水稻早花突变体基因OsEF1的鉴定及功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
短日照植物水稻,是世界上最重要的粮食作物之一,也是典型的单子叶模式植物,随着水稻基因组测序的完成,对于水稻基因组中功能基因的研究是当前迫在眉睫的任务。
     高等植物的成花诱导过程由自身遗传因子和外界环境因素两方面决定,开花的引发是个动态复杂的空间模式,开花时间,在禾谷类作物中也叫抽穗期,水稻的开花是水稻由营养生长向生殖生长转变的标志,培育早开花或光周期不敏感栽培种是几十年来水稻育种的主要目标,通过控制开花相关基因的克隆,利用分子遗传学手段和转基因技术,可以加快育种的进程,研究水稻早熟品种内在分子机理,T-DNA标签法、Ac/Ds和Tos17逆转座子等可以很容易获得突变体,并且迅速地找到突变基因所在位点,明显缩短克隆基因的周期,进而有利用于加快育种进程。
     本文依托本实验室创制的10万份水稻突变体库中已筛选到的不育及早熟性状突变体300多份为研究材料,采用PCR-Walking的策略对其进行插入位点侧翼序列的扩增,利用生物信息学分析确定候选基因的插入位点,并根据表型与候选基因的共分离分析,同时通过功能互补实验证实候选基因功能。
     在长日照下Osef1突变体可以引起水稻较野生型早开花近30天,通过共分离分析及功能互补实验,结合生物信息学表明,此突变体中Tos17序列插入到基因OsEF1的3’UTR,该基因编码与小粒碗藓控制光下配子托发育所相似的蛋白,基因枪轰击洋葱表皮进行亚细胞定位,该基因的蛋白产物定位于细胞核内,通过酵母双杂交分析,OsEF1在酵母细胞中具有较强的自激活活性,同时从水稻cDNA文库中筛选到候选互作蛋白35个,利用回复杂交证明OSK4与OsEF1间的相互作用,此外,我们也证明了与OSK4高度相似的OSK3(约98%)与OsEF1也具有相互作用。
     构建的融合标签基因载体在IPTG诱导下可以成功的在原核细胞中表达OsEF1和OSK3及OSK4,Western Blot进一步证实了表达的目的蛋白,为后续的功能研究提供实验支持和依据。
     利用RT-PCR及Real-Time PCR进行基因的表达分析,在长日照下,水稻基因OsEF1在不同的组织表达具有明显的差异性,尤其是在开花前基因OsEF1在叶片及叶鞘中的表达明显较其它组织高,长日照下,突变体Osef1的生物钟组分基因OsLhy、OsPRR和生物钟相关基因OsGI的表达均不受影响,然而在光周期控制水稻开花中起重要作用的基因Hd1在Osef1中的表达却明显降低,同时hd1突变体中,OsEF1基因的表达几乎不受影响,这表明基因Hd1位于OsEF1的下游,同时受OsEF1的正调控,另一个光周期控制开花的独立途径基因Ehd1,在长日照下,突变体Osef1中表达明显升高,说明基因OsEF1可能具有下调Ehd1表达的作用,所有结果表明,OsEF1通过在长日照下,对光周期途径中的Hd1正调控以及对Ehd1的负调控从而对抑制水稻开花。
Rice (Oryza sativa L.), a short-day (SD) plant, is one of the most important crops, it is also an model of the monocot plant, with the complete sequences of rice available, subsequently, it is urgent to study on the functional analysis of the rice genome.
     The floral induction is determined by internal genetic factor and external environment signal in higher plant, and triggering flowering is a dynamic and complicated spatial pattern.The flowering time, often termed as heading time in grains, the flowering is an symbol of the transition from vegetative phase to reproductive phase, so the major objective has been set up for decades is that several new early flowering or photoperiod-insensitive varieties of rice are cultivated.Take advantage of the clone the gene which is related to regulation of the flowering, combined with the molecular genetics and transgenic technology, accerlate the breeding process,Studying the internal molecular mechanism of early flowering species, as well as the mutants were easily obtained and located candidate genes’site where led to mutation by T-DNA tagging technology or Ac/Ds system and Tos17 retrotransposon,etc, thus it is obvious to shorten the period for cloning gene, thus it is convenientuseful to speed the breeding.
