海藻糖对肉鸡生产性能及理化指标影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究包括两个部分:一、研究海藻糖在肉鸡体内代谢情况;二、在肉鸡日粮中添加海藻糖,研究海藻糖对肉鸡消化性能、理化指标、生长性能、屠宰性能、及肉品质的影响。探索海藻糖应用效果,为其广泛应用于畜牧业生产以及畜产品加工业提供科学依据。
     试验一海藻糖在肉鸡体内代谢研究
     (目的)本试验通过灌喂方法研究海藻糖在肉鸡体内吸收情况。(方法)研究选用21日龄体重相近的AA公鸡12只,随机分成4组,每组3只。禁食24 h后,第1组灌喂5 mL蒸馏水后心脏采血,第2、3、4组分别灌喂0.01 g/mL的海藻糖溶液5 mL。第2组在灌喂0.5 h后心脏采血;第3组在灌喂1 h后心脏采血;第4组在灌喂2 h后心脏采血。采得血液分离血清,除蛋白后用离子色谱检测血清中海藻糖含量。(结果)试验结果表明:灌喂海藻糖组肉鸡血清中均能测到海藻糖,且随灌喂后时间延长海藻糖含量逐渐下降,灌喂0.5 h、1 h、2 h后海藻糖含量分别为20.42 mg/ Kg,15.67 mg/ Kg和12.93 mg/ Kg。(结论)结果提示:海藻糖能被肉鸡直接吸收进入血液中。
     试验二海藻糖对肉鸡消化性能和理化指标的影响
     (目的)本试验通过在肉鸡日粮中添加海藻糖,研究海藻糖对肉鸡消化性能和理化指标的影响。(方法)试验选用1日龄体重相近的AA公仔鸡480只,随机分成4组,每组3个重复。第1组为对照组饲喂基础日粮,其余3组为处理组,分别在基础日粮中添加0.1%、0.3%、0.5%的海藻糖。测定消化性能指标和生化指标。(结果)试验结果表明:日粮添加海藻糖能增加消化道的长度和重量,且0.1%组与对照组差异显著(P<0.05);各处理组淀粉酶活性略低于对照组,胰蛋白酶活性略高于对照组,但均无显著差异(P>0.05);日粮添加海藻能显著降低回肠、盲肠中大肠杆菌数量(P<0.05),能显著增加乳酸杆菌的数量(P<0.05);各处理组血清中白蛋白含量显著高于对照组(P<0.05),血磷含量显著低于对照组(P>0.05);日粮添加海藻糖对GSH-PX活性无显著影响(P>0.05),但能显著降低肝脏中MDA的含量(P<0.05)。(结论)结果提示:日粮中添加海藻糖能显著提高肉鸡消化性能,优化肉鸡肠道微生物区系,并能降低体内脂质过氧化产物丙二醛的含量;各处理组中0.1%组效果最佳。
     试验三海藻糖对肉鸡生产性能的影响
     (目的)本试验通过在肉鸡日粮中添加海藻糖,研究海藻糖对肉鸡生长性能、屠宰性能及肉品质的影响。(方法)试验选用1日龄体重相近的AA公仔鸡480只,随机分成4组,每组3个重复。第1组为对照组饲喂基础日粮,其余3组为处理组,分别在基础日粮中添加0.1%、0.3%、0.5%的海藻糖。测定生长性能、屠宰性能及肉品质指标。(结果)试验结果表明:各处理组均能促进肉鸡体重增加,0.1%组、0.3%组和0.5%组体重分别比对照组提高9.42%、4.03%和7.01%,差异显著(P<0.05);与对照组相比,各处理组均能增加日增重并显著降低料肉比(P<0.05),且0.1%组效果最佳;死淘率各处理组显著低于对照组(P<0.05)。日粮中添加海藻糖能显著提高肉鸡半净膛率、全净膛率和胸肌率(P<0.05);各处理组均能提高胸腺指数和脾脏指数,且0.1%组与对照组差异显著;此外,添加海藻糖能显著提高胸肌的嫩度、系水力及肌肉中蛋白含量(P<0.05)。(结论)结果提示:日粮中添加海藻糖能显著促进肉鸡生长,增加日增重,提高肉鸡屠宰性能,降低料肉比、死淘率,并能改善肉品质及提高肌肉中蛋白含量。
     综上所述,饲料基础日粮中添加海藻糖能显著提高肉鸡的消化性能,优化肠道微生物组成,提高肉鸡的生产性能,改善肉品质,且添加量为0.1%效果最优。
The studies were designed to explore the effects of trehalose on application and to provide basic materials for trehalose application in livestock production and animal products processing industry. The present research included two parts including the absorption mechanism of trehalose in AA broilers (part one) and the effects of trehalose supplemented in diets on the digestion performance, physicochemical properties, growth performance, carcass characteristics, and meat quality(part two) .Our studies included three experiments presented as follows:
     In experiment 1 we studied the absorption mechanism of trehalose in AA broilers. The results showed that trehalose can be detected and the concentrations were declined at different level according to the time (0.5 h, 1 h, 2 h) after feeding trehalose, 20.42 mg/ Kg, 15.67 mg/ Kg and 12.93 mg/ Kg were measured respectively in trehalose groups. So trehalose can be directly absorbed into the blood in AA broilers.
