. thesis, Univ. Louisville, Louisville, KY, 1990.
    57 Fogel, D. B.: An Introduction to Simulated Evolutionary Optimization. IEEE Trans. on neural networks, vol. 5, No. 1, pp. 3-14, 1994.
    58 Fogel, D. B.: Applying Evolutionary Programming to Selected Control Problems. Computers Math. Applic., 11(27), pp. 89-104, 1994.
    59 Fogel, D. B.: Evolutionary computation: toward a new philosophy of machine intelligence. New York: IEEE Press, 1995.
    60 Fonseca, C. M. and Fleming P. J.: Multiobjective Optimization and Multiple Constraint Handling with Evolutionary Algorithms I: A Unified Formulation. Research report 564, Dept. Automatic Control and Systems Eng., University of Sheffield, Sheffield, U. K., 1995.
    61 Fonseca, C. M. and Fleming P. J.: An Overview of Evolutionary Algorithms in Multiobjective Optimization. Evolutionary Computation, 3(1), pp. 1-16, 1995.
    62 Fonseca, C. M.: Multiobjective Genetic Algorithms with Application to Control Engineering Problems. Ph.D. Thesis, Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, U. K., 1995.
    63 Rawlins, G. J. E.: Foundations of Genetic Algorithms, San Mateo, California, USA: Morgan Kaufmann Publishers, 1991
    64 Whitley, L. D: Foundations of Genetic Algorithms 2, San Mateo, California, USA: Morgan Kaufmann Publishers, 1993.
    65 Whitley, L. D and Vose, M. D.: Foundations of Genetic Algorithms 3, San Francisco, California, USA: Morgan Kaufmann Publishers, 1995.
    66 Haas, R. and Hunt, K. J.: Genetic based optimisation of a fuzzy-neural vehicle controller. Proc. Fuzzy Systems Conf., Munich, 1994.
    
    
    67 Holland, J. H.: Hidden order: how adaptation builds complexity. Reading, Massachusetts: Addison-Wesley, 1995.
    68 Grefenstette, J. J.: Proceedings of an International Conference on Genetic Algorithms and their Application, Hillsdale, New Jersey, USA: Lawrence Erlbaum Associates, 1985.
    69 Grefenstette, J. J.: Proceedings of the Second International Conference on Genetic Algorithms and their Application, Hillsdale, New Jersey, USA: Lawrence Erlbaum Associates, 1987.
    70 Schaffer, J. D.: Proceedings of the Third International Conference on Genetic Algorithms, San Mateo, California, USA: Morgan Kaufmann Publishers, 1989.
    71 Belew, R. K. and Booker, L. B.: Proceedings of the Fourth International Conference on Genetic Algorithms, San Mateo, California, USA: Morgan Kaufmann Publishers, 1991.
    72 Forrest, S.: Proceedings of the Fifth International Conference on Genetic Algorithms, San Mateo, California, USA: Morgan Kaufmann Publishers, 1993.
    73 Eshelman, L. J.: Proceedings of the Sixth International Conference on Genetic Algorithms, San Francisco, California, USA: Morgan Kaufmann Publishers, 1995
    74 Kapsalis, A., Smith, G. D. and Rayward-Smith, V. J.: A unified parallel genetic algorithm. AISB Workshop Evolutionary Computation, April 11-13, Leeds, 1994.
    75 Mattfeld, D. C.: Evolutionary Search and the Job Shop: Investigations on Genetic Algorithms for Production Scheduling. Heidelberg: Physica-Verlag, 1996.
    76 Mecklenburg, K., Hrycej, T., Franke, U. and Fritz, H.: Neural control of autonomous vehicle, in IEEE Vehicular Technology Conference, Denver, 1992.
    77 Osmera, P.: MENDEL'96-2nd International Conference on Genetic Algorithms. 26.-28. June 1996, Technical University of Brno, Czech Republik, 1996.
    78 Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Berlin, Heidelberg, New York: Springer-Verlag, 1992.
    79 Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs, Second, Extended Edition. Berlin, Heidelberg, New York: Springer-Verlag, 1994.
    80 金菊良,杨晓华,储开凤,等.加速基因算法在海洋环境预报中的应用[J].海洋环境科学,1997 (4):7-11.