     In my dissertation, based on the total 300 sterile and early flowering mutants screened by one million rice mutation library, we amplified the flanking sequences of the insertaion site through PCR-Walking strategy, and located the instertion sites of the candidate genes with bioinformatics analysis, in addition, in terms of the co-segregation analysis between phenotype and candidate genes, we further confirmed the function of candidate gene by complementation test.
     In long day (LD),the rice mutant Osef1 cause the flower nearly 30 days earlier than wild type plant, according to the co-segregation analysis and complementation test combined with bioinformatics, it is indicated that this Osef1 mutagenesis resulted from Tos17 sequences insertation at 3’UTR in OsEF1, and OsEF1 encoded an protein which is similar to protein that functions gametophores development in Physcomitrella patens under light conditions, and this OsEF1 protein product is localized to the nucleus by making use of onion epidermal by particle bombardment. The OsEF1 held the strong auto-activation effect in yeast cell , we constructed the mutual reverse vector which is comprised of the candidate interation protein as bait and OsEF1 as prey co-transform the AH109, and we confirmed that there is real interaction between OsEF1 and OSK4, what is more , we found that OSK3 and OsEF1 existed interaction during the yeast system analysis.
     The recombinant vector fused GST or His tag gene successfully expressed OsEF1、OSK3 and OSK4 in Transetta(DE3) induced with IPTG, Western Blot further tesfied them, which provided the experimental ground for further study.
     We performed the RT-PCR and Real-Time PCR to analyse the expression of genes, in LD, expression of OsEF1 in various tissues is different, and the OsEF1 expressed in a more level in leaf blade and shleath than other tissues. The Osef1 had no effect on the expression of the OsLhy and OsPRR which are circadian clock components, whereas, Hd1, a gene had an important role in photoperiod pathway, expressed in a rather low level. Meantime, hd1 had no effect on the expression of OsEF1,thus we concluded that Hd1 is upstream of OsEF1 and controlled positively by OsEF1.Ehd1, another gene controlled flowering independently of Hd1 , Ehd1 epression increased in mutant Osef1,this indicated OsEF1 might down-regulated the Ehd1 epression. To sum up, our result demonstrated that in LD, OsEF1 inhibit flowering in rice through both Hd1 and Ehd1 flowering pathways.
引文
[1]丁焱,戴思兰,马月萍.高等植物成花的光周期调控,北方园艺[J],2009:106-110
    [2]郜尽,王海侠,李京敬,等,酵母双杂交报告基因β-半乳糖苷酶活性测定方法的研究[J],上海交通大学学报(医学版),2009,29:236-240
    [3]计慎敏,张大兵.水稻花器官特征决定以及数量控制的分子机制,植物学通报[J],2007,24:284-292
    [4]姜仕豪,庞基良,王利琳.赤霉素促进花发育的分子机制,植物生理学通讯[J],2008,44:835843
    [5]罗琼,朱立煌.水稻花发育的分子生物学研究进展,遗传HEREDITAS(Beijing) [J],2002,24:87-93
    [6]孙昌辉,邓晓建,方军,等.高等植物开花诱导研究进展,HEREDITAS(Beijing)[J]2007,29: 1182-1190
    [7]赵大中,雍伟东,种康,等.高等植物开花研究现状简述,植物学通报[J],1999,16:157-162
    [8] Alcazar, R.,Garcia-Martinez, J. L.,Cuevas, J. C., et al.Overexpression of ADC2 in Arabidopsis induces dwarfism and late-flowering through GA deficiency[J].Plant J,2005,43:425-436.
    [9] Andres, F.,Galbraith, D. W.,Talon, M., et al.Analysis of PHOTOPERIOD SENSITIVITY5 sheds light on the role of phytochromes in photoperiodic flowering in rice[J].Plant Physiol,2009,151:681-690.
    [10]Ayre, B. G., Turgeon, R.Graft transmission of a floral stimulant derived from CONSTANS[J].Plant Physiol,2004,135:2271-2278.