     In experiment 2 we studied the effects of trehalose supplemented in diets with the levels of 0%, 0.1%, 0.3% and 0.5% on digestion performance and chemical properties in AA broilers. The results showed as follows: the length and weight of intestine were increased in trial groups. The length and weight in the group fed with 0.1% trehalose were higher (P<0.05) than in control group; Amylase activity was slightly decreased in trial groups, while the protease activity was not significantly higher (P>0.05) than in control group. In trial groups, the counts of coliform bacteria were significantly decreased in the ileum and caeca (P<0.05), and the counts of lactobacillus were significantly increased (P<0.05); the levels of serum albumin was significantly increased in trial groups (P<0.05), and the contents of phosphorus in the serum was significantly lower (P<0.05) than in the control group; The contents of MDA in liver were significantly decreased (P<0.05) compared with the control group without affecting the activity of GSH-PX. The study revealed that adding trehalos in diets can improve the digestion performance significantly, optimize the composition of intestinal microbes and decrease the MDA contents, the group with 0.1% trehalose was the best.
     In experiment 3 we studied the effects of trehalose supplemented in diets with the levels of 0%, 0.1%, 0.3% and 0.5% on the growth performance, carcass characteristics, meat quality. The results showed as follows: compared with the control group, the weight of AA broilers were increased in groups with 0.1%, 0.3% and 0.5%, the performance was improved significantly by 9.42%、4.03% and 7.01% respectively; daily gain was increased and feed/gain was decreased significantly (P<0.05) in trehalose groups, the group with 0.1% trehalose was the best; compared with the control group, death ratio was decreased significantly (P<0.05) in trial groups. The semi-eviscerated percentage, eviscerated percentage and chest muscle rate significantly were increased (P<0.05); In trial groups, the thymus, spleen and bursa indices were increased, the group with 0.1% trehalose had the significant effect compared with the control group (P<0.05); The chest tendernesses and the water holding capacities were improved significantly (P<0.05), and protein in muscle was increased significantly (P<0.05). Adding trehalos in diets can promote the growth, improve the daily gain and decline the death ratio. And also can improve the carcass characteristics and meat quality, increase the protein in muscle. In conclusion, adding trehalose in diets can improve the AA broilers’digestion performance significantly, optimize the composition of intestinal microbes, so can improve performance and improve meat quality, and adding 0.1% trehalose is the best.
引文
1. Elbein A D, The metabolism of alpha,alpha-trehalose. Adv Carbohydr Chem Biochem, 1974. 30: p. 227-56.
    2. Trevelyan W E, Harrison J S, Studies on yeast metabolism. The trehalose content of baker's yeast during anaerobic fermentation. Biochem J, 1956. 62(2): p. 177-83.
    3. Nwaka S and Holzer H. Molecular biology of trehalose and the trehalases in the yeast Saccharomyces cerevisiae. Prog Nucleic Acid Res Mol Biol, 1998. 58: p. 197-237.
