20CrMnTi钢成分优化对组织及接触疲劳寿命的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着汽车产量、轻量化及高性能化的发展,作为重要的车用渗碳齿轮钢,20CrMnTi钢亟需提高性能才能符合车辆的快速发展要求。20CrMnTi钢具有晶粒细、渗碳淬火性能良好、工艺性能成熟可靠且成本低廉等优点,所以自上世纪50年代从前苏联引进至今,在我国齿轮用钢量中始终占据着很大的份额,目前.生产量大致占渗碳齿轮钢的70%。
     齿轮在使用过程中,担负着传递动力的任务,在冲击、交变应力等作用下以齿根断裂和齿面接触疲劳为主要失效形式,因此齿轮钢应有良好的强韧性、耐磨性以承受冲击、弯曲和接触应力;此外,还要求变形小、精度高,噪声低,对齿轮生产企业而言还要在保证性能的前提下成本尽量低等特点。衡量齿轮钢质量的主要为末端淬透性带宽、钢材纯净度和晶粒度及热加工性和切削性能等。
     20CrMnTi钢中适当的碳含量(D.17%-0.23%)有利于齿轮渗碳后具有良好的心部强度和韧度,铬和锰可明显提高钢的淬透性,而钛形成的高温下非常稳定的TiN或Ti(C,N)颗粒可明显阻止渗碳时晶粒的粗化。另一方面,由于体系采用Ti合金化,常导致液析TiN产生,使得齿轮在使用过程中,TiN和基体的交界处易萌生疲劳裂纹,引起齿轮过早失效。据此,本文通过对20CrMnTi钢进行成分优化(调整钢中的Ti和/或N含量),在保证有足够体积分数的Ti(C,N)颗粒明显阻止晶粒粗化的前提下消除或抑制液析TiN,从而明显地提高了20CrMnTi的接触疲劳性能,同时,研究了成分优化对晶粒度、氮化钛、以及渗碳、淬火等工艺性能的影响,并进行了相关的基础理论研究。
     液态铁中TiN的溶度积公式是控制铁液凝固及枝晶凝固温度下不发生TiN液析的理论依据。按照钢的成分,计算得到钢的熔点约在1512℃(1785K),实际凝固温度约在1-500℃(1773K),枝晶间最后凝固区域的凝固温度可能低至1400℃(1673K)。结合TiN在钢液中的溶度积公式可知,当凝固开始钢水温度为1500℃时,对电炉生产(典型N含量约为0.008%),溶度积约为0.0003509,则Ti含量应低于0.043%,而对转炉生产(典型N含量约为0.004%),Ti含量应低于0.086%:当钢液最后凝固温度为1400℃时,对电炉钢(N含量约为0.008%),其钛含量超过0.012%时就有可能析出液析TiN,而对转炉钢(N含量约为0.004%)萁钛含量超过0.024%时将可能有液析TiN析出。为此,冶炼了钛氮乘积不同的四炉试验钢(钛氮乘积分别为1号:0.0001066、2号:0.0001352、3号:0.0004320、4号:0.0008280),为研究试验钢中对疲劳寿命影响严重的氮化钛夹杂尺寸和分布特点,随机选取了一炉莱钢工业生产20CrMnTi钢(钛氮乘积为0.0004128)进行比较;为研究试验钢的接触疲劳寿命,随机选取了莱钢转炉和电炉生产的两炉钢(溶度积分别为0.0003500和0.0004640)以作比较。
     对氮化钛尺寸、分布及均匀性试验测定结果表明成分优化后碳氮化钛的尺寸均匀性和平均尺寸得到改善,分布更加均匀;随钢中钛氮乘积的减小,氮化钛的平均尺寸不断减小,二者具有明显的相关性。碳氮化钛动力学析出理论分析结果表明只有钛氮乘积小于0.00016时,碳氮化钛的有效析出温度才可能等于或低于钢的凝固温度,即才可能发生固态下的晶内析出。此外,对不同钛、氮含量的Ostwald熟化速率m值进行了计算,结果表明在930℃进行常规渗碳时,Ostwald熟化作用对颗粒尺寸的影响可以忽略不计,最终得到的碳氮化钛颗粒的尺寸主要取决于沉淀析出相变完成时的初始尺寸。
     20CrMnTi钢的细晶粒是依靠Ti的第二相钉轧作用获得的。晶粒度试验表明成分优化后钛氮乘积最小的1号试验钢发生了混晶,其余三炉试验钢晶粒度级别均达到7级以上且无混晶现象;根据Zener-Gladman公式,计算了所需晶粒度级别下第二相的尺寸与体积分数匹配。
     淬透性与渗碳或碳氮共渗是20CrMnTi钢生产过程中重要的性能指标。淬透性试验表明成分优化未明显改变钢的淬透性,均符合GB/T 5216-2004要求;热处理工艺试验表明试验钢无论是渗碳还是碳氮共渗工艺,其渗层深度稳定,组织均匀细小,完全满足实际工业生产需要。
     接触疲劳对比试验表明,与莱钢转炉生产20CrMnTi钢相比,莱钢电炉钢疲劳寿命稍高,成分优化的2号试验钢(溶度积Ti×N=0.0004320)疲劳寿命提高了近5倍,而3号试验钢(溶度积Ti×N=0.0001352)则提高了23倍,表明本实验条件下成分优化对疲劳寿命具备明显的有利作用。
     最后,通过对理论与试验分析,给出了20CrMnTi齿轮钢工业生产的优化成分范围及工艺控制建议:钢中钛氮乘积控制在0.00012-0.00032,同时对最低钛含量有一定的控制要求;若采用电炉冶炼,钢中Ti含量应控制在0.025%-0.04%的范围:,若采用转炉冶炼,则Ti含量应控制在0.035%-0.07%的范围;生产中采用铝脱氧,酸溶铝量控制在0.02%-0.05%;浇注前适当提高钢水温度;连铸过程中适当快冷。
