开关磁阻电机互感及转矩脉动抑制技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文的研究内容是国家科技支撑计划项目“矿井通风及供电系统安全状态监测及故障诊断预警系统的研究”(2007BAK29B05)中的一个子项目。开关磁阻电机(Switched Reluctance Motor, SRM)具有结构简单、控制灵活、起动性能好、可缺相运行等优点,得到了学术界和工业界的广泛关注,其应用已涉及工业、航空、家用电器等领域。由于SRM的双凸极结构和电磁特性的高度非线性,使其转矩脉动较其它传统电机严重。当工作在两相励磁模式时,相间磁场相互耦合,非线性数学模型更加复杂,难以实现高性能的控制,限制了其在诸如伺服驱动等低速要求平稳场合下的应用。因此,研究SRM两相励磁工作模式下的互感,以及计及相间互感的准确数学模型和转矩脉动抑制控制技术具有重要的理论价值和现实意义。
     本文分析了SRM单相和两相励磁模式下磁场的分布特征,研究了偶数相SRM磁场的不对称性;用有限元法计算了单相和两相励磁模式下的两相总磁链特性,以互感的形式表征两种励磁方式下磁链的差别;提出了互感的计算模型,计算了互感随转子位置和绕组电流的变化规律;建立了两相励磁模式下计及互感的磁共能计算方法,理论分析了互感对静态矩角特性的影响;结合功率电路,对SRM进行了时步有限元分析。研究结果表明:绕组电流较大时互感为负,两相励磁模式下的总转矩小于两相分别单相励磁时的转矩之和,瞬时转矩波形不规则。
     研究了SRM具有不同几何设计参数时互感的变化规律,提出适当增加定子轭高/齿宽比或减小转子极弧长可以减小互感;针对互感导致转矩波形不规则问题,探讨了几种降低互感对转矩影响的补偿性方法,提出适当增加长磁路励磁相绕组匝数和斩波电流的方法,可以改善转矩波形的不规则性,并给出了绕组匝数和斩波电流的计算模型。实验测量了开关磁阻电机样机在单相励磁模式下的静态电磁特性;结合电机的实际运行情况,提出了SRM相邻两相绕组同时励磁条件下互感的测量方法;测量了电机磁场相对饱和条件下,互感随转子位置和相电流的变化规律,将测量结果与有限元计算结果相对比,二者基本吻合。
     推导了计及相间互感的电动势平衡方程和转矩平衡方程;采用最小二乘支持向量机方法训练SRM电磁模型,结果表明:该方法训练速度快,模型精度高。将长磁路励磁相的互感特性纳入数学模型中,构建了基于最小二乘支持向量机的SRM调速系统仿真模型,并进行了仿真和实验验证;实验结果证明了计及互感的最小二乘支持向量机建模方法的正确性和有效性。
     提出了基于转矩补偿的转矩脉动抑制控制策略,该方法能够对电磁不对称励磁相的互感转矩进行补偿;推导了补偿相开通角和关断角的选择方法与计算模型,以及额定负载条件下最大转速估算模型;结合转矩逆模型,建立了能够补偿互感转矩的SRM低转矩脉动调速系统仿真模型,并进行了仿真。结果表明:转矩脉动明显减小;与不对互感转矩补偿的转矩脉动抑制方法相比,对互感转矩补偿后的转矩脉动程度小。
     研发了基于TMS320LF2407 DSP的开关磁阻电机调速系统控制器,设计了冗余电容裂相式功率变换器。在调速系统实验平台上完成了高速和低速稳态运行实验、动态运行性能测试实验、起动运行实验以及容许输出测定实验。实验结果表明,系统静态误差小,鲁棒性较强,抗干扰能力好。
The research topic in this thesis is one of the important parts of the project“Study on the safety state monitoring system and fault diagnosis and early warning system of underground power distribution and ventilation networks in coal mine”(2007BAK29B05), which is supported by National Science & Technology Pillar Program of China. The Switched Reluctance Motor (SRM) continues to attract a lot of research interests in academe and industry due to its simple structure, flexible control, excellent starting performance and phase-deficient operation characteristics. The SRM has been widely applied in the fields of industry, aviation,household electric appliance, etc. However, owing to its doubly salient pole structure and highly nonlinear electromagnetism characteristics, the torque ripple of SRM is much serous than that of the conventional motors. When the SRM operates under the condition of two-phase excitation mode, the magnetic field coupling between the phases will occur. The mathematic model becomes much complicated and the high performance control is difficult to be achieved. In other words, the SRMs couldn’t be applied in the servo driving system which request stationary torque at lower speed. As a result, it is of important theoretical value and practical significance to conduct the research on the mutual inductance under the condition of two-phase excitation, the accurate mathematic modeling considering mutual inductance and control strategy to minimize the torque ripple.