    81 金菊良,张欣莉,丁晶.解水资源最优分配的遗传算法.水利水运科学研究,2000,(4):65-68.
    82 金菊良,金保明,杨晓华,丁晶.遗传算法在均质土坝渗流计算中的应用[J].长江科学院院报,2001,18 (1):38-40.
    83 张毅,李人厚.基于基因算法的多变量模糊控制器的设计[J].控制理论与应用,1996,13 (4):409——416.
    
    
    84 刘宝坤,石红瑞,王慧等.基于遗传算法的神经网络自适应控制器的研究[J].信息与控制,1997,26 (49):311-314.
    85 Schraudolph N N, Belew R K. Dynamic Parameter Encoding for Genetic Algorithm[J], Machine Learning, 1992, 9(6): 9-21.
    86 赵明旺.基于遗传算法和最速下降法的函数优化混合数值算法[J].系统工程理论与实践,1997,7:59-64.
    87 Stoffa P, Sen M K Nonlinear Multiparameter Optimization Using Genetic Algorithms: Inversion of Plane-wave Seismograms Geophysics, 1991, 56(11): 1794-1810.
    88 韩帧祥,文福拴.模拟进化优化方法简介[J].电力系统自动化,1995,19 (12):5-10.
    89 陈国良,王煦法,庄镇泉等.遗传算法及其应用[M].北京,人民邮电出版社,1996.
    90 Schaffer J D Eshelman L J On Crossover as an Evolutionarily Variable Strategy, In: Proceedings of the Fourth International Conference on Genetic Algorithms and Their Applications, San Mateo, CA, Morgan Kaufmann, 1991.
    91 Spears W M Crossover or Mutation, In: Foundation of Genetic Algorithms-2, Whitely L D ed CA: Margan Kaufmann, 1993.
    92 张文修、梁怡。遗传算法的数学基础[M].西安,西安交通大学出版社,2000.
    93 Fogel D B, Atmar J W Comparing Genatic Operators with Gaussian Mutations in Simulated Evalutionary Processes Using Linear Systems, Biological Cyberntics, 1990, 63: 111-114.
    94 Miller J A, Potter W D, Gandham R V et al, An Evalution of Local Improvement Operators for Genetic Algorithms, IEEE Trans. On SMC. 1993, 23(5): 1340-1351.
    95 Fogel D B, Evalutionary Computation-Toward a New philosophy of machine Intelligence. IEEE Press. 1995.
    96 方剑,席裕庚.基于遗传算法的JOB SHOP静态调度算法[J].上海交通大学学报,1997,31 (3):49-52.
    97 林家恒,李国峰,刘长有.双伺服机分层旋转货架拣选路径优化的两级遗传算法[J].控制与决策,1997,12 (4):332-336。
    98 冯蔚东,陈剑,赵纯均等.基于遗传算法的动态联盟伙伴选择过程及优化模型[J].清华大学学报,2000,40 (10):120-124.
    99 葛志远,王永县,南兰等.基于二叉树结构编码的遗传算法[J].清华大学学报,2000,40 (10):125-128.
    100 潘正君,康立山等.演化计算[M].清华大学出版社,北京,2000.
    101 周明,孙树栋.遗传算法原理及应用[M].北京:国防工业出版社,2001.123-129.
    102 Holland J H. Reitman J S. Cognitive Systems Based on Adaptive Algorithms. In; waterman D A & Hayes-Roth F Eds. Pattern Directed Inference Systems, New York: Academic Press, 1978, 313-329.
    103 Bagley J D. The Behavior of Aaptive System which Employ Genetic and Correlation
    
    Algorithm. Dissertation Abstracts International, 1967, 28(12).
    104 De Jong K A. An Analysis of the Behavior of a Closs of Genetic Adaptive Systems. Ph. D Dissertation, University of Michigan, No. 76-9381, 1975.
    105 Davis L D. Handbook of Genetic Algorithms. Van Nostrand Reinhold, 1991.
    106 Koza J R. Genetic Programming, on the Programming of Computers by Means of Natural Selection., MIT Press, 1992.
    107 Koza J R. Genetic Programming Ⅱ, Automatic Discovery of Reusable Programss. MIT Press, 1994.
    108 李军,谢秉磊,郭耀煌.基于自然数编码的模式理论研究[J].西南交通大学学报,2000,35 (1):77-80.
