白介素23调节过敏性气道炎症的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:IL-23/Th17细胞轴在许多炎症性疾病中发挥着重要的调节作用,但IL-23在过敏性气道炎症中的作用尚不十分清楚。本文旨在观察IL-23-IL-23R信号是否参与了哮喘过敏性气道炎症的发生,并进一步探讨其调控过敏性气道炎症的可能机制。
     方法:(1)选取卵清蛋白(OVA)致敏和非致敏的B6背景雌性小鼠各4-6只,提取其肺组织,采用RT-PCR法测定IL-23p19, IL-12p35, IL-12/IL-23p40和IL-23受体(IL-23R)mRNA的表达。(2)选取IL-23基因敲除(IL-23 KO)及相同背景的野生型雌性小鼠各4-6只,OVA致敏诱导哮喘模型。提取肺组织,采用HE染色了解炎症细胞在肺部的浸润情况。进行肺泡灌洗,计数肺泡灌洗液中的细胞总数,以及采用细胞甩片及Giemsa染色技术,进行细胞分类的计数。RT-PCR法测定肺组织中嗜酸性粒细胞过氧化物(EPO)的表达。ELISA法测定血清中OVA特异性IgE的表达及肺引流淋巴结细胞和脾细胞体外经OVA再刺激后,Th2和Th17相关细胞因子的水平。(3)利用人类CD2位点启动子,产生在T细胞上过度表达IL-23R的两组转基因小鼠。RT-PCR法测定其IL-23R的表达水平,选取其中一组作为实验用小鼠。选取IL-23R转基因(IL-23R Tg)和B6小鼠,分别从其脾及浅表淋巴结组织中通过流式分选出原始T淋巴细胞(naive T细胞)。经过Th17及Thl条件下的体外活化4天,在伴或不伴重组鼠细胞因子IL-23的作用下,流式细胞术测定产生IL-17及IFN-γ的细胞比例。(4)选取IL-23RTg及相应的野生型B6雌性小鼠各4-6只,OVA致敏诱导哮喘模型。提取肺组织,采用HE染色了解炎症细胞在肺部的浸润情况。进行肺泡灌洗,计数肺泡灌洗液中的细胞总数,以及采用细胞甩片及Giemsa染色技术,进行细胞分类的计数。RT-PCR法测定肺组织中EPO的表达。ELISA法测定血清中OVA特异性IgE的表达及肺引流淋巴结细胞和脾细胞体外经OVA再刺激后,Th2和Th17相关细胞因子的水平。(5)选取IL-23 KO及相应的野生型小鼠,采用流式细胞术从野生型小鼠的脾及浅表淋巴结组织中分选出原始T淋巴细胞,从IL-23 KO及野生型小鼠的脾组织中分别分选出经放射线处理后的抗原呈递细胞(APC)。在IL-2,IL-4及抗IFN-γ(anti-IFN-γ)细胞因子的存在下,naive T细胞经抗CD3 (anti-CD3)及分别来自IL-23 KO及野生型小鼠的APC的重新刺激。5天后,流式细胞术测定产生IL-4及IL-17的细胞比例。ELISA法测定Th2相关细胞因子的水平。RT-PCR法测定转录因子T-bet,GATA-3和Foxp3的表达。(6)选取IL-23R Tg及相应的野生型小鼠,分别从其脾及浅表淋巴结组织中通过流式分选出原始T淋巴细胞。在IL-2,IL-4及anti-IFN-γ,伴或不伴重组鼠细胞因子工L-23的存在下,naiveT细胞分别经anti-CD3及anti-CD28的重新刺激。5天后,流式细胞术测定产生IL-4及IL-17的细胞比例。ELISA法测定Th2相关细胞因子的水平。RT-PCR法测定转录因子T-bet, GATA-3和Foxp3的表达。