     In this thesis, the distribution features of magnetic field in single-phase excitation mode and in two-phase excitation mode are presented respectively, and the magnetic asymmetry in even phase SRM is analyzed. The total flux-linkage characteristics under the condition of single phase excitation mode and two-phase excitation mode are calculated by Finite Element Analysis (FEA) separately, and the difference between them is demonstrated by mutual inductance. The mutual inductance calculation model is put forward. The variety of mutual inductance with rotor position and phase current is calculated. The calculation method of co-energy is established considering the mutual inductance in two-phase excitation mode, and the mutual coupling effect on static torque-angle characteristic is theoretically analyzed. The time-stepping FEA analysis is carried out combining with the actual power converter. It has been shown by the research result that the mutual inductance is negative with larger current; the total torque in two-phase excitation mode is less than the sum of torques of the two phases in single-phase excitation mode; the instantaneous torque waveform is irregular.
     The variety of mutual inductance with different geometric parameters is discussed and it has been found that the mutual inductance can be reduced by increasing the proportion of the width of stator yoke and tooth appropriately or by decreasing the length of rotor pole arc. In view of the irregularity of torque waveform induced by mutual coupling, several compensatory measures are investigated to reduce the mutual coupling effect on torque. It is proposed that increasing the winding turns or chopped current properly could improve the regularity of torque waveform. The formula for calculating the winding turns and chopped current are also presented in this thesis.
     The static characteristics of the SRM prototype in single-phase excitation mode are measured by experiments. The method to measure the mutual inductance between two adjacent phases excited simultaneously is proposed, which is based on the practical running situation of SRM. The variation of mutual inductance with respect to rotor position and phase current has been measured and it has been found that the measured results are consistent with that calculated by FEA.
     The potential balance equation and torque balance equation considering mutual inductance are derived. The electromagnetic models of SRM are trained by Least Squares Support Vector Machine (LS-SVM). It has been shown by training results that this method is of rapid training speed and the trained models are highly accurate. The simulation model of Switched Reluctance Drive (SRD) system, which considers mutual inductance, is established based on LS-SVM. The SRD system is simulated and experimented. It has been verified by experimental results that the modeling method by LS-SVM considering mutual inductance is correct and effective.
     A torque ripple minimization control strategy based on torque compensation is proposed, which can compensate the torque caused by mutual inductance of asymmetric phases. The selection and calculation method of turn-on and turn-off angles, as well as the estimation method of the maximum speed at rated load are set up. In consideration with the torque inverse model, the simulation model of low torque ripple switched reluctance motor drive system, which can compensate the mutual inductance torque, is established and simulated. Simulation results show that the torque ripple is effectively reduced, and the degree of torque ripple with mutual torque compensation is lower than the one without mutual torque compensation.
     The controller of switched reluctance drive system based on TMS320LF2407 is developed and a redundant split-phase power converter is designed. A series of experiments, such as steady-state running at high and at low speed, dynamic running, starting operation, allowed output torque and so on, have been carried out. It has been shown by the experiments that the developed SRD system is of low static error, strong robustness and strong anti-interference ability.