    4. Crowe J H, Hoekstra F A, and Crowe L M. Anhydrobiosis. Annu Rev Physiol, 1992. 54: p. 579-99.
    5. Doehlemann G, Berndt P, and Hahn M. Trehalose metabolism is important for heat stress tolerance and spore germination of Botrytis cinerea. Microbiology, 2006. 152(Pt 9): p. 2625-34.
    6. Elbein A D, et al., New insights on trehalose: a multifunctional molecule. Glycobiology, 2003. 13(4): p. 17R-27R.
    7. Tanghe A, et al. Aquaporin expression correlates with freeze tolerance in baker's yeast, and overexpression improves freeze tolerance in industrial strains. Appl Environ Microbiol, 2002. 68(12): p. 5981-9.
    8. Pan Y T, et al, Trehalose synthase of Mycobacterium smegmatis: purification, cloning, expression, and properties of the enzyme. Eur J Biochem, 2004. 271(21): p. 4259-69.
    9. Becker A, et al, The regulation of trehalose metabolism in insects. Experientia, 1996. 52(5): p. 433-9.
    10. Thevelein J M, Regulation of trehalose mobilization in fungi. Microbiol Rev, 1984. 48(1): p. 42-59.
    11. Van Dijck P, et al, Differential importance of trehalose in stress resistance in fermenting and nonfermenting Saccharomyces cerevisiae cells. Appl Environ Microbiol, 1995. 61(1): p. 109-15.
    12. Leopold A C. Membranes, metabolism, and dry organisms. 1986, Ithaca: Comstock Pub. Associates. 374 p., [4] p. of plates.
    13. Jagdale G B, Grewal P S, and Salminen S O. Both heat-shock and cold-shock influence trehalose metabolism in an entomopathogenic nematode. J Parasitol, 2005. 91(5): p. 988-94.
    14. Zentella R, et al. A Selaginella lepidophylla trehalose-6-phosphate synthase complements growth and stress-tolerance defects in a yeast tps1 mutant. Plant Physiol, 1999. 119(4): p.1473-82.
    15. Crowe J H. Trehalose as a "chemical chaperone": fact and fantasy. Adv Exp Med Biol, 2007. 594: p. 143-58.
    16. Crowe L M and Crowe J H. Trehalose and dry dipalmitoylphosphatidylcholine revisited. Biochim Biophys Acta, 1988. 946(2): p. 193-201.
    17. Carpenter J F and Crowe J H. An infrared spectroscopic study of the interactions of carbohydrates with dried proteins. Biochemistry, 1989. 28(9): p. 3916-22.
    18. Hsu W H, et al, Molecular cloning of a novel splice variant of the alpha subunit of the mammalian Go protein. J Biol Chem, 1990. 265(19): p. 11220-6.
    19. Bell W, et al. Characterization of the 56-kDa subunit of yeast trehalose-6-phosphate synthase and cloning of its gene reveal its identity with the product of CIF1, a regulator of carbon catabolite inactivation. Eur J Biochem, 1992. 209(3): p. 951-9.
    20. Hottiger T, Boller T, and Wiemken A. Rapid changes of heat and desiccation tolerance correlated with changes of trehalose content in Saccharomyces cerevisiae cells subjected to temperature shifts. FEBS Lett, 1987. 220(1): p. 113-5.
    21. Seo J S, et al. Molecular cloning and characterization of trehalose biosynthesis genes from hyperthermophilic archaebacterium Metallosphaera hakonesis. J Microbiol Biotechnol, 2007. 17(1): p. 123-9.
    22. Francois J and Parrou J L. Reserve carbohydrates metabolism in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev, 2001. 25(1): p. 125-45.
    23. De Virgilio C, et al. The role of trehalose synthesis for the acquisition of thermotolerance in yeast. I. Genetic evidence that trehalose is a thermoprotectant. Eur J Biochem, 1994. 219(1-2): p. 179-86.
    24. Singer M A and Lindquist S. Multiple effects of trehalose on protein folding in vitro and in vivo. Mol Cell, 1998. 1(5): p. 639-48.