     结果:(1)OVA致敏小鼠的肺部IL-23p19, IL-12p35, IL-12/IL-23p40和IL-23RmRNA的表达均较未致敏小鼠显著升高(P<0.05)。(2)OVA致敏诱导的哮喘模型中,IL-23 KO小鼠肺部炎症细胞的浸润较野生型小鼠明显受到了抑制。IL-23KO小鼠肺泡灌洗液中细胞总数较野生型小鼠显著降低(P<0.05),其中单核巨嗜细胞、中性粒细胞和嗜酸性粒细胞的数量均显著减少(P<0.05),淋巴细胞轻度减少(P>0.05)。IL-23 KO小鼠肺部EPO的表达及血清中IgE的水平均较野生型小鼠显著降低(P<0.05)。IL-23 KO小鼠肺引流淋巴结细胞及脾细胞体外OVA再刺激后,肺引流淋巴结细胞IL-5及IL-13的分泌水平较野生型小鼠显著降低(P<0.05),IL-4轻度降低(P>0.05),脾细胞IL-4,IL-5和IL-13的分泌水平均较野生型小鼠显著降低(P<0.05)。而肺引流淋巴结细胞及脾细胞分泌IL-17及IL-17F的水平未见明显差别。(3)所产生的IL-23R Tg小鼠胸腺IL-23R的表达水平较野生型小鼠显著升高,选取其中一组进行实验。在Th17条件下,IL-23R Tg小鼠的T细胞分化较野生型小鼠,加入重组鼠细胞因子IL-23极大地提高了产生IL-17细胞的比例;在Thl条件下,IL-23R Tg小鼠的T细胞分化较野生型小鼠,加入重组鼠细胞因子IL-23显著抑制了产生IFN-γ细胞的比例。(4)OVA致敏诱导的哮喘模型中,IL-23RTg小鼠肺部炎症细胞的浸润较野生型小鼠明显增加。IL-23RTg小鼠肺泡灌洗液中细胞总数较野生型小鼠显著升高(P<0.05),其中单核巨嗜细胞、中性粒细胞和嗜酸性粒细胞的数量均显著增加(P<0.05),淋巴细胞轻度增加(P>0.05)。IL-23RTg小鼠肺部EPO的表达及血清中IgE的水平均较野生型小鼠显著升高(P<0.05)。IL-23R Tg小鼠肺引流淋巴结细胞及脾细胞体外OVA再刺激后,肺引流淋巴结细胞及脾细胞分泌IL-4,IL-5和IL-13的水平均较野生型小鼠显著增高(P<0.05),而其分泌IL-17及IL-17F的水平未见明显差别。(5)原始T淋巴细胞在IL-23缺陷的APC活化下,产生IL-4细胞的比例较野生型APC明显减少,其分泌的细胞因子IL-4及IL-5显著降低(P<0.05),IL-13轻度降低(P>0.05),同时转录因子GATA3的表达明显降低(P<0.05), T-bet及Foxp3的表达轻度升高(P>0.05)。(6)来自IL-23R Tg小鼠的原始T淋巴细胞在anti-CD3及anti-CD28的刺激下,增加重组鼠细胞因子IL-23使产生IL-4的细胞比例明显增加,其分泌的细胞因子IL-4及IL-13显著增加(P<0.05),IL-5轻度增加(P>0.05)。来自野生型小鼠的原始T淋巴细胞在重组鼠细胞因子IL-23的作用下,仅IL-13的分泌显著增加(P<0.05)。同时,在IL-23的刺激下,仅IL-23R Tg小鼠T细胞引起转录因子GATA3的表达显著增加(P<0.05)。
     结论:IL-23-IL-23R信号参与了哮喘过敏性气道炎症的发生,它不仅可以通过维持IL-17的产生来形成嗜中性粒细胞炎症,更重要的是可能通过直接调节Th2细胞的分化来影响过敏性气道炎症。
Objective:IL-23/Th17 axis is an important regulator in various inflammatory diseases. However, the role of IL-23 in allergic airway inflammation is not well understood. This study aims to observe whether IL-23-IL-23R signaling is involved in the development of allergic airway inflammation, furthermore, to investigate the possible mechanisms.