With fast developent of output, lightweighting'and high performance of automobile,20CrMnTi grade, as an important vehicle-used gear steel, has to improve properties to fulfill the development. 20CrMnTi grade has fine grains, good carburizing-quenching property (direct quenching after carburization), reliable technological feature and low cost and so on, occupying large part in domestic gear steel market since.introduced from Soviet union in 50's last centrury. At present, it is still accounting for about 70% of carburizing gear steels.
     In practical application, under impact and alternating stress, gears occur fatigue failure mainly in the way of fracture of gear tooth and contact fatigue of tooth surface, so superior strength and toughness are wanted. Moreover, the wear resistance, heat treatment distortion, precision and low cost are wanted too for gear manufacturers. Main index for evaluating gear steels includes hardenability (band), purity and grain size, and also hot workability and cutting performance, et al.
     For 20CrMnTi grade, carbon content in 0.17%-0.23% is adopted to obtain the necessary centre hardness and toughness, elements Cr and Mn are used to improve hardenablility, Ti forms steady TiN or Ti(C,N) particles at high temperature and then the particles prevent grain growth. However, due to adopting Ti alloying, liquid precipitation of coarse TiN occurs frequently and decreases the contact fatigue life greatly due to fatigue crack initiation at boundary between TiN and matrix in gear application. In this paper, the composition of 20CrMnTi was optimized(by adjusting the content of Ti and/or N), as a result, the contact fatigue life was increased obviously by eliminating or inhibiting TiN liquid precipitation, meanwhile, the volume fraction of Ti(C,N) is much enough to prevent grain growth. Furthermore, the effect of the optimization on grain size, Ti nitrides, carburizing and quenching technological properties, and related fundamental theories were studied too.