    25. Singer M A and Lindquist S. Thermotolerance in Saccharomyces cerevisiae: the Yin and Yang of trehalose. Trends Biotechnol, 1998. 16(11): p. 460-8.
    26. Benaroudj N, Lee D H, and Goldberg A L. Trehalose accumulation during cellular stress protects cells and cellular proteins from damage by oxygen radicals. J Biol Chem, 2001. 276(26): p. 24261-7.
    27. Kandror O, DeLeon A, and Goldberg A L. Trehalose synthesis is induced upon exposure of Escherichia coli to cold and is essential for viability at low temperatures. Proc Natl Acad Sci U S A, 2002. 99(15): p. 9727-32.
    28. Rudolph A S and Crowe J H. Membrane stabilization during freezing: the role of two natural cryoprotectants, trehalose and proline. Cryobiology, 1985. 22(4): p. 367-77.
    29. Mueller J. Wiemken A, Aeschbacher R. Trehalose metabolism in sugar sensing and plant development. Plant Science, 1999. 147: p. 37-47.
    30. Colaco C, et al. Extraordinary stability of enzymes dried in trehalose: simplified molecular biology. Biotechnology (N Y), 1992. 10(9): p. 1007-11.
    31. Crowe J H, et al. Stabilization of dry phospholipid bilayers and proteins by sugars. Biochem J, 1987. 242(1): p. 1-10.
    32. Otting G, Liepinsh E, and Wuthrich K. Protein hydration in aqueous solution. Science, 1991. 254(5034): p. 974-80.
    33. Ricker J V. Trehalose maintains phase separation in an air-dried binary lipid mixture. Biophys J, 2003. 84(5): p. 3045-51.
    34. Crowe L M, Reid D S and Crowe J H. Is trehalose special for preserving dry biomaterials? Biophys J, 1996. 71(4): p. 2087-93.
    35. Akao K, et al. Infrared spectroscopic study on the properties of the anhydrous form II of trehalose. Implications for the functional mechanism of trehalose as a biostabilizer. Carbohydr Res, 2001. 334(3): p. 233-41.
    36. Sola-Penna M and Meyer-Fernandes J R. Stabilization against thermal inactivation promoted by sugars on enzyme structure and function: why is trehalose more effective than other sugars? Arch Biochem Biophys, 1998. 360(1): p. 10-4.
    37. Miller D P, de Pablo J J, Corti H. Thermophysical properties of trehalose and its concentrated aqueous solutions. Pharm Res, 1997. 14(5): p. 578-90.
    38. Albertorio F, et al. The alpha,alpha-(1-->1) linkage of trehalose is key to anhydrobiotic preservation. J Am Chem Soc, 2007. 129(34): p. 10567-74.
    39. Patist A and Zoerb H. Preservation mechanisms of trehalose in food and biosystems. Colloids Surf B Biointerfaces, 2005. 40(2): p. 107-13.
    40. Hottiger T, et al. The 70-kilodalton heat-shock proteins of the SSA subfamily negativelymodulate heat-shock-induced accumulation of trehalose and promote recovery from heat stress in the yeast, Saccharomyces cerevisiae. Eur J Biochem, 1992. 210(1): p. 125-32.
    41. Leslie S B, et al. Trehalose and sucrose protect both membranes and proteins in intact bacteria during drying. Appl Environ Microbiol, 1995. 61(10): p. 3592-7.
    42. Scire A. Molecular strategies for protein stabilization: the case of a trehalose/maltose-binding protein from Thermus thermophilus. Proteins, 2008. 73(4): p. 839-50.
    43. Lerbret A, et al. How do trehalose, maltose, and sucrose influence some structural and dynamical properties of lysozyme? Insight from molecular dynamics simulations. J Phys Chem B, 2007. 111(31): p. 9410-20.
    44. Samokhvalov V A, Mel'nikov G V, Ignatov V V. Role of trehalose and glycogen in the survival of aging Saccharomyces cerevisiae cells. Mikrobiologiia, 2004. 73(4): p. 449-54.
    45.罗名典.微生物生产海藻糖及其应用前景.微生物学通报, 1996. 23(4): p. 252-254.