     Methods:(1) mRNA expression of IL-23p19, IL-12p35, IL-12/IL-23p40 and IL-23R was determined by real-time PCR in whole lung tissue from OVA-challenged B6 female mice. Non-challenged B6 female mice were used as control. (2) IL-23 KO and WT female mice were subjected to OVA-sensitizing-induced asthma. Inflammatory infiltrates in lung were assessed by HE staining. Total cells of bronchoalveolar lavage fluid (BALF) from the asthmatic mice were counted. Cellular profiles in BALF upon OVA challenge were assessed by cytospin with May-Gruenwald Giemsa staining. EPO expression in lung was determined by real-time PCR. OVA-specific IgE expression in sera was measured by ELISA. Expression of type-2 cytokines in lung draining lymph node cells and splenocytes after ex vivo OVA restimulation was assessed by ELISA. OVA-specific Th17 cytokine expression was determined by ELISA. (3) Generation two lines of IL-23R Tg mice with IL-23R overexpression in T cells using the human CD2 mini locus promoter. IL-23R mRNA expression was tested by real-time PCR. One of the two lines was extensively analyzed. Naive T cells were FACS-sorted from IL-23R Tg or B6 mice and activated under Thl7 and Thl conditions with or without recombinant mouse IL-23. Four days later, IFN-y and IL-17-producing cells were analyzed by intracellular staining. (4) IL-23R Tg and B6 female mice were subjected to OVA-sensitizing-induced asthma. Inflammatory infiltrates in lung were assessed by HE staining. Total cells of bronchoalveolar lavage fluid (BALF) from the asthmatic mice were counted. Cellular profiles in BALF upon OVA challenge were assessed by cytospin with May-Gruenwald Giemsa staining. EPO expression in lung was determined by real-time PCR. OVA-specific IgE expression in sera was measured by ELISA. Expression of type-2 cytokines in lung draining lymph node cells and splenocytes after ex vivo OVA restimulation was assessed by ELISA. OVA-specific Th17 cytokine expression was determined by ELISA. (5) Naive T cells were FACS-sorted and stimulated with anti-CD3 and irradiated splenic APC from IL-23 KO or WT mice in the presence of IL-2, IL-4, and anti-IFN-y. Five days later, IL-4 and IL-17-producing cells were analyzed by intracellular staining. Cytokine production was measured by ELISA. T-bet, GATA-3, and Foxp3 mRNA expression was analyzed by RT-PCR. (6) Naive T cells were FACS-sorted from IL-23R Tg or B6 mice and stimulated with anti-CD3 and anti-CD28 in the presence of IL-2, IL-4, and anti-IFN-y with or without recombinant mouse IL-23. Five days later, IL-4 and IL-17-producing cells were analyzed by intracellular staining. Cytokine production was measured by ELISA. T-bet, GATA-3, and Foxp3 mRNA expression was analyzed by RT-PCR.
     Results:(1) IL-23p19, IL-12p35, IL-12/IL-23p40 and IL-23R mRNA were highly induced in the lungs from OVA-challenged mice compared with those from non-immunized mice (P<0.05). (2) In OVA-sensitizing-induced asthma model, antigen-induced inflammatory cell infiltration was greatly inhibited in the lungs from IL-23 KO mice compared with that from WT mice. Total cell number was significantly decreased in IL-23 KO mice (P<0.05). Eosinophils, macrophages and neutrophils were significantly decreased in IL-23 KO mice (P<0.05), and lymphcytes were slightly decreased (P>0.05). IL-23 deficiency led to dramatically decreased expression of EPO in IL-23 KO mice (P<0.05). OVA-specific IgE expression is significantly lower than that in WT mice (P<0.05). Upon ex vivo OVA restimulation, the expression of IL-4, IL-5, and IL-13 in lung draining lymph node cells and splenocytes from OVA-challenged IL-23 KO mice was significantly lower in comparison with WT cells (P<0.05). OVA specific Th17 responses were observed at similar low levels in both IL-23 KO and WT mice. (3) IL-23R expression in thymus was significantly higher in IL-23 R Tg mice than in WT mice, one of the two lines