     Solubility of TiN in liquid iron is the theoretical support for controlling liquid precipitation of TiN at solidifaction temperature of liquid iron and dendrite spacing. According to the composition of 20CrMnTi, the melting temperature is about 1512℃(1785K), the real solidifaction temperature is about 1500℃(1773K) and for dendrite solidification it may be lowed to about 1400℃(1673K). In terms of the solubility product for TiN in liquid iron, the solubility product equals 0.0003509 at 1500℃(1773K). Therefore, for electric products(content of N = 0.008%), Ti amount should not exceed 0.043%, and for transfer products(content of N = 0.004%), Ti amount should be lower than 0.086%. At 1400℃(1673K), solubility product is 0.00009685, for electric furnace products(content of N = 0.008%), Ti amount should be below 0.012%, and for transfer furnace products(content of N = 0.004%), Ti amount should be below 0.024%. Based on the analyses above, four-heat tested materials with different Ti×N products (for specific Ti×N product value:No.1:0.0001066, No.2: 0.0001352, No.3:0.0004320, No.4:0.0008280) had been prepared. In order to compare the titanium nitride inclusions, one-heat commercial 20CrMnTi steel (Ti×N=0.0004128)was choosen from LaiWu Iron and Steel Group. In order to studied the contact fatigue life, one-heat transfer furnace 20CrMnTi and one-heat electric furnace product were obtained (product of titanium and nitrogen are 0.0003500和0.0004640 respectively) from LaiWu Iron and Steel Group too.
     Experiments on titanium nitrides indicate that the mean size, distribution and size homogeneity had been improved by optimization of composition. With decreasing product of titanium and nitrogen, the mean size of TiN decreases, indicating obvious relationship. Dynamic precipitation theory shows that only the product of Ti and N below 0.00016 can the effective precipitation temperature for titanium carbonitrides lower than or equal the molten temperature, i.e., precipitation within grains. Moreover, for steels with different titanium and nitrogen contents, the ripening rate m was calculated, which reveals the Ostwald rippening effect on precipitate.size can be neglected when it is carburized at 930℃.
     The fine grains of 20CrMnTi were obtained by Ti(C,N) pinning grain boundaries,' so related tests were carried out. The experimental results indicate that after optimization, No.1 tested steel (Ti×N = 0.0001066) occurs growth abnormaly, the grain size of other tested materials(No.2, No.3 and No.4) reaches ASTM 7. Meanwhile, in terms of Zener-Gladman equation, the combination of size and volume fraction of the titanium carbonitrides had been theoretically calculated.
     Hardenability and carburization(or carbonitriding) are important heat-treatment. technological properties. Results of experiment on hardenability showed that the optimization had no harm to 20CrMnTi steels, and carburization and carbonitriding tests showed that both carburizing and carbonitriding had steady diffusion-layer depth, fine microstructures, so the optimization of composition of 20CrMnTi steel in this work could fulfill the practical production.
     According to the contact fatigue test, compared with 20CrMnTi grade produced by converter furnace, the product from electric furnace has little higher fatigue life(increased by-66%), the optimized No.2 test steel(Ti×N = 0.0004320) increased by 5 times and No.3 (Ti×N = 0.0001352) about 23 times. Therefore, the optimization here is much helpul for improving the contact fatigue life of 20CrMnTi grade.
     Finally, based on the experimental results and related theoretical analyses, the reasonable composition range and technological control for enhancing the contact fatigue life of commercial 20CrMnTi steels had been given:1) the product of Ti and N should be controlled in range of 0.00012-0.00032, at the same time, the lowest content of Ti should be controlled too.2) for electric furnace product,0.035% 0.07% of Ti content would be good and for converter product it should be in 0.025%-0.04%.3) in commercial production process, aluminium-deoxidizing is respected, and the acid-soluable Al content should be controlled in the range of 0.02%-0.05%. 4) before continuous casting, liquid iron could have higher temperature, and in subsequent continuous casting reasonably fast cooling rate was wanted.
