大豆种子冷害和PEG引发的蛋白质组学分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在高山地区和许多地区的低温季节里,植物的冷害是一个普遍的农业灾害。冷胁迫导致种子发芽率和活力下降,对种苗和植株的生长以及授粉都造成了不利影响,这将导致生物产量的降低。PEG引发能够提高种子的冷忍耐力,但是PEG引发的机制仍然未能得到明确的解答。为了对大豆种子冷害和PEG引发获得更好的理解,我们在生理生化研究的基础上应用蛋白质组学方法进行分析。
     生理生化研究结果表明,冷处理导致种子发芽率下降到5%,活力指数,脱氢酶活性大幅度降低,电导率明显上升,而PEG引发的种子在冷处理后却能够使种子的各项指标恢复到正常水平,且使发芽率提高了90%。
     通过适于大豆种子蛋白质组学的研究方法,我们获得了以下研究结果:
     (1)通过双向凝胶电泳,我们从对照(CK)、冷处理(CT)、PEG处理(PT)、PEG处理后冷处理(PC)的大豆种子下胚轴中分别得到706、585、670、658个蛋白质点。
     (2)25个差异蛋白和9个感兴趣的高丰度蛋白共34个蛋白质点得到质谱鉴定,这些蛋白主要涉及细胞的生长与分裂、疾病与防御、蛋白质定位与贮藏。
     (3)发现核苷二磷酸激酶、Os12g0160400转录蛋白被冷胁迫诱导且只和冷胁迫相关,不受渗透胁迫的影响。
     (4)热激蛋白90、微管蛋白A、35 kDa种子成熟蛋白、钼蝶呤合成酶、大豆伴豆球蛋白A1ab1b前体、大豆胰蛋白酶抑制剂都能被PEG引发所诱导,与渗透调控紧密相关,它们参与了种子的抗冷。
     (5)种子成熟蛋白PM25与冷害和PEG引发都相关,可能是一种新的胁迫蛋白。
     对于大豆种子冷害与渗透调控的研究结果进行分析,我们发现冷胁迫导致蛋白质点数量的下降,而PEG引发能够提高大约70个蛋白点,发现两个冷胁迫蛋白核苷二磷酸激酶、Os12g0160400转录蛋白,以及一种新的胁迫蛋白种子成熟蛋白PM25。这些研究结果对种子的冷害提供了一种认识的新视角,也为渗透调控提高种子抗冷提供了证据和可能的机制,对种子的防护具有重要作用。
Chilling injury is a prevalent agricultural disaster in alp zones and low temperature seasons of many areas. Chilling stress can reduce seed germination, seed vigor, seedling growth, plant growth and pollination, which will result in yield-decrease. PEG priming could induce chilling tolerance in seeds. The mechanism of PEG priming is yet to be resolved. To gain better understanding of chilling injury and PEG priming in soybean (Glycine max) seeds, we conducted a proteomic analysis based on the study of the physiological and biochemical levels.
     Chilling treatment resulted in decreased germination rate, vigor index, dehydrogenase activity, and increased relative electrical conductivity, which were recuperated by PEG priming at subsequently chilling treatment. Germination rate improved 90%.
     The results on the proteomic aspects were obtained through the method fitted for soybean seed proteome.
     (1) Approximately 706, 585, 670, 658 protein spots from control (CK), chilling treatment (CT), PEG treatment (PT), and chilling treatment after PEG priming (PC) were separated, respectively.
     (2) Twenty-five distinct and nine high abundant proteins were identified. These proteins mainly involved in cell growth/division, disease/defense, protein destination and storage.
     (3) We found that nucleoside diphosphate kinase and Os12g0160400 could have more expression at chilling, and have no influence by osmoconditioning.
     (4) A number of proteins like heat-shock protein 90, tubulin A, 35 kDa seed maturation protein, molybdopterin synthase, soybean proglycinin A1ab1b homotrimer, soybean trypsin inhibitor, induced by PEG priming, further resisted chilling stress.
     (5) The seed maturation protein PM25 was induced both chilling and PEG priming suggested that the protein related with these two factors, which may be a novel stress protein.
     To summary, we found that chilling stress lead to decline quantity of protein spots, but enhanced approximately 70 protein spots by PEG priming. And nucleoside diphosphate kinase and Os12g0160400 were chilling stress protein, as well as seed maturation protein PM25 is a novel stress protein.
     The results provided not only new insights into chilling injury but also the evidence and mechanism of osmoconditioning in preventing chilling injury in seeds.