was extensively analyzed. Under the Thl7 condition, addition of recombinant mouse IL-23 significantly increased the frequency IL-17-producing cells in IL-23R Tg T cells. Under the Thl condition, addition of recombinant mouse IL-23 greatly inhibited the generation of IFN-y-producing cells in IL-23R Tg T cells. (4) In OVA-sensitizing-induced asthma model, antigen-induced inflammatory cell infiltration was greatly increased in the lungs from IL-23R Tg mice compared with that from WT mice. Total cell number was significantly increased in IL-23R Tg mice (P<0.05). Eosinophils, macrophages and neutrophils were significantly increased in IL-23R Tg mice (P<0.05), and lymphcytes were slightly increased (P>0.05). IL-23R overexpression led to dramatically increased expression of EPO in IL-23R Tg mice (P<0.05). OVA-specific IgE expression is significantly higher than that in WT mice (P<0.05). Upon ex vivo OVA restimulation, the expression of IL-4, IL-5, and IL-13 in lung draining lymph node cells and splenocytes from OVA-challenged IL-23R Tg mice was significantly higher in comparison with WT cells (P<0.05). OVA specific Th17 responses were observed at similar low levels in both IL-23R Tg and WT mice. (5) CD4+T cells activated with IL-23-deficient APCs exhibited reduced IL-4-producing cell numbers, and visually no IL-17-producing cells were observed. IL-23-deficient APCs led to significantly reduced amounts of IL-4 and IL-5 expression by effector T cells (P<0.05). GATA-3 mRNA expression was significantly decreased in T cells treated with IL-23 KO APCs compared with those treated with WT APCs (P<0.05). (6) Addition of recombinant mouse IL-23 increased IL-4-producing cell numbers and protein expression of IL-4 and IL-13 in IL-23R Tg cells (P<0.05). In WT T cells, only IL-13 was significantly enhanced by IL-23 treatment (P<0.05). In response to IL-23 stimulation, IL-23R Tg but not WT T cells highly expressed GATA-3 mRNA (P<0.05).
     Conclusion:IL-23-IL-23R signaling is involved in the development of allergic airway inflammation. IL-23 signaling may regulate allergic asthma through modulation of Th2 cell differenciation.
引文
[1]. Cohn L, Elias JA, Chupp GL. Asthma:mechanisms of disease persistence and progression. Annu Rev Immunol[J],2004,22:789-815.
    [2]. Larche M, Robinson DS, Kay AB. The role of T lymphocytes in the pathogenesis of asthma. J Allergy Clin Immunol[J],2003,111:450-463, quiz 464.
    [3]. Herrick CA, Bottomly K. To respond or not to respond:T cells in allergic asthma. Nat Rev Immunol[J],2003,3:405-412.
    [4]. Schwartz RS. A New Element in the Meehanism of Asthma. N Engl J Med[J],2002, 346:857-858.
    [5]. Busse WW, Lemanske RF Jr. Asthma. N Engl J Med[J],2001,344:350-362.
    [6]. Wang LH, Lin YH, Yang J, et al. Insufficient increment of CD4+CD25+regulatory T cells after stimulation in vitro with allergen in allergic asthma. Int Arch Allergy Immunol[J].2009,148:199-210.
    [7]. Fahy JV, Kim KW, Liu J, et al. Prominent neutrophilic inflammation in sputum from subjects with asthma exacerbation. J Allergy Clin Immunol[J],1995, 95:843-852.
    [8]. Oppmann B, Lesley R, Blom B, et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity[J],2000,13:715-725.
    [9]. Parham C, Chirica M, Timans J, et al. A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rbetal and a novel cytokine receptor subunit, IL-23R. J Immunol[J],2002,168:5699-5708.
    [10]. Uhlig HH, McKenzie BS, Hue S, et al. Differential activity of IL-12 and IL-23 in mucosal and systemic innate immune pathology. Immunity[J],2006, 25:309-318.
    [11]. MosmannTR, Sad S. The expanding universe of T-cell subsets:Th1, Th2 and more. Immunol Today[J],1996,17:138-146.
    [12]. Trinchieri G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol [J],2003,3:133-146.
    [13]. Cua DJ, Sherlock J, Chen Y, et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature [J], 2003,421:744-748.