引文
[1]王声堂.齿轮工业“十一五”:全面向国际水平靠拢.北京:《机电商报》,2005
    [2]马鸣图.先进汽车用钢-材料科学与工程研究进展.北京:化学工业出版社,2007
    [3]皇百红.汽车用渗碳齿轮钢.汽车工艺和材料,2004,(9):6-10
    [4]张英才.车用齿轮钢及其应用技术的某些发展.汽车技术,2004,(10):22-26
    [5]张悦,霍松波,黄一新.齿轮钢的开发与生产.齿轮钢的开发与生产,2003,(1):17-19
    [6]姚立德,吴华,刘云旭.汽车渗碳齿轮用钢的成分设计.金属热处理,2003,28(5):23-26
    [7]高志新,秦东.莱钢20CrMnTiH齿轮钢的质量现状和质量控制.冶金标准化与质量,2007,45(1):27-31
    [8]项程云.合金结构钢.北京:工业出版社,1999
    [9]赵瑞华,李晶,傅杰,等.影响20CrMnTi齿轮钢氧含量的因素分析.冶金研究,2003,154-158
    [10]殷瑞钰.钢的质量现代进展.北京:冶金工业出版社,1995
    [11]陈锋,陈思联,杜彩霞.齿轮钢的现状与发展.特殊钢,2002,23(增刊):41-43
    [12]武祥斌.20CrMnTiH的研制与开发.江苏冶金,2005,33(1):.32-35
    [13]殷瑞钰.钢的质量现代进展(下篇).北京:冶金工业出版社,1995
    [14]叶婷.20C姗i齿轮钢铸坯质量分析和连铸工艺优化.特殊钢,2001,22(3):39-41
    [15]肖洪文,罗立波,毛高禄,20CrMnTi生产工艺实践,江西冶金,2006,26(3):8-10
    [16]胡守瑶.电炉冶炼20CrMnTi齿轮钢的试验研究.江苏冶金,2002,30(3):15-16
    [17]季春生,郝少锋,柏新.莱钢20CrMnTiH钢淬透性带宽的原因分析与控制.山东冶金,2008,30(5):49-50
    [18]史志强,李晶,余键,等.20CrMnTi齿轮钢淬透性控制技术研究.炼钢,2008, 24(6):47-49
    [19]张海,刘德富.化学成分回归分析预测20CrMnTiH钢的淬透性和机械性能.特殊钢,2001,22(4):22-23
    [20]章守华.合金钢.北京:冶金工业出版社,1981
    [21]余柏海.计算淬透性及机械性能的非线性方程.钢铁,1985,(3):40
    [22]张德.用回归方程对20CrMnTiH钢淬透性进行动态控制.冶金标准化,1983,(10):42
    [23]陈云祥,涂小龙,郦剑.20CrMnTiH钢齿轮变形试验研究.国外金属热处理,2005,26(5):26-30
    [24]张海.20CrMnTiH钢齿轮裂纹产生机理研究.金属热处理,2000,(12):31-33
    [25]GB/T 5216-2004
    [26]吴树漂,刘占江,武云峰,等.我国齿轮钢的生产和应用.特殊钢,2003,24(5):30-33
    [27]于杰栋,姚忠卯.国外齿轮钢的新技术与发展方向.科技资讯,2008,(26):183
    [28]唐日俊,陈学全:20CrMnTi(H)钢低倍夹杂产生的原因及预防措施.本钢技术,1998,(11):2-5
    [29]王永胜,王新华,王万军.低[Al]s齿轮钢20CrMnTi的洁净度研究.特殊钢,2009,30(3):25-27
    [30]黄希祜.钢铁冶金原理(第三版).北京:冶金工业出版社,2005
    [31]陈襄武.炼钢过程的脱氧.北京:冶金工业出版社,1991
    [32]李海波,李宏,王新华,等.20CrMoH钢精炼过程中T[0]和夹杂物的研究.钢铁,2007,42(9):37-40
    [33]韩志军,林平,刘浏,等.20CrMnTiH齿轮钢钙处理热力学.钢铁,2007,42(9):32-36
    [34]刘燕,王毛球,攀刚,等.含铌齿轮钢的晶粒长大动力学.钢铁研究学报,2008,20(11):37-42
    [35]杨林,邵亮,乔兵,等.含Nb齿轮钢晶粒度研究.汽车工艺与材料,2004,(7):5-6
    [36]徐咏梅,付才,齐欣·重载汽车齿轮钢8620H的组织及性能研究·一重技术,2005,(5):23-25
    [37]李迎春.渗碳钢的显微组织.国外金属热处理,1994,15,(3):56-58