引文
[1] Miller T J E. Switched reluctance motors and their control[M]. Oxford: Magna Physics Publishing and Oxford University Press, 1993.
    [2]詹琼华.开关磁阻电动机[M].武汉:华中理工大学出版社,1992
    [3]吴建华.开关磁阻电动机设计与应用[M].北京:机械工业出版社,1999
    [4]王宏华.开关型磁阻电动机调速控制技术[M].北京:机械工业出版社,1995
    [5] Krishnan R. Switched reluctance motor drives: modeling, simulation, analysis, design and applications[M]. London: CRC Press, 2001.
    [6] Russa K, Hussain I, Elbuluk M E. Torque-ripple minimization in switched reluctance machines over a wide speed range[J]. IEEE Transactions on Industry Applications, 1998, 34(5): 1105-1112.
    [7]夏长亮,陈自然,李斌.基于RBF神经网络的开关磁阻电机瞬时转矩控制[J].中国电机工程学报,2006,26(19):127-131.
    [8] Arumugam R, Lowther D, Krishnan R, Lindsay J F. A magnetic field analysis of a switched reluctance motor using a two dimensional finite element model[J]. IEEE Transactions on Magnetics, 1985, 21(5):1883-1885.
    [9]张海军,高瑞贞,张京军等.基于有限元模型的开关磁阻电机系统控制仿真[J].煤炭学报. 2008,33(7):831-836.
    [10]曲兵妮,宋建成,张宏达,郑建斌.基于有限元分析的开关磁阻电动机静态和稳态特性研究[J].太原理工大学学报,2009,40(4):400-402.
    [11] Faiz J, Ganji B, De Doncker R.W, Fiedler J.O. Electromagnetic Modeling of Switched Reluctance Motor Using Finite Element Method[C]. The 32nd Annual Conference of the IEEE Industrial Electronics Society, 2006: 1557-1562.
    [12]周会军,丁文,鱼振民.基于Ansoft Maxwell 2D的开关磁阻电机仿真研究[J].微电机,2005,38(6), 10-12.
    [13]童怀,傅光洁,黄声华等.开关磁阻电机稳态特性的等效磁网络模型分析方法I.数学模型[J].中国电机工程学报,1998,18(2):106-110.
    [14] Krishnan R, Majeru P. Measurement and instrumentation of a switched reluctance motor[C]. IEEE Industry Application Society Annu Meeting, 1989: 116-121.
    [15] Ferrero A, Racati A. A digital method for the determination of the magnetic characteristic of variable reluctance motors[J]. IEEE Trans on Instrument and Measure, 1990, 39(4): 604-608.
    [16] Cheok A D, Ertugrul Nesimi, Computer-based automated test measurement system for determining magnetization characteristics of switched reluctance motors[J]. IEEE Trans on Instrumentation and Measurement, 2001, 50(3): 690-696.
    [17] Radimov N, Ben-Hail N, Rabinovici, R. Inductance measurements in switched reluctance machines[J]. IEEE Transactions on Magnetics, 2005, 41(4): 1296-1299.
    [18]曹家勇,周祖德,陈幼平,詹琼华.开关磁阻电动机特性检测与辨识方法研究[J].电工技术学报,2004,19(11):25-30.
    [19] Cheok A D, Tan S C, Wang Z F. Real-time computer-based torque measurement of switched reluctance motors[J]. International Journal of Electronics, 2002, 89(9): 693-715.
    [20] Davis R M, Al-bahadly I. Experimental evaluation of mutual inductances in a switched reluctance motor[C]. Fourth International Conference on Power Electronics and Variable-Speed Drives, 1990: 243-248.
    [21] Bae H K, Krishnan R. A novel approach to control of switched reluctance motors considering mutual inductance[C]. Proceeding of the 26th Annual Conference of the Industrial Electronics Society, 2000: 369-374.