    [11]Baek, I. S.,Park, H. Y.,You, M. K., et al.Functional conservation and divergence of FVE genes that control flowering time and cold response in rice and Arabidopsis[J].Mol Cells,2008,26:368-372.
    [12]Balzergue, S.,Dubreucq, B.,Chauvin, S., et al.Improved PCR-walking for large-scale isolation of plant T-DNA borders[J].Biotechniques,2001,30:496-498, 502, 504.
    [13]Baurle, I., Dean, C.Differential interactions of the autonomous pathway RRM proteins and chromatin regulators in the silencing of Arabidopsis targets[J].PLoS One,2008,3:e2733.
    [14]Chardon, F., Damerval, C.Phylogenomic analysis of the PEBP gene family in cereals[J].J Mol Evol,2005,61:579-590.
    [15]Cottage,A.,Yang,A.P.,Maunders,H.,et al Identification of DNA Sequences Flanking T-DNA Insertions by PCR-Walking[J].Plant Mol Biol Rep,2001,19:321-327
    [16]Dai, C., Xue, H. W.Rice early flowering1, a CKI, phosphorylates DELLA protein SLR1 to negatively regulate gibberellin signalling[J].EMBO J,2010,
    [17]Davis, S. J.Photoperiodism: the coincidental perception of the season[J].CurrBiol,2002,12:R841-843.
    [18]Dennis, E. S., Peacock, W. J.Epigenetic regulation of flowering[J].Curr Opin Plant Biol,2007,10:520-527.
    [19]Ding, X.,Richter, T.,Chen, M., et al.A rice kinase-protein interaction map[J].Plant Physiol,2009,149:1478-1492.
    [20]Doi, K.,Izawa, T.,Fuse, T., et al.Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1[J].Genes Dev,2004,18:926-936.
    [21]Eriksson, S.,Bohlenius, H.,Moritz, T., et al.GA4 is the active gibberellin in the regulation of LEAFY transcription and Arabidopsis floral initiation[J].Plant Cell,2006,18:2172-2181.
    [22]Fromont-Racine, M.,Rain, J. C., Legrain, P.Toward a functional analysis of the yeast genome through exhaustive two-hybrid screens[J].Nat Genet,1997,16:277-282.
    [23]Fujiwara, S.,Oda, A.,Yoshida, R., et al.Circadian clock proteins LHY and CCA1 regulate SVP protein accumulation to control flowering in Arabidopsis[J].Plant Cell,2008,20:2960-2971.
    [24]Halford, N. G., S. Hey, et al.Metabolic signalling and carbon partitioning: role of Snf1-related (SnRK1) protein kinase[J].J Exp Bot,2003,54:467-475.
    [25]Hartweck, L. M.Gibberellin signaling[J].Planta,2008,229:1-13.
    [26]Hayama, R., Coupland, G.The molecular basis of diversity in the photoperiodic flowering responses of Arabidopsis and rice[J].Plant Physiol,2004,135:677-684.
    [27]Hayama, R.,Izawa, T., Shimamoto, K.Isolation of rice genes possibly involved in the photoperiodic control of flowering by a fluorescent differential display method[J].Plant Cell Physiol,2002,43:494-504.
    [28]Hayama, R.,Yokoi, S.,Tamaki, S., et al.Adaptation of photoperiodic control pathways produces short-day flowering in rice[J].Nature,2003,422:719-722.
    [29]Hirose, F.,Shinomura, T.,Tanabata, T., et al.Involvement of rice cryptochromes in de-etiolation responses and flowering[J].Plant Cell Physiol,2006,47:915-925.
    [30]Holm, M.,Ma, L. G.,Qu, L. J., et al.Two interacting bZIP proteins are direct targets of COP1-mediated control of light-dependent gene expression in Arabidopsis[J].Genes Dev,2002,16:1247-1259.
    [31]Huang, T.,Bohlenius, H.,Eriksson, S., et al.The mRNA of the Arabidopsis gene FT moves from leaf to shoot apex and induces flowering[J].Science,2005,309:1694-1696.
    [32]Imaizumi, T.Arabidopsis circadian clock and photoperiodism: time to think about location[J].Curr Opin Plant Biol,2010,13:83-89.