    [38]D. K. Matlock, K. A. Alogab, M. D. Richards. Surface processing to improve the fatigue resistance of advanced bar steels for automotive applications. Materials Research,2005,8 (4):453-459
    [39]闫梦洁.浅谈中国汽车用齿轮钢的质量要求与水平.江苏冶金,2007,35(1):7-16
    [40]Goldstein J I, MorenA E. Diffusion modeling of the Carburization process. MetaTrans.1978,9:1515
    [41]Heat treating. ASM Metals Handbook, ASM Internatioinal,1991
    [42]Harris F E. Cae depth-an attempt at a Practical Definition, metal Progress,1943, 44(2):265
    [43]陈国民.齿轮钢材和热处理质量及其控制(一).汽车工艺与材料,2003,(1):11-14
    [44]陈锋.汽车齿轮钢带状组织研究:[硕士学位论文].上海:上海大学,:2006
    [45]顾治吉,许珞萍.20CrNi2Mo钢齿轮锻坯的锻后热处理及带状组织控制.上海金属,1999,(4):6-7
    [46]冯光宏.在未结晶区大压下后加速冷却工艺对钢板带状组织的影响:钢铁研究学报,1999,11(60):14-17
    [47]阎承沛.我国齿轮热处理技术概况及发展趋势(一).国外金属热处,2002,23(2):1-5
    [48]张伟,亓显玲,刘建国,等.我国中重型载货汽车用齿轮钢品种发展概况.莱钢科技,2006,(3):64-66
    [49]翁宇庆.超细晶粒钢.北京:冶金工业出版社,2003
    [50]董瀚,惠卫军,时捷,等.汽车用合金结构钢进展.汽车工艺与材料,2004,(6):16-25
    [51]Surberg C H, Stratton P, Lingenhole K. Effect of deep cold treatment on two case hardening steels. Acta Metallurgica Sinica (English Letters),2008,21(1):1-7
    [52]Benedetti M, Fontanari V. Hohn B.-R, etc. Influence of shot peening on bending tooth fatigue limit of case hardened gears. International Journal of Fatigue; 2002, 24(11):1127-1136
    [53]Hirsch T; Wohlfahrt H, Macherauch E. Fatigue strength of case hardened shot peening gears. Proceedings of the Third International Conference on Shot Peening,1987, ICSP-3:547-560.
    [54]. Bruno G, Fanara C, Guglielmetti F. etc. Characterization and residual stress analysis of wear resistant Mo thermal spray-coated steel gear wheels. Surface and Coatings Technology,2006,200(14-15):4266-4276
    [55]'Cemil ?etinkaya, Ugvur Arabaci. Flash butt welding application on 16MnCr5 chain steel and investigations'of mechanical properties. Materials & Design,2006,27(10):1187-1195
    [56]Suzuki M, Shigero Endo, Yosetso G.R.Effect of PWHT on TMCP steel flash butt. weldedjoint, Q-J Jap Weld Soc, 1990,8(2):58-64.