    46. Tseng W C, et al. Trehalose enhances transgene expression mediated by DNA-PEI complexes. Biotechnol Prog, 2007. 23(6): p. 1297-304.
    47.童桥,聂松青.糖和膜脂的相互作用.生理科学进展, 1996. 27(2): p. 123-128.
    48. Zhang Y, et al. Inhibition of Snf1-related protein kinase (SnRK1) activity and regulation of metabolic pathways by trehalose 6-phosphate. Plant Physiol, 2009.
    49. Boboye B. Degradation of trehalose by rhizobia and characteristics of a trehalose-degrading enzyme isolated from Rhizobium species NGR234. J Appl Microbiol, 2004. 97(2): p. 256-61.
    50.张红缨,刘洋,张今.海藻糖的生物合成和相关酶的特性.微生物学通报, 1998. 25(4): p. 236-238.
    51. Ramon M and Rolland F. Plant development: introducing trehalose metabolism. Trends Plant Sci, 2007. 12(5): p. 185-8.
    52. Dahlqvist A and Thomson D L. The Digestion and Absorption of Maltose and Trehalose by the Intact Rat. Acta Physiol Scand, 1963. 59: p. 111-25.
    53. Cardoso F S. Biochemical and genetic characterization of the pathways for trehalose metabolism in Propionibacterium freudenreichii, and their role in stress response. Microbiology, 2007. 153(Pt 1): p. 270-80.
    54. Sims M D, et al. Effects of dietary mannan oligosaccharide, bacitracin methylene disalicylate, or both on the live performance and intestinal microbiology of turkeys. Poult Sci, 2004. 83(7): p.1148-54.
    55. Yang Y. et al. Effects of mannanoligosaccharide and fructooligosaccharide on the response of broilers to pathogenic Escherichia coli challenge. Br Poult Sci, 2008. 49(5): p. 550-9.
    56. Scott B B, et al. The expression enzyme activity of biopsy tissue from the small intestine. Digestion, 1977. 15(3): p. 182-7.
    57. Heinz F, Lamprecht W. Enzymes of fructose metabolism: enzyme activity in small intestine mucosa of different laboratory animals. Comp Biochem Physiol, 1968. 27(1): p. 319-27.
    58. Tannock G W. Molecular assessment of intestinal microflora. Am J Clin Nutr, 2001. 73(2 Suppl): p. 410S-414S.
    59. Tannock G W. The intestinal microflora: potentially fertile ground for microbial physiologists. Adv Microb Physiol, 2000. 42: p. 25-46.
    60. Kalavathy R, et al. Effects of Lactobacillus cultures on growth performance, abdominal fat deposition, serum lipids and weight of organs of broiler chickens. Br Poult Sci, 2003. 44(1): p. 139-44.
    61.胡迎利,赵燕飞,汪以真.肠道菌群对动物免疫的影响.中国兽医杂志, 2005 41(8): p. 62-65.
    62. Tohjo H, et al. Polyacrylamide gel electrophoretic serum protein patterns of acute inflammation induced by intramuscular injection of turpentine in young broiler chickens. J Vet Med Sci, 1996. 58(3): p. 267-8.
    63. Sadeghi G and Pourreza,J. Serum proteins and some biochemical parameters in broiler chickens fed with raw and treated bitter vetch (Vicia ervilia) seeds. Pak J Biol Sci, 2007. 10(6): p. 977-81.
    64. Kovacikova Z, Ginter E, Madaric A. The effect of graded ascorbic acid intake on the activity of GSH-Px in the liver of female guinea pigs. Z Ernahrungswiss, 1995. 34(3): p. 220-3.
    65. Tang M, Waring A J, Hong M. Trehalose-protected lipid membranes for determining membrane protein structure and insertion. J Magn Reson, 2007. 184(2): p. 222-7.
    66.张丽英.饲料分析及饲料质量检测技术.北京. 2002.
    67. Furuki T, Oku K, and Sakurai M. Thermodynamic, hydration and structural characteristics of alpha,alpha-trehalose. Front Biosci, 2009. 14: p. 3523-35.