    109 li Maojun, Tong Tiaosheng, A Further Result on the Schema Theorem of Partheno-Genetic Algorithm[J]. Control Theory and Applications, 2001, 18 (3): 465-468.
    110 孙艳丰,王复托.关于遗传算法图式定理的分析研究[J].控制与决策,1996,(增刊):221-224.
    111 Vose M D and Liepins G E. Punctuated equilibria in genetic search. Complex Systems, 1991, 5:31-44.
    112 Horn J, Finite Markov chain analysis of genetic algorithms with niching. Proceedings of the Fifth International Conference on Genetic Algorithms, San Mateo, Morgan Kaufmann, 1993, 110-117.
    113 Mahfoud S W. Finite Markov chain models of an alternative selection strategy for the genetic algorithm. Complex Systems, 1993, 7:155-170.
    114 Suzuki J A, Markov chain analysis on simple genetic algorithms. IEEE Transactions on systems, Man and Cybernetics, 1995, 25: 655-659.
    115 Peck C C and Dhawan A P. Genetic algorithms as global random search methods:an alternative perspective, Evolutionary Computation, 1995, 3:39-80.
    116 Qi X and Palmieri F. Theoretical analysis of evolutionary algorithms with an infinite population size in continuous space part Ⅰ: basic properties of selection and mutation. IEEE Transactions on Neural Networks, 1994, 5: 102-119.
    117 Qi X and Palmieri F. Theoretical analysis of evolutionary algorithms with an infinite population size in continuous space part Ⅰ: analysis of the diversification role of crossover. IEEE Transactions on Neural Networks, 1994, 5:120-129.
    118 Angleeine P J Genetic Programming: A Current Snapshot, In: Proc. of the Third Annual Conference on Evolutionary Programming, Singapore: World Scientific, 1994.
    119 Whitley, D., Mathias, K., Fitzhorn, P., Delta Coding; An Iterative Search Strategy
    
    for Genetic AlgorithmS, Proceedings of the Fourth International Conference on Genetic Algorithms, Morgan Kaufmann Pulisher, Los Altos, CA,, 1991. pp77-84
    120 Michalewicz Z, Janikow C Z Krawczyk J B, Amodified Genetic Algorithm for Optimal Control Problems, Computers Math Applic. 1992, 23(12).
    121 岑文辉、雷友坤、谢恒.应用人工神经网络与遗传算法进行短期负荷预测[J].电力系统自动化,1997,21 (3):29-32.
    122 Srinivas M, Patnaik L W, Adaptive Probabilities of Crossover and Mutation in Genetic Algorithms, IEEE Trans Syst Man and Cybernetics, 1994, 24(4): 656-667.
    123 席裕庚,柴天佑,恽为民.遗传算法综述[J].控制理论与应用,1996,13 (6):697-708.
    124 丁承民,张传生,刘辉.遗传算法纵横谈[J].信息与控制,1997,26 (1):40-47.
    125 周明,孙树栋彭炎午.基于遗传模拟退火算法的机器人路径规划[J].航空学报,1998,19 (1):118-120
    126 Kinnear K. E. eds Advances in Genetic Programming. MIT Press. 1994.
    127 Brooker L. B., Goldberg D. E., Holland J. H. Classifier Systems and Genetic Algorithms. Artificial Intelligence. 1989. 40(2): 235-282.
    128 Schwefel H. P. Evolution and Optimum Seeking. John Wiley & Sons. 1994.
    129 刘勇,康立山等.非数值并行算法(第二册)—遗传算法[M].北京:科学出版社,1997.
    130 Fogel D B. System Indentification through Simulated Evolution: a Machine Learning Approach to Modeling. Ginn Press. 1991.
    131 杨晓红,刘乐善.用遗传算法优化神经网络结构[J].计算机应用与软件,1997,14 (3):59-65.
    132 王宏伦等.模糊逻辑系统的GA+BP混合学习算法[J].控制理论与应用,2001,18 (1):17-20.
    133 王雪梅,王义和.模拟退火算法与遗传算法的结合[J].计算机学报,1997,20 (4) 381-384.
    134 赵明旺.基于遗传算法和最速下降法的函数优化混合数值算法[J].系统工程理论与实践,1997,(7):59-64.