    [22] Panda D, Ramanarayanan V. Mutual coupling and its effect on steady-state performance and position estimation of even and odd number phase switched reluctance motor drive[J]. IEEE Transactions on Magnetics, 2007, 43(8): 3445-3456.
    [23] Moreia J C, Lipo T A. Simulation of a four phase switched reluctance motor including the effects of mutual coupling[J]. Electric Machines and Power Systems, 1989, 16(4): 281-299.
    [24] Preston M A, Lyons J P. A switched reluctance motor model with mutual coupling and multi-phase excitation[J]. IEEE Transactions on Magnetics, 1991, 27(6): 5423-5425.
    [25] Kokernak J M, Torrey D A. Magnetic circuit model for the mutually coupled switched-reluctance machine[J]. IEEE Transactions on Magnetics, 2000, 36(2): 500-507.
    [26] Deihimi A, Farhangi S, Henneberger G. A general Nonlinear model of switched reluctance motor with mutual coupling and multiphase excitation[J]. Electrical Engineering, 2002, 84(3): 143-158.
    [27]郭伟,詹琼华.一种新型两相励磁开关磁阻电机驱动系统的静态特性分析[J].中国电机工程学报,2002,22(12):91-96.
    [28] Y. Xu, D.A. Torrey. Study of the mutually coupled switched reluctance machine using the finite element-circuit coupled method[J], IEE Proceedings on Electric Power Applications. 2002, 149(22): 81-86.
    [29] Michaelides A M, Pollock C. Modelling and design of switched reluctance motors with two phases simultaneously excited[J], IEE Proceedings on Electric Power Applications, 1996, 143(5): 361-370.
    [30] Liu Y, Pillay P. Improved torque performance of switched reluctance machines by reducing the mutual saturation effect[J]. IEEE Transactions on Energy Conversion, 2004, 19(2): 251-257.
    [31]纪良文,蒋静平.基于径向基函数神经网络的开关磁阻电机建模[J].电工技术学报,2001,16(4):7-11.
    [32] Stephenson J M, Corda J. Computation of torque and current in doubly salient reluctance motors from nonlinear magnetization data[J]. Proc IEE, 1979, 126(5): 393-396.
    [33] Lawreson P J, Stephenson J M, et al, Variable speed switched reluctance motors[J], Proceedings ofIEE, 1980, 127(4): 253-256,.
    [34] Corda J. Linear analysis of torque of switched reluctance motor[C]. Proceedings of ICEM, 1984: 281-284,.
    [35] Krishnan R, Arumugan R. Lindsay J F. Design procedure for switched-reluctance motors[J]. IEEE Transactions on Industry Applications, 1988, 24(3): 456-461.
    [36] Buja G S, Valla M I. Control characteristics of the SRM drives.I. Operation in the linear region. IEEE Trans on Industrial Electronics, 1991, 38(5): 313-396.
    [37] Buja G S, Valla M I. Control characteristics of the SRM drives.Ⅱ. Operation in the saturated region. IEEE Trans on Industrial Electronics, 1991, 41(3): 316-325.
    [38] Roux C, Morcos M M. A simple model for switched reluctance motors[J]. IEEE Power Eng Review, 2000, 20(10): 49-52.
    [39] Miller T J E. Converter volt-ampere requirements of switched reluctance motor drives[J]. Trans on Industry Applications, 1985, 21(5): 1136-1144.
    [40] Torrey D A, Niu X M, Unkauf E J. Analytical modelling of variable-reluctance machine magnetisation characteristics[J], IEE Proceedings of Electric Power Applications, 1995,142(1), pp:14-22.
    [41] Spong M L, Miller T J E, Macminn S R, et al. Instantaneous torque control of electric motor drives[J]. IEEE Trans on Power Electronics, 1987, 2(1):.55-61.
    [42] Sahoo N C, Panda S K, Dash P K. A fuzzy logic based current modulator for torque ripple minimization in switched reluctance motors[J]. Electric Machines and Power Systems, 1999, 27(2): 181-194.