引文
1 Initiative T.A.G. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana.[J] Nature, 2000, 408: 796-815
    2 Yu J., Hu S.N., Wang J.,et al. A draft sequence of the rice genome (Oryza sativa L. ssp indica).[J] Science, 2002, 296: 79-92
    3 Wasinger V.C., Cordwell S.J., Cerpapoljak A., et al. Progress with gene-product mapping of the Mollicutes-Mycoplasma-Genitalium.[J] Electrophoresis, 1995, 16: 1090-1094
    4 Schirmer E.C., Florens L., Guan T.L., et al. Nuclear membrane proteins with potential disease links found by subtractive proteomics.[J] Science, 2003, 301: 1380-1382
    5 Kamo M., Kawakami T., Miyatake N., et al. Separation and characterization of Arabidopsis Thaliana proteins by 2-dimensional gel-electrophoresis.[J] Electrophoresis, 1995, 16: 423-430
    6 Yan S.P., Tang Z.C., Su W., et al. Proteomic analysis of salt stress-responsive proteins in rice root.[J] Proteomics, 2005, 5: 235-244
    7 Yan S.P., Zhang Q.Y., Tang Z.C., et al. Comparative proteomic analysis provides new insights into chilling stress responses in rice.[J] Molecular & Cellular Proteomics, 2006, 5: 484-496
    8 Cui S.X., Huang F., Wang J., et al. A proteomic analysis of cold stress responses in rice seedlings.[J] Proteomics, 2005, 5: 3162-3172
    9 Dai S., Li L., Chen T., et al. Proteomic analyses of Oryza sativa mature pollen reveal novel proteins associated with pollen germination and tube growth.[J] Proteomics, 2006, 6: 2504-2529
    10 Dai S.J., Chen T.T., Chong K., et al. Proteomics identification of differentially expressed proteins associated with pollen germination and tube growth reveals characteristics of germinated Oryza sativa pollen.[J] Molecular & Cellular Proteomics, 2007, 6: 207-230
    11 Shen S.H., Matsubae M., Takao T., et al. A proteomic analysis of leaf sheaths from rice. [J] Journal of Biochemistry, 2002, 132: 613-620
    12 Yang P.F., Li X.J., Liang Y., et al. Proteome analysis of rice uppermost internodes at the milky stage.[J] Proteomics, 2006, 6: 3330-3338
    13 Yang P.F., Chen H., Liang Y., et al. Proteomic analysis of de-etiolated rice seedlings upon exposure to light.[J] Proteomics, 2007, 7: 2459-2468
    14 Yang P.F., Li X.J., Wang X.Q., et al., Proteomic analysis of rice (Oryza sativa)seeds during germination.[J] Proteomics, 2007, 7: 3358-3368
    15 O'Farrell P.H. High resolution two-dimensional electrophoresis of proteins.[J] Journal of Biology Chemistry, 1975, 250: 4007-4021
    16 G?rg A., Weiss W., and Dunn M.J. Current two-dimensional electrophoresis technology for proteomics.[J] Proteomics, 2004, 4: 3665-3685
    17 Unlu M., Morgan M.E., and Minden J.S.. Difference gel electrophoresis: A single gel method for detecting changes in protein extracts.[J] Electrophoresis, 1997, 18: 2071-2077
    18 Rabilloud T. Detecting proteins separated by 2-D gel electrophoresis.[J] Analytical Chemistry, 2000, 72: 48a-55a
    19 Candiano G., Bruschi M., Musante L., et al. Blue silver: A very sensitive colloidal Coomassie G-250 staining for proteome analysis.[J] Electrophoresis, 2004, 25: 1327-1333
    20 Pandey A. and M. Mann. Proteomics to study genes and genomes.[J] Nature, 2000, 405: 837-846
    21 Aebersold R. and Mann M. Mass spectrometry-based proteomics.[J] Nature, 2003, 422: 198-207
    22 Natarajan S, Xu C.P., Caperna T.J., et al. Comparison of protein solubilization methods suitable for proteomic analysis of soybean seed proteins.[J] Analytical Biochemistry, 2005, 342: 214-220
    23 Hajduch M, Ganapathy A., Stein J.W., et al. A systematic proteomic study of seed filling in soybean. Establishment of high-resolution two dimensional reference maps, expression profiles, and an interactive proteome database.[J] Plant Physiology, 2005, 137: 1397-1419
    24 Natarajan S., Xu C.P., Bae H., et al. Proteomic and genetic analysis of glycinin subunits of sixteen soybean genotypes.[J] Plant Physiology and Biochemistry, 2007, 45: 436-444
    25 Boyer J.S. Plant productivity and environment. Science, 1982, 218: 443-448
    26 Allen D.J. and Ort D.R. Impacts of chilling temperatures on photosynthesis in warm-climate plants.[J] Trends in Plant Science, 2001, 6: 36-42
    27 Bedi S. and Basra A.S. Chilling injury in germinating seeds: basic mechanisms and agricultural implications.[J] Seed Science Research, 1993, 3: 219-229
    28 郑光华,梁峥,林坚.种子吸胀冷害和渗透调控的研究.[J]中国科学院院刊,2001,3: 182-187