    [14]. Hue S, Ahern P, Buonocore S, et al. Interleukin-23 drives innate and T cell-mediated intestinal inflammation. J Exp Med[J],2006,203:2473-2483.
    [15]. Murphy CA, Langrish CL, Chen Y, et al. Divergent pro-and Anti-inflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J Exp Med[J], 2003,198:1951-1957.
    [16]. Duerr RH, Taylor KD, Brant SR, et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science[J],2006, 314:1461-1463.
    [17]. Langrish CL, Chen Y, Blumenschein WM, et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med[J],2005, 201:233-240.
    [18]. Smith RL, Warren RB, Eyre S, et al. Polymorphisms in the IL-12beta and IL-23R genes are associated with psoriasis of early onset in a UK cohort. J Invest Dermatol[J],2008,128:1325-1327.
    [19]. Harrington LE, Hatton RD, Mangan PR, et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol[J],2005,6:1123-1132.
    [20]. Park H, Li Z, Yang X0, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin-17. Nat Immunol,2005,6:1133-1141.
    [21]. Hofstetter HH, Ibrahim SM, Koczan D, et al. Therapeutic efficacy of IL-17 neutralization in murine experimental autoimmune encephalomyelitis. Cell Immunol[J],2005,237:123-130.
    [22]. Nakae S, Nambu A, Sudo K, et al. Suppression of immune induction of collagen-induced arthritis in IL-17-deficient mice. J Immunol [J],2003,171:6173-6177.
    [23]. Martinez GJ, Nurieva RI, Yang XO, et al. Regulation and function of proinflammatory TH17 cells. Ann NY Acad Sci[J],2008,1143:188-211.
    [24]. Veldhoen M, Hocking RJ, Atkins CJ, et al. TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity[J],2006,24:179-189.
    [25]. Mangan PR, Harrington LE,O'Quinn DB, et al. Transforming growth factor-beta induces development of the T(H)17 lineage. Nature [J],2006,441:231-234.
    [26]. Bettelli E, Carrier Y, Gao W, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature [J], 2006,441:235-238.
    [27]. McGeachy MJ, Chen Y, Tato CM, et al. The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17-producing effector T helper cells in vivo. Nat Immunol[J],2009,10:314-24
    [28]. Barczyk A, Pierzchala W, Sozanska E. Interleukin-17 in sputum correlates with airway hyperresponsiveness tomethacholine. Respir Med[J],2003,97:726-733.
    [29]. Molet S, Hamid Q, Davoine F, et al. IL-17 is increased in asthmatic airways and induces human bronchial fibroblasts to produce cytokines. J Allergy Clin Immunol [J],2001,108:430-438.
    [30]. Kolls JK, Kanaly ST, Ramsay AJ. Interleukin-17:an emerging role in lung inflammation. Am J Respir Cell Mol Biol[J],2003,28:9-11.
    [31]. Jatakanon A, Uasuf C, Maziak W, et al. Neutrophilic inflammation in severe persistent asthma. Am J Respir Crit Care Med[J],1999,160:1532-1539。
    [32]. Louis R, Lau LC, Bron AO, et al. The relationship between airways inflammation and asthma severity. Am J Respir Crit Care Med[J],2000,161:9-16.
    [33]. Iwakura Y, Nakae S, Saijo S, et al. The roles of IL-17A in inflammatory immune responses and host defense against pathogens. Immunol Rev[J],2008,266: 55-79.
    [34]. Yang XO, Chang SH, Park H, et al. Regulation of inflammatory responses by IL-17F. J Exp Med[J],2008,205:1063-1075.
    [35]. Schnyder-Candrian S, Togbe D, Couillin I, et al. Interleukin-17 is a negative regulator of established allergic asthma. J Exp Med[J],2006,203:2715-2725.
    [36]. Izcue A, Hue S, Buonocore S, et al. Interleukin-23 restrains regulatory T cell activity to drive T cell-dependent colitis. Immunity[J],2008,28:559-570.
    [37]. Yen D, Cheung J, Scheerens H, et al. IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6. J Clin Invest [J],2006, 116:1310-1316.