    [43] Stephenson J M, Corda J. Computation of torque and current in doubly salient reluctance motors from nonlinear magnetization data[J]. IEE Proceedings of Electric Power Applications, 1979,126(1): 393-396.
    [44] Williamson S, Shaikh A A. Three dimensional effects inλ/I diagrams for switched reluctance motors[C]. Proceedings of ICEM92, 1992: 842-848.
    [45] Xu L, Ruchkstater E. Direct modeling of switched reluctance machine by coupled field-circuit method[J]. IEEE Transaction Energy Conversion, 1995, 10(3): 446-454.
    [46] Elmas C, Sagiroglu S, Colak I, et al. Modeling of a nonlinear switched reluctance driver based on artificial neural networks[C]. Power Electronics and Variable-Speed Drives Conference, 1994: 5-12.
    [47]郑洪涛,蔡际令,蒋静坪.基于变结构模糊神经网络的开关磁阻电动机非线性模型[J].电工技术学报,2001,16(6):1-5.
    [48]李大芃,王守臣,诸静.开关磁阻电机的模糊神经网络模型[J].中国电机工程学报,2000,20(1):11-14.
    [49]杨先有,易灵芝,段斌,等.开关磁阻电机调速系统BP神经网络建模[J].电机与控制学报,2008,12(4):447-450.
    [50]司利云,林辉,刘震.基于最小二乘支持向量机的开关磁阻电动机建模[J].中国电机工程学报,2007,27(6):26-30.
    [51]尚万峰,赵升吨,申亚京.遗传优化的最小二乘支持向量机载开关磁阻电机建模中的应用[J].中国电机工程学报,2009,29(12):65-69.
    [52] Lawreson P J, Stephenson J M, et al, Variable speed switched reluctance motors[J], Proceedings of IEE, 1980, 127(4): 253-256.
    [53] Corda J, Linear analysis of torque of switched reluctance motor, Proceedings of ICEM[J], 1984, 281-284.
    [54] Vukosavic V. A simple nonlinear model of the switched reluctannce motor. IEEE Trans on Energy Conversion, 2000, 15(4): 395-400.
    [55] Subrata S, Kiyoe O, Takashi K, A New Modelling Approach for Switched Reluctance Motors[C]. Power Electronic Drives and Energy Systems for Industrial Growth, 1998: 965-971
    [56] Khalil A, Husain I. A Fourier series generalized geometry based analytical model of switched reluctance machines[C], IEEE Electric machines and drives conference, 2005: 490-497.
    [57] Ye Z Z, Martin T W, Balda J C. Modeling and nonlinear control of a switched relutrance motor to minimize torque ripple[C]. IEEE InternationaI Conference on Systems, 2000: 3471-3478.
    [58] Fahimi B, Suresh G, Mahdavi J, et al. A new approach to model switched reluctance motor drive application to dynamic performance prediction, control and design[C], IEEE PEDC98, 1998: 2097-2102.
    [59] Mahdavi J, Suresh G, Fahimi B, et al. Dynamic modeling of nonlinear SRM drive with Pspice[C]. Proc of Indus Appl Soc Annu Meeting. 1997: 661-667.
    [60] Ilic'-Spong M, Marino R, Peresada S M, et al. Feedback linearizing control of switched reluctance motors[J]. IEEE Transactions on Automatic Control, 1987, 32(5): 371-379.
    [61]全星慧,付光洁.基于ANSYS的开关磁阻电动机磁场有限元分析[J].微特电机, 2007,35(10):7-9.
    [62]丁文,梁得亮. 12/8极双通道开关磁阻电机非线性数学模型与有限元分析[J].电机与控制学报,2009,13(2):190-196.
    [63]曲兵妮,宋建成,张宏达,郑建斌.基于有限元分析的开关磁阻电动机静态和稳态特性研究[J].太原理工大学学报,2009,40(4):400-402.
    [64] Williamson S, Shaikh A A. Three dimensional effects inλ/I diagrams for switched reluctance motors[C]. Proceedings of ICEM92, 1992: 842-848.
