功能梯度材料板中声表面波传播的分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
功能梯度板中的弹性波的传播在工程实际中有着广泛应用,其分析方法有常见的传统方法的推广和新的求解技术的应用。为了精确的计算波速和弹性板变形,我们分别采用了分层法、Frobenius法和同伦分析法,对结果进行了互相验证,并对这些方法进行了比较。我们也分析了几种常见的材料性能变化模式如指数和幂级数等,对结果进行了讨论,发现表面波的两种变化模式在功能梯度材料中的效应是不同的,在应用中一定要针对具体问题和模态选择材料。我们也发现,分层法虽然概念上简单,但收敛速度比较慢;Frobenius法可以求出精确解,但求解过程较繁,而且对数值计算过程的精度要求也比较高;同伦法可以求得包括Frobenius解的一般解,而收敛速度和精度可以根据选择适当的参数来调整。我们从计算方法和材料性能变化两个方面研究了功能梯度材料板中表面波的传播,求得了相应的速度和变形,为实际应用提供了重要的理论结果。
     在第一章,我们简单回顾了功能梯度材料的基本概念和发展过程,并对用于功能梯度结构的方法作了介绍和分析。针对功能梯度板中的表面波问题,我们提出了基于分层法、Frobenius精确解和同伦法的求解思路。
     在第二章和第三章,利用均匀层状模型和Frobenius级数方法分析了功能梯度板中表面波(Rayleigh波)的传播。通过对已有解析解的情形进行分析,说明了均匀层状模型和Frobenius方法在处理功能梯度板中表面波传播问题的可行性。我们还对弹性模量和质量密度按指数变化和多项式形式变化的情况进行了数值模拟。
     在第四章,采用同伦分析方法对功能梯度板中表面波的传播进行了研究。首先采用幂函数作为基函数分析了该问题,并且得到了与前面两种方法相同的结果。考虑到幂函数的收敛速度和收敛半径的限制,我们又利用了均匀板中表面波的解为四个指数函数的组合,选取幂函数和指数函数的乘积函数作为基函数再次分析上面的问题,得到了很好的结果。
     在第五章,对上面几种方法的有效性进行了比较。我们发现Frobenius级数方法仅是同伦分析方法的一个特例。
     在第六章,从对功能梯度板中表面波的分析结果的总结,得出了一些对表面声波谐振器和结构抗震有指导意义的结论。
The propagation of elastic waves in functionally graded plates has wide applications in engineering. The analytical methods for the consideration of finite solids with structural complications have been subjecting to extensive research efforts. To obtain the velocity and deformation accurately, layered model, Forbenius method, and homotopy analysis method are employed to study the propagation of surface acoustic waves in functionally graded plates. Comparisons with results from different methods are made for validation and ranking. Cases with polynomial and exponential material property variation schemes are calculated with these methods, which show that the influences to the velocity and displacement model are different. In applications, the grading scheme must be chosen according to the displacement model. Also, we found that the layered model is simple in concept and implementation, but its convergence is slow. Although we can get the analytical solutions from Frobenius method, the derivation is complicate and its requirement for precise numerical evaluation is difficult to meet. Homotopy analysis method, on the other hand, can obtain the general solutions which include the Frobenius solution, and the rate of convergence can be improved by properly selecting parameters. We study the surface acoustic waves in functionally graded plate with the solution methods and property variation schemes, and obtained the velocity and deformation. This study provides a theoretical foundation for applications in engineering.
     In the first chapter, we briefly reviewed the concept and development of functionally graded material, and introduced the methods for the analysis of functionally graded structures. For the surface acoustic waves in functionally graded plates, we provide the layered model, Frobenius method, and the homotopy analysis method.
     In the second and third chapters, we analyzed the propagation of surface acoustic waves (Rayleigh waves) in functionally graded plates with the layered model and Frobenius method, respectively. Solutions from plates with exponential property grading schemes are obtained from the layered model and Frobenius method and comparisons with known analytical results are made to validate and evaluate the methods. We also analyzed cases with polynomial material property variation schemes.
     In the fourth chapter, we employed the homotopy analysis method (HAM) to analyze the propagation of surface acoustic wave in functionally graded plate. First, power series are used as the primary basis function, and obtained the same results as from the layered model and Frobenius method. To improve the rate and radius of convergence of power series, we made use of the analytical solutions of homogeneous plates and analyzed the problem again with the combination of power function and exponential function as primary basis function.
     In the fifth chapter, through comparison of the three methods, we found that the solution of Frobenius method is included in that of the HAM.
     In the sixth chapter, by analyzing the propagation of surface acoustic waves in functionally graded plates, we obtained some conclusions significant for resonator and other engineering applications.
引文
1.Koizumi,M.,FGM activities in Japan,Composite:Part B,1997,Vol.28B:1-4.
    2.李智慧,何小凤,李运刚.功能梯度材料的研究现状.河北理工学院学报,2007,Vol.29(1):45-50
    3.鲁先孝,马玉璞,林新志.功能梯度材料在隐身方面的应用.材料开发与应用.2007,Vol.2:52-56.