    135 邵全林,沈成武,唐小兵等.遗传算法用于结构内部缺陷识别的逆分析[J].武汉交通科技大学学报,1997,21 (3):275-279.
    136 张春慨,王亚英,李屑峰等.混沌在实数编码遗传算法中的应用[J].上海交通大学学报,2000,34 (12):1658-1660.
    137 王强,邵惠鹤.遗传算法在甲醛生产过程优化中的应用[J].控制理论与应用,1996,13 (4):477-481.
    138 唐立新,杨自厚,王梦光.CIMS中零件分簇的遗传算法[J].系统工程理论方法应用,1996,5 (2):23-28.
    139 张毅,张晓苏.遗传算法在电容器-电抗器组优化计算中的应用[J].武汉水利电力大学学报,1997,30 (3):58-61.
    
    
    140 曾三友,康立山,丁立新等.一种求解混合整数非线性规则问题的演化算法[J].武汉大学学报,2000,46 (5):554-558.
    141 金菊良,魏一鸣,丁晶.实码加速遗传算法在水质规划中的应用.2000年中国博士后学术大会论文集.北京:科学出版社,2001:273-277.
    142 Vignaux G. A. Michalewicz Z. A Genetic Algorithm for the Linear Transportation Problem. IEEE Trans on SMC. 1992, 21(2):445-452.
    143 王黎,马光文等.基于遗传算法的水电站优化调度新方法[J].系统工程理论与实践,1997,(7):65-69.
    144 王黎,马光文等.水电厂经济运行的遗传算法[J].四川联合大学学报(工程科学版),1997,1 (1):42-47.
    145 樊重俊,韩崇昭等.一类约束优化问题的改进遗传算法[J].控制与决策,1996,11 (5):609-612.
    146 林焰,郝聚民等.隔离小生境遗传算法研究[J].系统工程学报,2000,15 (1):86-91.
    147 刘洪杰,王秀峰,王治宝.遗传多峰搜索[J].系统工程学报,2000,15 (4):321-326.
    148 周文坤,武振业,鞠廷英.多目标群体决策的一种综合集成方法[J].2001,36 (1):100-103.
    149 Hajela P., Lin C. Y. Genetic Search Strategies in Multicriterion Optimal Design Structural Optimization. 1992, 5 (4): 99-107.
    150 马丰宁,寇纪淞,李敏强.用遗传规划求欧拉回路[J].系统工程理论与实践,1997,(5):19-28.
    151 De Jong K. A. Learning with Genetic Algorithms: an Overview Machine Learning. 1988. (3): 121-138.
    152 De Jong K. A. Spears W M, Gordon D F. Using Genetic Algorithms for Concept Learning. an Machine Learning. 1993. (13): 161-188.
    153 王正志,薄涛.进化计算[M].国防科技大学出版社,2000,11.
    154 杨晓华,金菊良,方保容.非线性规划问题的一种数值解法[M].东南大学出版社,1999(10).
    155 杨晓华,金菊良,巍一鸣.预测低温冷害的门限回归模型[J].灾害学,2002,1(已录用).
    156 杨晓华,陆桂华,郦建强.自适应基因算法在环境优化问题中的应用[J].河海大学学报,(已录用).
    157 杨晓华,陆桂华,郦建强.自适应加速遗传算法及其在水位流量关系拟合中的应用[J].水文(已录用).
    158 陆桂华,郦建强,杨晓华.遗传算法在马斯京根模型参数估计中的应用[J].河海大学学报,2001 29 (4):9-12.
    159 杨晓华,陆桂华,郦建强.格雷码加速遗传算法及其理论研究[J].系统工程理论与实践(已录用).
    
    
    160 杨晓华,陆桂华,郦建强.混合加速遗传算法在流域模型参数优化中的应用[J].水科学进展 2002,3 (已录用).
    161 金菊良,杨晓华,丁晶.基于实数编码的加速遗传算法[J].四川大学学报(工程科学版),2000,32 (4):20-24.
    162 孙建永,申建中,徐宗本.一类自适应遗传算法的理论分析与数值模拟[J].西安交通大学学报,2000,34 (12):84-87.
    163 金菊良,杨晓华,丁晶.标准遗传算法的改进方案——加速遗传算法[J].系统工程理论与实践,2001 (1):8-13.