    [38]. Langrish CL, McKenzie BS, Wilson NJ, et al. IL-12 and IL-23:master regulators of innate and adaptive immunity. Immunol Rev[J],2004,202:96-105.
    [39]. Wakashin H, Hirose K, Maezawa Y, et al. IL-23 and Th17 cells enhance Th2-cell-mediated eosinophilic airway inflammation in mice. Am J Respir Crit Care Med[J],2008,178:1023-1032.
    [40]. Zhumabekov T, Corbella P, Tolaini M, et al. Improved version of a human CD2 minigene based vector for T cell specific expression in transgenic mice. J Immunol Methods[J],1995,185:133-140.
    [41]. Mosmann TR, Coffman RL. TH1 and TH2 cells:different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol [J],1989, 7:145-173.
    [42]. Kobayashi M, Fitz L, Ryan M, et al. Identification and purification of natural killer cell stimulatory factor (NKSF), a cytokine with multiple biologic effects on human lymphocytes. J Exp Med[J],1989,170:827-845.
    [43]. Kastelein RA, Hunter CA, Cua DJ. Discovery and biology of IL-23 and IL-27: related but functionally distinct regulators of inflammation. Annu Rev Immunol[J],2007,25:221-242.
    [44]. Lockhart E, Green AM, Flynn JL. IL-17 production is dominated by gammadelta T cells rather than CD4 T cells during Mycobacterium tuberculosis infection. J Immunol[J],2006,177:4662-4669.
    [1]Mosmann TR, Sad S. The expanding universe of T-cell subsets:Th1, Th2 and more. Immunol Today[J],1996,17:138-146.
    [2]Trinchieri G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol [J],2003,3:133-146.
    [3]Krakowski M, Owens T. Interferon-gamma confers resistance to experimental allergic encephalomyelitis. Eur J Immunol [J],1996,26:1641-1646.
    [4]Willenborg DO, Fordham S, Bernard CC, et al. IFN-gamma plays a critical down-regulatory role in the induction and effector phase of myelin oligodendrocyte glycoprotein-induced autoimmune encephalomyelitis. J Immunol [J],1996,157:3223-3227.
    [5]Willenborg DO, Fordham SA, Staykova MA, et al. IFN-gamma is critical to the control of murine autoimmune encephalomyelitis and regulates both in the periphery and in the target tissue:a possible role for nitric oxide. J Immunol[J],1999,163: 5278-5286.
    [6]Kobayashi M, Fitz L, Ryan M, et al. Identification and purification of natural killer cell stimulatory factor (NKSF), a cytokine with multiple biologic effects on human lymphocytes. J Exp Med[J],1989,170:827-845.
    [7]Becher B, Durell BG, Noelle RJ. Experimental autoimmune encephalitis and inflammation in the absence of interleukin-12. J Clin Invest[J],2002,110: 493-497.
    [8]Oppmann B, Lesley R, Blom B, et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity [J],2000,13:715-725.
    [9]Murphy CA, Langrish CL, Chen Y, et al. Divergent pro-and anti-inflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J Exp Med[J],2003,198: 1951-1957.
    [10]Cua DJ, Sherlock J, Chen Y, et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature[J], 2003,421:744-748.
    [11]Langrish CL, Chen Y, Blumenschein WM, et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med[J],2005,201: 233-240.
    [12]Parham C, Chirica M, Timans J, et al. A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rbetal and a novel cytokine receptor subunit, IL-23R. J Immunol [J],2002,168:5699-5708.
    [13]Kastelein RA, Hunter CA, Cua DJ. Discovery and biology of IL-23 and IL-27:related but functionally distinct regulators of inflammation. Annu Rev Immunol[J], 2007,25:221-242.
    [14]Berg DJ, Davidson N, Kuhn R, et al. Enterocolitis and colon cancer in interleukin-10-deficient mice are associated with aberrant cytokine production and CD4(+) TH1-like responses. J Clin Inves[J],1996,98:1010-1020.
    [15]Yen D, Cheung J, Scheerens H, et al. IL-23 is essential for T cellmediated colitis and promotes inflammation via IL-17 and IL-6. J Clin Invest[J],2006,116: 1310-1316.