    [57]Ouyang J H, Nowotny S. Richter A, etc Characterization of laser clad yttria partially-stabilized ZrO_2 ceramic layers on steel 16MnCr5. Surface and-Coatings echnology,2001,137(1):12-20
    [58]Bomas H, Mayr P. Pulsating fatigue strength of the steel 16MnCr5 under single-and double-stage pulsating bending stresses. Antriebstechnik 1988,27, (7): 40-45
    [59]He H B, Li H Y, Lyu S K. Tribological behavior of a 20CrMo alloy implanted with'nitrogen ions by plasma source ion implantation. Wear,2010,268, (3-4):. 399-404-
    [60]Shen H J and Guo W L.3D constraint effect on 3D fatigue crack propagation. International Journal of Fatigue,2005,27(6):617-623
    [61]Cristinacce M. Developments in the production of engineering steels-the advantages for gear manufacturers from secondary steelmaking. Materials&Design,1992,13(1):33-41
    [62]:Martins R, Seabra J, Magalhaes L. Austempered ductile iron (ADI), gears:Power loss, pitting and micropitting. Wear,2008,264(9-10):838-849
    [63]Ebersbach U. Nitrided/nitrocarburized and oxidized steel:Corrosion data in dependence on the N-and C-content of the ε-phase under the oxide layer. The 9th International Symposium,2005:715-720
    [64]Paul Stratton, Michael Graf. The effect of deep cold induced nano-carbides on the wear of case hardened components. Cryogenics,2009,49(7):346-349
    [65]Surberg C H, Stratton P, Lingenhole K. The effect of deep cold treatment on two case hardening steels, Acta Metall,2008,21 (1):1-7
    [66]Tezcan Sekercioglu, Volkan Kovan. Pitting failure of truck spiral bevel gear. Engineering Failure Analysis,2007,14(4):614-619
    [67]Ju DY, Zhang W M, Zhang Y. Modeling and experimental verification of martensitic transformation plastic behavior in carbon steel for quenching process. Materials Science and Engineering A,2006,438-440:246-250
    [68]Masahiko Mitsubayashi, Takashi Miyata, Hideo Aihara. Phenomenal analysis of shot peening:analysis of fatigue strength by fracture mechanics for shot-peened steel. JSAE Review,1994,15(1):67-71
    [69]Dan O, Macodiyo, Hitoshi Soyama. Optimization of cavitation peening parameters for fatigue performance of carburized steel using Taguchi methods. Journal of Materials Processing Technology,2006,178(1-3):234-240
    [70]Lee Y S, Lee J H, Kwon Y N, etc. Analysis of the elastic characteristics at die and workpiece to improve the dimensional accuracy for cold forged part. Journal of Materials Processing Technology,2004,153-154:1081-108
    [71]Shinji Miyata, Bernd Robert Hohn, Klaus Michaelis, etc. Experimental investigation of temperature rise in elliptical EHL contacts. Tribology International,2008,41(11):1074-108
    [72]Masayoshi Kawai. Summary of third workshop on materials science and technology for the spallation neutron source at KEK, March 2002. Journal of Nuclear Materials,2003,318:371-378
    [73]Sandor L T, Politori I, Goncalves CS,etc. Fatigue crack propagation in nine steels, type SAE 43XX, from 0.20 to 1.00%C, for the simulation of the fatigue behavior in a carburized layer of the SAE 4320. Procedia Engineering,2010, 2(1):735-742