    4.Chin Ernest,S.C.,Foreword army focused research team on functionally graded armor composites,Materials Science and Engineering A,1999,Vol.259:155~161.
    5.Pompe,W.,Worch,H.,Epple,M.,Freiss,W.,Gelinsky,M,Greil,P.,Hempel,U.,Scharnweber,D.,Schulte,K.,Functionally graded materials for biomedical application,Materials Science and Engineering A,2003,Vol.362:40~60.
    6.Hedia,H.S.,Effect of coating thickness and its material on the stress distribution for dental implants,Journal of Medical Engineering and Technology,2007,Vol.31(4):253~262.
    7.Hedia,H.S.,Design of functionally graded dental implant in the presence of cancellous bone,Journal of Biomedical Material Research Part B:Applied Biomaterials,2005,Vol.75(1):74~80.
    8.Hedia,H.S.,Effect of cancellous bone on the functionally graded dental implant concept,Biomedical Material and Engineering,2005,Vol.15(3):199~209.
    9.Huang,M.,Wang,R.,Thompson,V.,Rekow,D.,Bioinspired design of dental multilayers,Journal of Material Science,2007,Vol.31(1):54~62.
    10.Samadhiya,R.,Mukherjee,A.,Schmauder,S.,Characterization of discretely graded materials using acoustic wave propagation,Computational Materials Science,2006,Vol.37:20~28
    11.He,X.Q.,Ng,T.Y.,Sivashanker,S.,Active control of FGM plates with integrated piezoelectric sensors and actuators,International Journal of Solids and Structures,2000,Vol.38:1641~1655.
    12.李湘洲.功能梯度材料.金属世界,2007,Vol.2:19.
    13.Lengauer,W.,Dreyer,K.,Functionally garded hardmetals,Journal of Alloys and Compounds,2002.Vol.338:194~212.
    14.Lefebvre,J.E.,Zhang,V.,Gazalet,J.,Gryba,T.,Acoustic wave propagation in continuous functionally graded plates:all extension of the legendre polynomial approach,IEEE Transactions on Ultrasonics,Ferroelectrics,and Frequency Control,2001,Vol.48(5):855~858.
    15.Elmaimouni,L.,Lefebvre,J.E.,Gryba,T.,Zhang,V.,Polynomial method applied to acoustic waves in inhomogeneous cylinders,2003 IEEE Symposium on Ultrasonics,2003,Vol.2:1400~1403.
    16.Lefebvre,J.E.,Zhang,V.,Sadaune,V.,Gryba,T.,Ouaftouh,M.,Acoustic wave propagation in continuous functionally graded plates,1999 IEEE Symposium on Ultrasonics,1999,Vol.1:855~858.
    17.杨贵通,张善元.弹性动力学.中国铁道出版社.1988:123-128.
    18.Auld,B.A,Acoustic Fields and Waves in Solids,Volume Ⅱ.A Wiley-Interscience Publication.1973:63~270.
    19.Reddy,J.N.,Wang,C.M.,Kitipornchai,S.,Axisymmetric bending of functionally graded circular and annular plates,European Journal of Mechanics A/Solids,1999,Vol.18:185~199.
    20.Reddy,J.N.,Analysis of functionally graded plates,International Journal of Numerical method in Engineering,2000,Vol.47:663~684.
    21.Reddy,J.N.,A Simple higher-order theory for laminated composites plates,ASME Journal of Applied Mechanics,1984,Vol.745~752.
    22.Aydogdu,M.,Tsskin,V.,Free vibration analysis of functionally graded beams with simply supported edges,Materials and Design,2007,Vol.28:1651~1656.
    23.Pradhan,S.C.,Loy,C.T.,Lam,K.Y.,Reddy,J.N.,Vibration characteristics of functionally graded cylindrical shells under various boundary conditions,Applied Acoustics,2000,Vol.61:111~129.
    24.Wass,G.,Linear two-dimensional analysis of soil dynamics problems in semi-infinite layer media,PhD Thesis,Berkeley,CA:University of California,1972.
    25.Kausel,E.,An explicit solution for the Green’s functions for dynamic loads in layered media, MIT Technical Report, 1981, R8-13.
    26. Seale, S.H., Kausel, E., Point loads in cross-anisotropic layered half-space, ASME Journal of Engineering Mechanics, 1989, Vol. 115(3): 509-524.
    27. Liu, GR., Transient waves in anisotropic laminated plates, ASME Journal of Vibration and Acoustic, 1991, Vol. 113: 230-239.
    28. Liu GR., Tani, J., Surface waves in functionally gradient piezoelectric plates, ASME Journal of Vibration and Acoustic, 1994, Vol. 116: 440—448.
    29. Liu, GR., Achenbach, J.D., A strip element method for stress analysis of anisotropic linearly elastic solids, ASME Journal of Applied Mechanics, 1994, Vol. 61: 270—277.
    30. Liu, GR., Achenbach, J.D., Strip element method to analyze wave scattering by cracks in anisotropic laminated plates, ASME Journal of Applied Mechanics, 1995, Vol. 62:607—213.