    [16]McGeachy MJ, Chen Y, Tato CM, et al. The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17-producing effector T helper cells in vivo. Nat Immunol[J],2009,10:314-24.
    [17]Rouvier E, Luciani MF, Mattei MG, et al. CTLA-8, cloned from an activated T cell, bearing AU-rich messenger RNA instability sequences, and homologous to a herpesvirus saimiri gene. J Immunol [J],1993,150:5445-5456.
    [18]Yao Z, Fanslow WC, Seldin MF, et al. Herpesvirus Saimiri encodes a new cytokine, IL-17, which binds to a novel cytokine receptor. Immunity [J],1995,3:811-821.
    [19]Moseley TA, Haudenschild DR, Rose L, et al. Interleukin-17 family and IL-17 receptors. Cytokine Growth Factor Rev[J],2003,14:155-174.
    [20]Kolls JK, Linden A. Interleukin-17 family members and inflammation. Immunity[J], 2004,21:467-476.
    [21]Infante-Duarte C, Horton HF, Byrne MC, et al. Microbial lipopeptides induce the production of IL-17 in Th cells. J Immunol [J],2000,165:6107-6115.
    [22]Aggarwal S, Ghilardi N, Xie MH, et al. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J Biol Chem[J],2003,278:1910-1914.
    [23]Bettelli E, Oukka M, Kuchroo VK. T(H)-17 cells in the circle of immunity and autoimmunity. Nat Immunol [J],2007,8:345-350.
    [24]Dong C. Diversification of T-helper-cell lineages:finding the family root of IL-17-producing cells. Nat Rev Immunol [J],2006,6:329-333.
    [25]McKenzie BS, Kastelein RA, Cua DJ. Understanding the IL-23-IL-17 immune pathway. Trends Immunol [J],2006,27:17-23.
    [26]Weaver CT, Hatton RD, Mangan PR, et al. IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu Rev Immunol [J],2007,25:821-852.
    [27]Acosta-Rodriguez EV, Rivino L, Geginat J, et al. Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat Immunol [J],2007,8:639-646.
    [28]Aujla SJ, Dubin PJ, Kolls JK. Th17 cells and mucosal host defense. Semin Immunol [J],2007,19:377-382.
    [29]Zelante T, De Luca A, Bonifazi P, et al. IL-23 and the Th17 pathway promote inflammation and impair anti-fungal immune resistance. Eur J Immunol [J],2007, 37:2695-2706.
    [30]Park H, Li Z, Yang X0, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol[J],2005,6:1133-1141.
    [31]Veldhoen M, Hocking RJ, Atkins CJ, et al. TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity[J],2006,24:179-189.
    [32]Mangan PR, Harrington LE,O'Quinn DB, et al. Transforming growth factor-beta induces development of the T(H)17 lineage. Nature [J],2006,441:231-234.
    [33]Bettelli E, Carrier Y, Gao W, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature [J],2006, 441:235-238.
    [34]Chen W, Jin W, Hardegen N, et al. Conversion of peripheral CD4+CD25-naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med[J],2003,198:1875-1886.
    [35]Nurieva R, Yang X0, Martinez G, et al. Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature [J],2007,448:480-483.
    [36]Zhou L, Ivanov II, Spolski R, et al. IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat Immunol [J],2007,8:967-974.
    [37]Korn T, Bettelli E, Gao W, et al. IL-21 initiates an alternative pathway to induce proinflammatory T(H) 17 cells. Nature[J],2007,448:484-487.
    [38]Busse WW, Lemanske RF Jr. Asthma. N Engl J Med,2001,344:350-362.
    [39]Umetsu DT, McIntire JJ, Akbari 0, et al. Asthma:an epidemic of dysregulated immunity. Nat Immunol[J],2002,3:715-720.
    [40]Herrick CA, Bottomly K. To respond or not to respond:T cells in allergic asthma. Nat Rev Immunol[J],2003,3:405-412.
    [41]Hell ings PW, Kasran A, Liu Z, et al. Interleukin-17 orchestrates the granulocyte influx into airways after allergen inhalation in a mouse model of allergic asthma. Am J RespirCell Mol Biol[J],2003,28:42-50.