    [74]Jung S C, Medlin D J, Krauss G. Effects of subzero treatments on the bending 'fatigue performance of carburized SAE-4320 and SAE-9310 steels:New Steel: Products and Processing for Automotive Applications.International Journal of Fatigue,1998,20(1):74
    [75]Li M,Brooks J A, Atteridge D G, etc. Thermophysical property measurements on low alloy high strength carbon steels. Scripta Materialia, 1997,36(12):1353-1359
    [76]Neu R W, Huseyin Sehitoglu. Stress-induced transformation in a carburized steel-experiments and analysis. Acta Metallurgica et Materialia,1992,40(9): 2257-2268
    [77]Osman Asi. Failure of a diesel engine injector nozzle by cavitation damage. Engineering Failure Analysis,2006,13(7):1126-1133
    [78]Gangopadhyay A K, Everson M P, Jaklevic R C, etc. Observation'of the wear surface by scanning tunneling microscopy. Wear,1991,149(1-2):313-323
    [79]Pehlivanturk N Y, Inal O T, Ozbaysal K. Plasma or ion carburizing of several steels.Surface and Coatings Technology,1988,35(3-4):309-320
    [80]Rej D J, Davis H A, Nastasi M, etc. Surface modification of AISI-4620 steel with intense pulsed ion beams. Nuclear Instruments and Methods in Physics'Research Section B, Beam Interactions with Materials and Atoms,1997,127-128:987-991
    [81]Gestwa W, Przylecka M, MacKenzie D S, etc. Heat treatment. Smithells Metals Reference Book (Eighth Edition),2004,1-83
    [82]Jimenez H, Staia M H, Puchi E S. Mathematical modeling of a carburizing process of a SAE 8620H steel. Surface and Coatings Technology,1999,120-121: 358-365
    [83]Linnea Forden, Sven Bengtsson, Magnus Bergstrom. PM takes on truck test in the gearbox. Metal'Powder Report,2004,59(11):14-17
    [84]Oila A, Bull S J. Assessment of the factors influencing micropitting in rolling/sliding contacts. Wear,2005,258(10):1510-1524
    [85]Saduman Sen; The characterization of vanadium boride coatings on AISI 8620 steel; Surface and Coatings Technology,Volume 190. Issue 1,3 January,2005, Pages 1-6
    [86]Kenan Genel, Mehmet Demirkol. Effect of case depth on fatigue performance of AISI 8620 carburized steel. International Journal of Fatigue,1999,21(2): 207-212
    [87]Tabur M, Izciler M, Gul F. etc. Abrasive wear behavior of boronized.AISI 862.0 steel. Wear,2009,266(11-12):1106-1112
    [88]Izcilerand M, Tabur M. Abrasive wear behavior of different case depth gas carburized AISI 8620 gear steel. Wear,2006,260(1-2):90-98
    [89]Osman Asi, Ahmet Cetin Can, James Pineaultc, etc. The. effect of high temperature gas carburizing on bending fatigue strength of SAE.8620 steel. Materials&Design,2009,30(5):1792-1797
    [90]Ayhan ?elik, Ihsan Efeog lu, Gurkan Sakar. Microstructure. and.structural . behavior, of ion-nitrided AISI 8620 steel. Materials Characterization,2001,46(1): 39-44
    [91]Palma E S, Mansur T R, Silva S F, etc. Fatigue damage assessment in AISI8620 steel using Barkhausen noise. International Journal of Fatigue,2005,27(6): 659-665
    [92]Osman Asi. Fatigue failure of a helical gear in a gearbox. Engineering Failure Analysis,2006,13(7):1116-1125
    [93]张继魁,张爱军,辛莹,等.汽车渗碳齿轮钢的性能和发展.汽车工艺与材料,2008,(6):48-52
    [94]胡联舫,李怀明.汽车用齿轮钢的现状与发展.冶金标准化与质量,1996,11:6-10
    [95]闫梦洁.浅谈中国汽车用齿轮钢的质量要求与水平.江苏冶金,2007,35(1):7-16