    [65] Watterson P A, Wu W, Kalan B A, et al. A switched-reluctance motor/generator for mild hybrid vehicles[C]. ICEMS2008, 2008: 2808-2813.
    [66] Cheok A D, Fukuda Y. A new torque and flux control method for switched reluctance motor drives[J]. IEEE Transactions on Power Electronics, 2002, 17(4): 543-557.
    [67] Pulle D W J. New data base for switched reluctance drive simulation[J]. Proceedings of IEE, 1991, 138(6): 331-337.
    [68] Chancharoensook P, Rahman M F. Dynamic modeling of a four-phase 8/6 switched reluctancemotor using current and torque look-up tables[C]. 28th Annual Conference of the Industrial Electronics Society, 2002: 491-496.
    [69]李大梵,王守臣,诸静,等.开关磁阻电机的模糊神经网络模型[J].中国电机工程学报,2000,20(1):11-15.
    [70]纪良文,蒋静平,何峰,等.基于径向基函数神经网络的开关磁阻电机建模[J].电工技术学报,2001,21(3):70-73.
    [71] Vapnik V, The nature of statistical learning theory[M]. New York: Springer-Verlag, 1995: 6-7.
    [72] Cristianini N, Shawe-Taylor J著.李国正,王猛,增华军译.支持向量机导论[M].北京:电子工业出版社,2004.
    [73] Dibike Y B, Velickov S, Solomatine D, et al. Model induction with support vector machines introduction and applications[J]. ASCE Journal of Computing in Civil Engineering, 2001,15(3): 208-216.
    [74] Farshad M, Faiz J, Lucas C. Development of analytical models of switched reluctance motor in two-phase excitation mode: extended miller model[J]. IEEE Transactions on Magnetics, 2005, 41(6): 2145-2155.
    [75] Essah D N, Sudhoff S D, An improved analytical model for the switched reluctance motor[J]. IEEE Transactions on Energy Conversion. 2003, 18(3): 349–356.
    [76] Cao S, Tseng K J. Evaluation of neighboring phase coupling effects of switched reluctance motor with dynamic modeling approach[C]. Proceeding of PIEMC2000, 2000: 881–886.
    [77] Mecrow B C,Weiner C, Clothier A C, The modeling of switched reluctance machines with magnetically coupled windings[J]. Industry Applications Conference, 2000: 79–86.
    [78] Ramamurthy S S, Schupbach R M, Balda J C. Artificial neural networks based models for the multiply excited switched reluctance motor[C]. APEC2001, 2001: 1109–1115.
    [79]葛宝明,王祥珩,苏鹏声,等.开关磁阻电动机控制技术的研究现状和发展趋势[J].电气传动,2001,31(2): 8-13.
    [80]周素莹,林辉.减小开关磁阻电机转矩脉动的控制策略综述.电气传动,2008,38(3):11-17.
    [81]王旭东,王喜莲,王炎,等.开关磁阻电动机电流双幅值斩波控制[J].中国电机工程学报,2000,20(4):83-86.
    [82] Kim C H, Ha I J. A new approach to feedback-linearizing control of variable reluctance motors for direct drive applications[J]. IEEE Transactions on Control Systems Technology, 1996, 4(4): 348-362.
    [83]杨波,曹家勇,陈幼平,等.一种降低开关磁阻电动机转矩脉动的新方法[J].中小型电机,2001,28(4):11-15.
    [84] Filicori F, Bianco C G L, Tonielli A. Modeling and control strategies for a variable reluctance direct-drive motor[J]. IEEE Transactions on Industry Electron, 1993, 40(1): 105-115.
    [85] Kjaer P C, Gribble J J, Miller T J E. High-grade control of switched reluctance machines[J]. IEEE Transactions on Industry Application, 1997, 33(6):1585-1593.