    [33]Imaizumi, T., Kay, S. A.Photoperiodic control of flowering: not only by coincidence[J].Trends Plant Sci,2006,11:550-558.
    [34]Imaizumi, T.,Tran, H. G.,Swartz, T. E., et al.FKF1 is essential forphotoperiodic-specific light signalling in Arabidopsis[J].Nature,2003,426:302-306.
    [35]Izawa, T.,Oikawa, T.,Sugiyama, N., et al.Phytochrome mediates the external light signal to repress FT orthologs in photoperiodic flowering of rice[J].Genes Dev,2002,16:2006-2020.
    [36]Izawa, T.,Oikawa, T.,Tokutomi, S., et al.Phytochromes confer the photoperiodic control of flowering in rice (a short-day plant)[J].Plant J,2000,22:391-399.
    [37]Izawa, T.,Takahashi, Y., Yano, M.Comparative biology comes into bloom: genomic and genetic comparison of flowering pathways in rice and Arabidopsis[J].Curr Opin Plant Biol,2003,6:113-120.
    [38]Jaeger, K. E.,Graf, A., Wigge, P. A.The control of flowering in time and space[J].J Exp Bot,2006,57:3415-3418.
    [39]Jang, Y. H.,Park, H. Y.,Kim, S. K., et al.Survey of rice proteins interacting with OsFCA and OsFY proteins which are homologous to the Arabidopsis flowering time proteins, FCA and FY[J].Plant Cell Physiol,2009,50:1479-1492.
    [40]Jung, C., Muller, A. E.Flowering time control and applications in plant breeding[J].Trends Plant Sci,2009,14:563-573.
    [41]Kanegae, H.,Miyoshi, K.,Hirose, T., et al.Expressions of rice sucrose non-fermenting-1 related protein kinase 1 genes are differently regulated during the caryopsis development[J].Plant Physiol Biochem,2005,43:669-679.
    [42]Kang, X.,Zhou, Y.,Sun, X., et al.HYPERSENSITIVE TO RED AND BLUE 1 and its C-terminal regulatory function control FLOWERING LOCUS T expression[J].Plant J,2007,52:937-948.
    [43]Kim, D. H.,Doyle, M. R.,Sung, S., et al.Vernalization: winter and the timing of flowering in plants[J].Annu Rev Cell Dev Biol,2009,25:277-299.
    [44]Kim, S. K.,Yun, C. H.,Lee, J. H., et al.OsCO3, a CONSTANS-LIKE gene, controls flowering by negatively regulating the expression of FT-like genes under SD conditions in rice[J].Planta,2008,228:355-365.
    [45]Kim, S. L.,Lee, S.,Kim, H. J., et al.OsMADS51 is a short-day flowering promoter that functions upstream of Ehd1, OsMADS14, and Hd3a[J].Plant Physiol,2007,145:1484-1494.
    [46]Kim, W. Y.,Hicks, K. A., Somers, D. E.Independent roles for EARLY FLOWERING 3 and ZEITLUPE in the control of circadian timing, hypocotyl length, and flowering time[J].Plant Physiol,2005,139:1557-1569.
    [47]Kobayashi, Y., Weigel, D.Move on up, it's time for change--mobile signals controlling photoperiod-dependent flowering[J].Genes Dev,2007,21:2371-2384.
    [48]Kojima, S.,Takahashi, Y.,Kobayashi, Y., et al.Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions[J].Plant Cell Physiol,2002,43:1096-1105.
    [49]Komiya, R.,Ikegami, A.,Tamaki, S., et al.Hd3a and RFT1 are essential for flowering in rice[J].Development,2008,135:767-774.
    [50]Komiya, R.,Yokoi, S., Shimamoto, K.A gene network for long-day flowering activates RFT1 encoding a mobile flowering signal in rice[J].Development,2009,136:3443-3450.
    [51]Kotchoni, S. O.,Larrimore, K. E.,Mukherjee, M., et al.Alterations in the endogenous ascorbic acid content affect flowering time in Arabidopsis[J].Plant Physiol,2009,149:803-815.