    68. Iwahashi H, et al. The correlative evidence suggesting that trehalose stabilizes membrane structure in the yeast Saccharomyces cerevisiae. Cell Mol Biol (Noisy-le-grand), 1995. 41(6): p.763-9.
    69. Moran A, Buckton G. Adjusting and understanding the properties and crystallisation behaviour of amorphous trehalose as a function of spray drying feed concentration. Int J Pharm, 2007. 343(1-2): p. 12-7.
    70. Leekumjorn S, Sum A K. Molecular dynamics study on the stabilization of dehydrated lipid bilayers with glucose and trehalose. J Phys Chem B, 2008. 112(34): p. 10732-40.
    71. Pereira C S, Hunenberger P H. Interaction of the sugars trehalose, maltose and glucose with a phospholipid bilayer: a comparative molecular dynamics study. J Phys Chem B, 2006. 110(31): p. 15572-81.
    72. Pereira C S, et al. Interaction of the disaccharide trehalose with a phospholipid bilayer: a molecular dynamics study. Biophys J, 2004. 86(4): p. 2273-85.
    73. Ohtake S. Phase behavior of freeze-dried phospholipid-cholesterol mixtures stabilized with trehalose. Biochim Biophys Acta, 2005. 1713(1): p. 57-64.
    74. Chen N H, Wu S J. Analysis on the characteristics of histological location of bursin in immune organ of chicken and duck. Shi Yan Sheng Wu Xue Bao, 2003. 36(2): p. 155-62.
    75. Ratcliffe M J. Antibodies, immunoglobulin genes and the bursa of Fabricius in chicken B cell development. Dev Comp Immunol, 2006. 30(1-2): p. 101-18.
    76. Hemendinger R A, Putnam J R, Bloom S E. MHC dosage effects on primary immune organ development in the chicken. Dev Comp Immunol, 1992. 16(2-3): p. 175-86.
    77. Taylor R L, McCorkle F M. A landmark contribution to poultry science--Immunological function of the bursa of Fabricius. Poult Sci, 2009. 88(4): p. 816-23.
    78. Ribatti D, Crivellato E, Vacca A. The contribution of Bruce Glick to the definition of the role played by the bursa of Fabricius in the development of the B cell lineage. Clin Exp Immunol, 2006. 145(1): p. 1-4.
    79. Marsh J A, Lauterio T J, Scanes CG. Effects of triiodothyronine treatments on body and organ growth and the development of immune function in dwarf chickens. Proc Soc Exp Biol Med, 1984. 177(1): p. 82-91.
    80. Doxastakis M, Sum A K, de Pablo J J. Modulating membrane properties: the effect of trehalose and cholesterol on a phospholipid bilayer. J Phys Chem B, 2005. 109(50): p. 24173-81.
    81. O'Bryan C A, et al. Impact of irradiation on the safety and quality of poultry and meat products:a review. Crit Rev Food Sci Nutr, 2008. 48(5): p. 442-57.
    82. Swiderski F, et al. Evaluation of the quality of poultry meat and its processing for vacuum packaging. Rocz Panstw Zakl Hig, 1997. 48(2): p. 193-200.
    83. Dransfield E, Sosnicki A A. Relationship between muscle growth and poultry meat quality. Poult Sci, 1999. 78(5): p. 743-6.
    84. Jansen G R. Assessment of the need for regulating the protein quality of meat and poultry products. Am J Clin Nutr, 1984. 40(3 Suppl): p. 685-703.
    85. Kaushik J K, Bhat R. Why is trehalose an exceptional protein stabilizer? An analysis of the thermal stability of proteins in the presence of the compatible osmolyte trehalose. J Biol Chem, 2003. 278(29): p. 26458-65.
    86. Komprda T, et al. Arachidonic acid and long-chain n-3 polyunsaturated fatty acid contents in meat of selected poultry and fish species in relation to dietary fat sources. J Agric Food Chem, 2005. 53(17): p. 6804-12.
    87.李同树,曾勇庆,孙玉民,张万福,王慧.莱芜猪肌肉组织学特性与肉质关系的研究畜牧兽医学报, 1998. 29(6): p. 486-492.