    [86] Stankovic A M, Tadmor G, Coric Z J. Low torque ripple control of current-fed switched reluctance motors. IEEE IAS Conference 1996: 84-91.
    [87] Russia K, Husain I, Elbuluk M E. Torque ripple minimization in switched reluctance machines over a wide speed range[J]. IEEE Transactions on industry applications, 1998, 34(5): 1105-1112.
    [88] Choi C, Kim S, Kim Y, et al. A new torque control method of a switched reluctance motor using a torque-sharing function[J]. IEEE Transactions on Magnetics, 2002, 38(5): 3288-3290.
    [89]曹家勇,周祖德,陈幼平,等.一种开关磁阻电动机转矩控制的新方法[J].中国电机工程学报,2005,25(6): 88-94.
    [90] Mir S, Elbuluk M K, Husain I. Torque ripple minimization in switched reluctance motors using adaptive fuzzy control. IEEE Transactions on Industry Application, 1999, 35(2): 461-468.
    [91] Luís O A P Henriques, Luís G B Rolim, Walter I Suemitsu, et al. Torque ripple minimization in switched reluctance drive by neuro-fuzzy compensation[J]. IEEE Transactions on Magnetics, 2000, 36(5): 3592-3594.
    [92] Resy D S, Green T C, Williams B W. Application of associative memory neural networks to the control of a switched reluctance motor[C]. Proceeding of IECON93, 1993: 200-206.
    [93] Resy D S, Mirkazemi-Moud M, Green T C, et al. Fuzzy adaptive systems applied to the control of a switched reluctance motor[C]. IEEE International Symposium on Intelligent Control, 1994: 81-86.
    [94]郑洪涛,陈新,蒋静平.基于模糊神经网络开关磁阻电动机高性能转矩控制[J].控制理论与应用,2003,20(4):541-546.
    [95] Chuang T S, Pollock C. Robust speed control of a switched reluctance Vector Drive using variable structure approach[J]. IEEE Transactions on Industrial Electronics, 1993, 40(1): 56-63.
    [96]陈亮,孙玉坤,孙宇新.开关磁阻电机的模糊滑模变结构控制[J].江苏理工大学学报(自然科学版),2001,22(5):52-54.
    [97] Bizkevelci E, Leblebicioglu K, Ertan H B. A sliding mode controller to minimize SRM torque ripple and noise[J]. Industrial Electronics, 2004, 2(2): 1333-1338.
    [98] Sahoo N C, Xu J X, Panda S K. Determination of current waveforms for torque ripple minimization in switched reluctance motors using iterative learning: an investigation[J]. Electric Power Applications. IEE Proceedings, 1999,146(4): 369-377.
    [99] Sahoo N C, Xu J X, Panda S K. Low torque ripple control of switched reluctance motors using iterative learning[J]. IEEE Transactions on Energy Conversion, 2001,16(4): 318-326.
    [100]陈哲明,潘再平.基于迭代学习的开关磁阻电动机最优控制研究[J].浙江大学学报,2006,40(1):25-28.
    [101] Sahoo N C, Panda S K, Xu J X. Iterative learning control based direct instantaneous Torque control of switched reluctance motors[J]. 35th IEEE Power Electronics specialists conference, 2004: 4832-4837.
    [102]李红梅,张志全,李忠杰.减小小功率开关磁阻电机转矩脉动的迭代学习控制[J].电工技术学报,2006,21(10):67-70.
    [103] Panda S K, Dash P K. Application of nonlinear control to switched reluctance motors: a feedback linearization approach[J]. IEE Proceedings of Electric Power applications.1996, 143(5): 371-375.
    [104] Experimental investigation of feedback linearization controller for switched reluctance motor[C]. IEEE Power Electronics Specialists Conference.1996: 1804-1810.
    [105] Ben Amor L, Dessaint L A, Akhrif O. Adaptive nonlinear torque control of a switched reluctance motor via flux observation[J]. Mathematics and Computers in Simulation, 1995, 38(4): 345-358.