    [52]Li, D.,Yang, C.,Li, X., et al.Functional characterization of rice OsDof12[J].Planta,2009,229:1159-1169.
    [53]Lin, C.Plant blue-light receptors[J].Trends Plant Sci,2000,5:337-342.
    [54]Lin, H.X.,Yamamoto, T.,Sasaki, T., et al.Characterization and detection of epistatic interactions of 3 QTLs, Hd1, Hd2, and Hd3, controlling heading date in rice, using nearly isogenic lines[J].Theor.Appl.Genet.2000,101:1021-1028.
    [55]Lu, Q.,Xu, Z. K., Song, R. T.OsFY, a homolog of AtFY, encodes a protein that can interact with OsFCA-gamma in rice (Oryza sativa L.)[J].Acta Biochim Biophys Sin (Shanghai),2006,38:492-499.
    [56]Ma, J.,Przibilla, E.,Hu, J., et al.Yeast activators stimulate plant gene expression[J].Nature,1988,334:631-633.
    [57]Monna, L.,Lin, X.,Kojima, S., et al.Genetic dissection of a genomic region for a quantitative trait locus, Hd3, into two loci, Hd3a and Hd3b, controlling heading date in rice[J].Theor Appl Genet,2002,104:772-778.
    [58]Mouradov, A.,Cremer, F., Coupland, G.Control of flowering time: interacting pathways as a basis for diversity[J].Plant Cell,2002,14 Suppl:S111-130.
    [59]Murakami, M.,Tago, Y.,Yamashino, T., et al.Characterization of the rice circadian clock-associated pseudo-response regulators in Arabidopsis thaliana[J].Biosci Biotechnol Biochem,2007,71:1107-1110.
    [60]Mutasa-Gottgens, E., Hedden, P.Gibberellin as a factor in floral regulatory networks[J].J Exp Bot,2009,60:1979-1989.
    [61]Peng, L. T.,Shi, Z. Y.,Li, L., et al.Ectopic expression of OsLFL1 in rice represses Ehd1 by binding on its promoter[J].Biochem Biophys Res Commun,2007,360:251-256.
    [62]Peng, L. T.,Shi, Z. Y.,Li, L., et al.Overexpression of transcription factor OsLFL1 delays flowering time in Oryza sativa[J].J Plant Physiol,2008,165:876-885.
    [63]Polge,C.,Thomas,M.,SNF1/AMPK/SnRK1 kinases, global regulators at the heart of energy control[J].Trends Plant Sci,2007,12:20-28
    [64]Purwestri, Y. A.,Ogaki, Y.,Tamaki, S., et al.The 14-3-3 protein GF14c acts as a negative regulator of flowering in rice by interacting with the florigen Hd3a[J].Plant Cell Physiol,2009,50:429-438.
    [65]Ratcliffe, O. J., Riechmann, J. L.Arabidopsis transcription factors and theregulation of flowering time: a genomic perspective[J].Curr Issues Mol Biol,2002,4:77-91.
    [66]Ryu, C. H.,Lee, S.,Cho, L. H., et al.OsMADS50 and OsMADS56 function antagonistically in regulating long day (LD)-dependent flowering in rice[J].Plant Cell Environ,2009,32:1412-1427.
    [67]Schechtman, D.,Mochly-Rosen, D., Ron, D.Glutathione S-transferase pull-down assay[J].Methods Mol Biol,2003,233:345-350.
    [68]Simpson, G. G.,Gendall, A. R., Dean, C.When to switch to flowering[J].Annu Rev Cell Dev Biol,1999,15:519-550.
    [69]Soppe, W. J.,Bentsink, L., Koornneef, M.The early-flowering mutant efs is involved in the autonomous promotion pathway of Arabidopsis thaliana[J].Development,1999,126:4763-4770.
    [70]Sung, S., Amasino, R. M.Vernalization and epigenetics: how plants remember winter[J].Curr Opin Plant Biol,2004,7:4-10.
    [71]Takahashi, Y.,Shomura, A.,Sasaki, T., et al.Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the alpha subunit of protein kinase CK2[J].Proc Natl Acad Sci U S A,2001,98:7922-7927.