    [96]常曙光.中国合金化体系齿轮钢的建立.研究与应用,.2007,(10):39
    [97]马莉,王毛球,董瀚.微合金化渗碳齿轮钢的研究进展.特殊钢,2008,29(4):28-30
    [98]杨其苹,高怀.汽车齿轮钢的现状及发展.中国钢铁年会论文集,2001
    [99]赵延新,李国,刘加明:20CrMnTi(7-12)模数齿轮渗碳、淬火工艺改进.山东煤炭科技,2004,(5);44
    [100]陈国民.齿轮钢材和热处理质量及其控制(二).汽车工艺与材料,2003,3:10-14:
    [101]陈明听,雍岐龙,张利平,等.渗碳钢钛含量的优化设计.钢铁,2007,42(7):68-71
    [102]夏政海.微合金元素Ti对20CrMnTi质量影响研究:金属材料与冶金工程,2008,(3):29-33
    [103]张健.化学成分对20CrMnTi钢淬透性影响的研究.特钢技术,1998,(1):36-37
    [104]王明林,赵沛,罗海文,等.20CrMnTi齿轮钢热塑性的研究.钢铁,2001,36(4):50-53
    [105]史志强,李晶,余健,等.20CrMnTi齿轮钢淬透性控制技术研究.炼钢,2008,24(6):47-49
    [106]蒲学坤,柯晓涛,邓通武.攀钢120t转炉-LF+RH流程20CrMnTiH窄淬透性带齿轮钢的试制.特殊钢,2007,28(4):50-51
    [107]韩乃川,杨素波,文永才,等.炼钢脱氧工艺现状及改进攀钢脱氧工艺的建议.钢铁钒钛,2000,21(4):34
    [108]雷天同,晁拥军,:谷志刚,等.20CrM nTi齿轮锻后余热正火的工艺试验及应用.辽宁工学院学报,1994,14(3):6-10
    [109]要承勇.20CrMnTi钢齿轮渗碳质量的控制.理化检验-物理分册,2001,37(12):527-530
    [110]徐华良,黄周华,陈安方.20CrMnTi生产工艺的调整.江苏冶金,2006,34(5):63-64
    [111]傅敏士,肖亚航,刘建平.20CrMnTi钢内部裂纹愈合的热处理研究.热加工工艺,2007,36(8):18-23
    [112]Edgar C Bain. Alloying elements in steel. Pittsburgb·Pa:U S Steel Corporation, 1939
    [113]雍岐龙.钢铁材料中的第二相.北京:冶金工业出版社,2006
    [114]Bobnar RL.氮化钛技术在钢铁生产中的应用.大连特殊钢,1998,(2):43-50
    [115]夏政海,吴清明.微合金元素Ti对20CrMnTi齿轮钢质量的影响.特殊钢,2008,29(4):45-46
    [116]雍岐龙,田建国,杨文勇,等.钛在钢中的物理冶金学基础研究.云南工业大学学报,1999,15(2):7-10,
    [117]彩色金相技术编写组.彩色金相技术.北京:国防工业出版社,1987
    [118]全国钢标准化技术委员会.GB18876.1-2002应用自动图像分析测定钢和其他金属中金相组织、夹杂物含量和级别的标准试验方法,第1部分:.钢和其他金属中夹杂物或第二相组织含量的图像分析与体视学测定.北京:中国标准出版社,2002
    [119]Irvine K J, Pickering F B, Gladman T. Grain refined C-Mn, steels. JISI,1967, (205):161-182
    [120]Mclean·A, Kay D A R. Control of inclusions in HSLA steels. Korchynsky-M.eds, Microalloying'75 C. Newyork. Union Carbides Corporation,1976, 215-231
    [121]Hudd R C, Jones A, Kale M N.A Method for Calculating the Solubility and Composition of Carbonitride Precipitates in Steel with Particular Reference, to Niobium Carbonitride. JISI,1971, (209):121-125
    [122]Irvine K J, Pickering F B, Gladman T. Grain Refined C-Mn Steels. JISI,1967, (205):161-182
    [123]Narita K. Physical Chemistry of the Groups IV_a(Ti,Zr), V_a(V,Nb,Ta) and the Rare Earth Elements in Steel. Trans ISIJ,1975, (15):145-152
    [124]Lifshitz I M, Slyozov V V. The Kinetics of Precipitation from Supersaturated Solid Solutiions. J Phys Chem Solids,1961, (19):35-50
    [125]Wagner C. Theorie fer Alterung von Niederschlagen durch Umloson (Ostwald-Reifung). Zeit Electrochemie,1961, (65):581-591
    [126]Speight M.V. Growth kinetics of grain-boundary precipitates. Acta Metall,1968, 16:133
    [127]Kirchner H P K. Coarsening of Grain-boundary Precipitates. Metall Trans,1971, (20:2861
    [128]雍岐龙.稀溶体中第二相质点的Ostwald熟化——普适微分方程.钢铁研究学报:1991,3(4):51-60
    [129]Ardell A J. The Effect of Volume Fraction on Particle Coarsening:Theoretical Consideration. Acta Metall,1972, (20):601
    [130]Brailsford A D, Wynblatt P. The Dependence of Ostwald Ripening Kinetics on Particle Volume Fraction. Acta Metall,1979,27:489-497.
    [131]C. Zener. Trans Am Inst Min. Engrs,1948,15
    [132]Gladman T. The physical metallurgy of microalloyed steels. The institute of materials, London,1997
    [133]胡一旦,郑文,徐文辉,等.渗碳齿轮钢残余内应力的研究.河南科技大学学报:自然科学版,2007,28(4):1-3