    164 Tsutsui S, Fujimoto Y, Ghosh A. Forking genetic algorithms: GAs with search space division schemes[J]. Evolutionary computation, 1997, 5(1): 61-80.
    165 Michelewicz, Genetic algorithm+data structure= evolutionary programs[M]. 3 rd ed. New York:Springer Verlag, 1996.
    166 张晓馈,戴冠中,徐乃平.遗传算法种群多样性的分析研究[J].控制理论与应用,1998,15 (1):17-23.
    167 周远晖,陆玉昌,石纯一.基于克服过早收敛的自适应并行遗传算法[J].清华大学学报,1998,38(3):93-95.
    168 吴浩扬,朱长纯,常炳国,等.基于种群过早收敛程度定量分析的改进自适应遗传算法[J].西安交通大学学报,1999,33(11):27-30.
    169 熊德琪,陈守煜,任洁.水环境污染系统规划的模糊非线性规划模型[J].水利学报,1994,12:22-23.
    170 黄才安.水位流量关系回归的优化研究[J].水利水电技术,1995,10:2-4.
    171 陈继雄.线性回归诊断在水位流量关系中的应用[J].水文,1988,5:26-29.
    172 王海鹰.解结构最优设计问题的区间方法[J].河海大学学报,1991,19(3):37-43.
    173 郭建青,张勇.确定河流横向扩散系数的直线图解法[J].水利学报,1997 (1):62-67.
    174 薛嘉庆.最优化原理与算法[M].北京,冶金工业出版社,1986,3.
    175 陈宝林.最优化理论与算法[M].北京,清华大学出版社,2000,3.
    176 袁亚湘著.非线性规划数值方法[M].上海科学技术出版社,1993:124.
    177 唐焕文,秦学志编著.最优化方法[M].大连理工大学出版社,1994:150.
    178 Metropolis N, Rosenbluth A, Rosenbluth M et al. Equation of strate calculations by fast computing machines. Journal of Chemical Physics, 1953, 21:1087-1092
    179 Steven C. Chapra, Raymond P. Canale. NUMERRICAL METHODS FOR ENGINEERS[M], McGraw-Hill Companies, Inc. 2000.
    180 庄一鸽,林三益.水文预报[M].河海大学出版社,1986.
    181 赵人俊.流域水文模型[M].水利电力出版社,1984.
    182 毛学文.基因算法及其在水文模型参数优选中的应用[M].水文,1993,5:22-27.
    183 刘九夫,郭方、周冰清等.气候异常对海河流域水资源影响评估模型研究[J].水科学进展,2000,11 (增刊):27-35.
    
    
    184 陆桂华,蔡建元,胡风彬.水文站网规划与优化[M].黄河水利出版社,2001,11.
    185 谢巍,方康玲.一种求解不可微非线性函数的全局解的混合遗传算法[J].控制理论与应用,2000,17 (2):180-183.
    186 刘毅,陈吉宁,杜鹏飞.环境模型参数优化方法的比较[J].环境科学,2002,23 (2):1-6.
    187 杨晓华,金菊良,巍一鸣.预测低温冷害的门限回归模型[J].灾害学,2002,1.
    188 杨晓华,金保明,金菊良,丁晶.门限自回归模型在海洋冰情预测中的应用[J].灾害学,1999,14 (4):1-6.
    189 余加艾,刘钦政.利用灰色系统方法预测冰情[J].海洋环境科学.1995,14 (4):70-75.
    190 杨叔子,吴雅等.时间序列分析的工程应用(下册).武汉:华中理工大学出版社.1992:309-348.
    191 丁晶,邓育仁等.黄河干流中长期预报的研究[J].四川联合大学研究报告.1995.
    192 丁晶,邓育仁.随机水文学[M].成都:成都科技大学出版社.1988:33-226.
    193 张家诚,张宝元,周魁一等.中国气象洪涝海洋灾害[J].长沙:湖南人民出版社,1998,115-118,128—134.
    194 龙从彬.气象统计预报模型的自适应方法[J].气象,1992,18(12):29-32.
    195 杨位钦,顾岚.时间序列分析与动态数据建模[M].北京:北京工业学院出版社,1986,391-411.
    196 金光炎.水文水资源随机分析[M].北京:中国科技出版社,1993,114-154,320-355.