    29 Heydecker W., Higgins J. and Gulliver R.L. Accelerated germination by osmotic seedtreatment.[J] Nature, 1973, 246: 42-44
    30 Posmyk M.M., Corbineau F., Vinel D., et al. Osmoconditioning reduces physiological and biochemical damage induced by chilling in soybean seeds.[J] Physiologia plantarum, 2001, 111: 473-482
    31 Gallardo K., Job C., Groot S.P.C., et al. Proteomic analysis of Arabidopsis seed germination and priming.[J]Plant Physiology, 2001, 126: 835-848
    32 Stacey G., Vodkin L., Parrott W.A., et al. National science foundation-sponsored workshop report. Draft plan for soybean genomics.[J] Plant Physiology, 2004, 135: 59-70
    33 Bewley J.D. Seed germination and dormancy.[J] Plant Cell, 1997, 9: 1055-1066
    34 Bradford M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.[J] Analytical Biochemistry, 1976, 72: 248-254
    35 Christiane G., Jane E.O., Brian G.F., et al. Primary structure and differential expression of glutamine synthetase genes in nodules, roots and leaves of Phaseolus vulgaris.[J] EMBO Journal, 1986, 5: 1429-1435
    36 Moussian B., Schoof H., Haecker A., et al. Role of the ZWILLE gene in the regulation of central shoot meristem cell fate during Arabidopsis embryogenesis.[J] EMBO Journal, 1998, 17: 1799-1809
    37 Krishna P. Plant HSP90 and its partner proteins.[J] Journal of Plant Biochemistry and Biotechnology, 2000, 9: 53-56
    38 Klink V.P., Alkharouf N., MacDonald M., et al. Laser capture microdissection (LCM) and expression analyses of Glycine max (soybean) syncytium containing root regions formed by the plant pathogen Heterodera glycines (soybean cyst nematode).[J] Plant Molecular Biology, 2005, 59: 965-979
    39 Blackman S.A., Wettlaufer S.H., Obendorf R.L., et al. Maturation proteins associated with desiccation tolerance in soybean.[J] Plant Physiology, 1991, 96: 868-874
    40 Unkles S.E., Heck I.S., Appleyard M.V.C.L., et al. Eukaryotic molybdopterin synthase-Biochemical and molecular studies of Aspergillus nidulans cnxG and cnxH mutants.[J] Journal of Biological Chemistry, 1999, 274: 19286-19293
    41 Freed R.C. and Ryan D. Changes in kunitz trypsin inhibitor during germination of soybean: an immunoelectrophesis assay system.[J]Journal of Food Science, 1978, 43: 1316-1319
    42 Kumar V., Rani A., Pandey V., et al. Changes in lipoxygenase isozymes and trypsininhibitor activity in soybean during germination at different temperatures.[J] Food Chemistry, 2006, 99: 563-568
    43 Samarah N.H., Mullen R.E., Cianzio S.R., et al. Dehydrin-like proteins in soybean seeds in response to drought stress during seed filling.[J] Crop Science, 2006, 46: 2141-2150
    44 Close T.J. Dehydrins: Emergence of a biochemical role of a family of plant dehydration proteins.[J] Physiologia Plantarum, 1996, 97: 795-803
    45 Hara M., M. Fujinaga and T. Kuboi Metal binding by citrus dehydrin with histidine-rich domains.[J] Journal of Experimental Botany, 2005, 56: 2695-2703
    46 Celenza J.L. and Carlson M. A yeast gene that is essential for release from glucose repression encodes a protein kinase.[J] Science, 1986, 233: 1175-1180
    47 Halford N.G., Hey S., Jhurreea D., et al. Metabolic signalling and carbon partitioning: role of Snf1-related (SnRK1) protein kinase.[J] Journal of Experimental Botany, 2003, 54: 467-475
    48 Lu C., Lin C.C., Lee K.W., et al. The SnRK1A protein kinase plays a key role in sugar signaling during germination and seedling growth of rice.[J] Plant Cell, 2007, 19: 2484-2499
    49 Liu J.J. and Ekramoddoullah A.K.M. The family 10 of plant pathogenesis-related proteins: Their structure, regulation, and function in response to biotic and abiotic stresses.[J] Physiological and Molecular Plant Pathology, 2006, 68: 3-13
    50 Walden H., Taylor G.L., Lorentzen E., et al. Structure and function of a regulated archaeal triosephosphate isomerase adapted to high temperature.[J] Journal of Molecular Biology, 2004, 342: 861-875
    51 Bevan M., Bancroft I., Bent E., et al. Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana.[J] Nature, 1998, 391: 485-488
    52 Boudet J., Buitink J., Hoekstra F.A., et al. Comparative analysis of the heat stable proteome of radicles of Medicago truncatula seeds during germination identifies late embryogenesis abundant proteins associated with desiccation tolerance.[J] Plant Physiology, 2006, 140: 1418-1436