    [106] Fuengwarodsakul N H, Menne M, Inderka R B, et al. High-dynamic four-quadrant switched reluctance drive based on DITC[J]. IEEE Trans. on Industry Applications, 2005, 41(5): 1232-1242.
    [107] Inderka R B, De Doncker R W A A. DITC-direct instantaneous torque control of switched reluctance drives[J]. IEEE Transactions on Industry Application, 2003, 39(4): 1046-1051.
    [108] Robert B Direct instantaneous torque control of switched reluctance drives[C]. IEEE 37th IAS Annual Meeting, 2002: 1605-1609.
    [109] ?Donavan J G, Roche P J, Kavanagh R C, et al. Neural network based torque ripple minimization in a switched reluctance motor[C]. IECON, 1994: 1226-1231.
    [110] Lin Z, Reay D S, Williams B W. Torque ripple reduction in switched reluctance motor drives using B-spline Neural networks[C]. 14th IAS Annual Meeting, 2005: 2726-2733.
    [111] Shang Changjing, Reay D, Williams B. Learning rate functions in CMAC neural network control for torque ripple reduction of switched reluctance motors[J]. IEEE International Conference on Neural Networks, 1996: 2078-2083.
    [112]漆汉宏,张婷婷,李珍国,等.基于DITC的开关磁阻电机转矩脉动最小化研究[J].电工技术学报,2007,22(7):136-140.
    [113]李珍国,魏艳君,阚志忠,等.基于四电平功率变换电路的开关磁阻电机瞬时转矩控制[J].电工技术学报,2007,22(8):144-149.
    [114]孙剑波,詹琼华,王双红,等.开关磁阻电机减振降噪和低转矩脉动控制策略[J].中国电机工程学报,2008,28(12):134-138.
    [115] Inanc N, Derdiyok A, Ozbulur V. Torque ripple minimization of a switched reluctance motor including mutual inductance via sliding mode control technique[J]. ISIE97, 1997: 1024-1028.
    [116]詹琼华,吴莹,郭伟.开关磁阻电机绕组连接方式的研究[J].电机与控制学报,2002,6(2): 93-95.
    [117] Scott Stanton. Electrical Machine and Drives Design for Transportation Systems[R]. Ansoft Corporation.
    [118]周会军,丁文,鱼振民.基于Maxwell 2D的开关磁阻电动机的仿真研究[J].微特电机. 2007, 35(3): 11-12.
    [119] Ray W F, Erfan F, A new method of flux or inductance measurement for switched reluctancemotors.Proceeding of Power Electron Variable Speed Drives, 1994: 137-140.
    [120]李玉香,胡秀珍.关于互感系数的讨论及互感电动势的计算.上海铁道学院学报,1995,16(3) : 109-112.
    [121]刘闯,严利,严加根,刘迪吉.开关磁阻电机非线性磁参数建模方法[J].南京航空航天大学学报, 2007, 39(6):706-710.
    [122] Suykens J A K, Gestel T, Moor J, et al. Least squares support vector machines[M]. Singapore: World Scientific Publishing, 2002.
    [123] Soares F, Costa Branco P J. Simulation of a 6/4 switched reluctance motor based on Matlab/Simulink environment [J], IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(3): 989-1009.
    [124]纪志成,薛花.基于Matlab的开关磁阻电机控制系统仿真建模研究[J].系统仿真学报, 2005, 17(4): 1015-1021.
    [125] Chen Hao, Jiang Jianguo, Sun Suli, Zhang Dong. Dynamic simulation models of switched reluctance motor drivers[C]. Proceedings of the 3th World Congress on Intelligent Control and Automation, 2000: 2111-2115.
    [126] Wang S, Burton B, Harley R G. Switched reluctance motor measurements and simulation models[C]. The 7th AFEICON Conference, 2004: 1161-1167.
    [127]崔建锋,李玉忍.开关磁阻电动机系统功率变换器的设计[J].微电机,2006,39 (1):75-78.