    [72]Takano, M.,Inagaki, N.,Xie, X., et al.Distinct and cooperative functions of phytochromes A, B, and C in the control of deetiolation and flowering in rice[J].Plant Cell,2005,17:3311-3325.
    [73]Takano, M.,Kajiya-Kanegae, H.,Funatsuki, H., et al.Rice has two distinct classes of protein kinase genes related to SNF1 of Saccharomyces cerevisiae, which are differently regulated in early seed development[J].Mol Gen Genet,1998,260:388-394.
    [74]Takano, M.,Kanegae, H.,Shinomura, T., et al.Isolation and characterization of rice phytochrome A mutants[J].Plant Cell,2001,13:521-534.
    [75]Tamaki, S.,Matsuo, S.,Wong, H. L., et al.Hd3a protein is a mobile flowering signal in rice[J].Science,2007,316:1033-1036.
    [76]Thelander,M., Olsson,T., Ronne,H., Snf1-related protein kinase 1 is needed for growth in a normal day–night light cycle[J]. EMBO J,2004,23:1900-1910.
    [77]Thomas, B.Light signals and flowering[J].J Exp Bot,2006,57:3387-3393.
    [78]Tsuji, H., Tamaki, S., Komiya, R., et al.Florigen and the photoperiodic control of flowering in rice[J].Rice,2008,1:25-35.
    [79]Veley, K. M., Michaels, S. D.Functional redundancy and new roles for genes of the autonomous floral-promotion pathway[J].Plant Physiol,2008,147:682-695.
    [80]Winichayakul, S., Beswick, N. L., Dean, C., et al.Components of the Arabidopsis autonomous floral promotion pathway, FCA and FY ,are conserved in monocots[J].Functional Plant Biology,2005,32:345-355
    [81]Wu, J. F.,Wang, Y., Wu, S. H.Two new clock proteins, LWD1 and LWD2, regulateArabidopsis photoperiodic flowering[J].Plant Physiol,2008,148:948-959.
    [82]Xue, W.,Xing, Y.,Weng, X., et al.Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice[J].Nat Genet,2008,40:761-767.
    [83]Yamamoto,T.,Kuboki, Y.,Lin, SY., et al.Fine mapping of quantitative trait loci Hd1, Hd2 and Hd3, controlling heading date of rice, as single Mendelian factors[J]. Theor Appl Genet,1998:97,37-44.
    [84]Yamamoto, T.,Lin, H.,Sasaki, T., et al.Identification of heading date quantitative trait locus Hd6 and characterization of its epistatic interactions with Hd2 in rice using advanced backcross progeny[J].Genetics,2000,154:885-891.
    [85]Yanagisawa, S.The transcriptional activation domain of the plant-specific Dof1 factor functions in plant, animal, and yeast cells[J].Plant Cell Physiol,2001,42:813-822.
    [86]Yano, M.,Harushima, Y.,Nagamura, Y., et al. Identification of quantitative trait loci controlling heading date in rice using a high-density linkage map[J]. Theor.Appl.Genet,1997,95:1025-1032.
    [87]Yano, M.,Katayose, Y.,Ashikari, M., et al.Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS[J].Plant Cell,2000,12:2473-2484.
    [88]Yano, M.,Kojima, S.,Takahashi, Y., et al.Genetic control of flowering time in rice, a short-day plant[J].Plant Physiol,2001,127:1425-1429.
    [89]Yoo, S. K.,Lee, J. S., Ahn, J. H.Overexpression of AGAMOUS-LIKE 28 (AGL28) promotes flowering by upregulating expression of floral promoters within the autonomous pathway[J].Biochem Biophys Res Commun,2006,348:929-936.
    [90]Yoshida, R.,Fekih, R.,Fujiwara, S., et al.Possible role of EARLY FLOWERING 3 (ELF3) in clock-dependent floral regulation by SHORT VEGETATIVE PHASE (SVP) in Arabidopsis thaliana[J].New Phytol,2009,
    [91]Zeevaart,J. A.Leaf-produced floral signals[J].Curr Opin Plant Biol,2008,11:541-547.