    [42]Oda N, Canelos PB, Essayan DM, et al. Interleukin-17F induces pulmonary neutrophilia and amplifies antigen-induced allergic response. Am J Respir Crit Care Med[J],2005,171:12-18.
    [43]Molet S, Hamid Q, Davoine F, et al. IL-17 is increased in asthmatic airways and induces human bronchial fibroblasts to produce cytokines. J Allergy Clin Immunol [J],2001,108:430-438.
    [44]Jatakanon A, Uasuf C, Maziak W, et al. Neutrophilic inflammation in severe persistent asthma.Am J Respir Crit Care Med[J],1999,160:1532-1539。
    [45]Louis R, Lau LC, Bron AO, et al. The relationship between airways inflammation and asthma severity. Am J Respir Crit Care Med[J],2000,161:9-16.
    [46]Iwakura Y, Nakae S, Saijo S, et al. The roles of IL-17A in inflammatory immune responses and host defense against pathogens. Immunol Rev [J],2008,266:55-79.
    [47]McKinley L, Alcorn JF, Peterson A, et al.TH17 cells mediate steroid-resistant airway inflammation and airway hyperresponsiveness in mice. J Immunol [J],2008, 181:4089-4097.
    [48]Schnyder-Candrian S, Togbe D, Couillin I, et al. Interleukin-17 is a negative regulator of established allergic asthma. J Exp Med[J],2006,203:2715-2725.
    [49]Wakashin H, Hirose K, Maezawa Y, et al. IL-23 and Th17 cells enhance Th2-cell-mediated eosinophilic airway inflammation in mice. Am J Respir Crit Care Med[J],2008,178:1023-1032.
    [50]Haworth 0, Cernadas M, Yang R, et al. Resolvin E1 regulates interleukin 23, interferon-γ and lipoxin A4 to promote the resolution of allergic airway inflammation. Nat Immunol[J],2008,9:873-879.
    [51]Nakae S, Komiyama Y, Nambu A, et al. Antigen-specific T cell sensitization is impaired in IL-17-deficient mice, causing suppression of allergic cellular and humoral responses. Immunity[J],2002,17:375-387.
    [52]Pichavant M, Goya S, Meyer EH, et al. Ozone exposure in a mouse model induces airway hyperreactivity that requires the presence of natural killer T cells and IL-17. J Exp Med[J],2008,205:385-393.
    [53]Yang X0, Chang SH, Park H, et al. Regulation of inflammatory responses by IL-17F. J Exp Med[J],2008,205:1063-1075.
    [54]He R, Oyoshi MK, Jin H, et al. Epicutaneous antigen exposure induces a Thl7 response that drives airway inflammation after inhalation challenge. Proc Natl Acad Sci USA[J],2007,104:15817-15822.
    [55]Hoeck J,Woisetschlager M. STAT6 mediates eotaxin-1 expression in IL-4orTNF-α-induced fibroblasts. J Immunol [J],2001,166:4507-4515.
    [56]Randolph DA, Stephens R, Carruthers CJ, et al. Cooperation between Th1 and Th2 cells in a murine model of eosinophilic airway inflammation. J Clin Invest[J], 1999,104:1021-1029.
    [57]Hansen G, Berry G, DeKruyff RH, et al. Allergen-specific Thl cells fail to counterbalance Th2 cell-induced airway hyperreactivity but cause severe airway inflammation. J Clin Invest [J],1999,103:175-183.
    [58]Barry MA, Hargadon B, Shelley M, et al. Evidence of a role of tumor necrosis factor a in refractory asthma. N Engl J Med[J],2006,354:697-708.
    [59]McGeachy MJ, Bak-Jensen KS, Chen Y, et al. TGF-β and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain TH17 cell-mediated pathology. Nat Immunol [J],2007,8:1390-1397.
    [60]Tokumasa N, Suto A, Kagami S, et al. Expression of Tyk2 in dendritic cells is required for IL-12, IL-23, and IFN-γ production and the induction of Thl cell differentiation. Blood [J],2007,110:553-560.