    31. Liu, GR., Lam, K.Y., Tani, J., An exact method for analyzing elastodynamic responses of anisotropic laminates to line loads, Mechanics of Composite Material and Structures, 1995, Vol. 2: 227—241.
    32. Mal, A.K., Liu, S.S., Elastodynamic response of a unidirectional composite laminate to concentrated surface loads, ASME Journal of Applied Mechanics, 1992, Vol. 59: 878—892.
    33. Pao, Y.H., Weaver, R.L., Axisymmetric elastic waves exited by a point source in a plate, ASME Journal of Applied Mechanics, 1982, Vol. 49: 821-836.
    34. Liu, GR., Lam, K.Y., Shang, H.M., A new method for analyzing wave fields in laminated composite plates: two-dimensional cases, Composites Engineering, 1995, Vol. 5(12): 1489— 1498.
    35. Liu, GR., Tani, J., Ohyoshi, T., Lamb waves in a functionally gradient material plates and its transient response, Transactions of the Japan Society of Mechanical Engineers, 1991, Vol. 57 (A535): 131-142.
    36. Liu, GR., Tani, J., Characteristics of wave propagation in functionally gradient piezoelectric material plates and its response analysis, Transactions of the Japan Society of Mechanical Engineers, 1991, Vol. 57 (A541): 180—191.
    
    37. Liu, GR., Tani, J., SH surface waves in functionally gradient piezoelectric material plates, Transactions of the Japan Society of Mechanical Engineers, 1992, Vol. 58(A547): 504—507.
    
    38. Ohyoshi, T, New stacking layer elements for analyses of reflection and transmission of elastic waves to inhomogeneous layers, Mechanics Research Communication, 1993, Vol. 20(4): 353-359.
    39. Ohyoshi, T., Linearly inhomogeneous layer element for reflectance evaluation of inhomogeneous layers, Dynamics Response and Behavior of Composites, 1995, Vol. 46: 121-126.
    40. Ohyoshi, T., Sui, GJ., Miuro, K., Use of stacking model of the linearly inhomogeneous layer elements, Proceedings of the ASME Aerospace Division, 1996, Vol. 52: 101 — 106.
    41. Liu, GR., Han, X., Lam, K.Y., Stress wave in functionally gradient materials and its use for material characterization, Composite: Part B, 1999, Vol. 30: 383—394.
    42. Han, X. Liu, GR., Lam, K.Y., A Quadratic layer element for analyzing stress waves in FGMs and its application in material characterization, Journal of Sound and Vibration, 2000, Vol. 236:307—321.
    43. Han, X., Liu, GR., Effects of SH waves in a functionally graded plate, Mechanics Research Communications, 2002, Vol. 29: 327—338.
    44. 程站起,仲政. 功能梯度材料涂层平面裂纹分析. 力学学报,2007, Vol. 39(5): 685-691.
    45. Michael, J.S., Matrix techniques for modeling ultrasonic waves in multilayered media, IEEE Transactions on Ultrasonics, 1995, Vol. 42:525—541.
    46. Santare, M.H., Thamburaj, P., Gazonas, G.A, The use of graded finite elements in the study of elastic wave propagation in continuously nonhomogeneous materials, International Journal of Solids and Structures, 2003, Vol. 40: 5621—5634.
    47. Chakrabory, A., Gopalakrishnan, S., Reddy, J.N., A new beam finite element for the analysis of functionally graded materials, International Journal of Mechanical Science, 2003, Vol. 45: 519-539.
    48. Wu, Z., Chen, W., A higher-order theory and refined three-node triangular element for functionally graded plates, European Journal of Mechanics A/Solids, 2006, Vol. 25: 447— 463.
    49. Chinosi, C, Croce, L.D., Approximation of functionally graded plates with non-conforming finite elements, Journal of Computational and Applied Mechanics, 2007, Vol. 210(1-2): 106-115.
    50.Chakrabory,A.,Gopalakrishnan,S.,A spectrally formulated finite element for wave propagation analysis in functionally graded beams,International Journal of Solids and Structures,2003,Vol.40:2421~2448.
    51.Ramirez,F.,Hevliger,P.R.,Pan,E.,Static analysis of functionally graded elastic anisotropic plates using a discrete layer approach,Composites:Part B,2006,Vol.37:10~20.
    52.Darabi,M.,Darvizeh,M.,Darvizeh,A.,Non-linear analysis of dynamic stability for functionally graded cylindrical shells under periodic axial loading,Composite Structures,2007(doi:10.1016/j.compstruct.2007.04.014).
    53.Yu,J.,Wu,B.,He,C.,Characteristics of guided waves in graded spherical curved plates,International Journal of Solids and Structures,2007,Vol.44:3627~3637.
    54.Baganas,K.,Wave propagation and profile reconstruction in inhomogeneous elastic media,Wave Motion,2005,Vol.42:261~273.
    55.张纯.基于小波方法的功能梯度结构静力分析与车桥耦合振动分析:[博士学位论文].上海:同济大学航空航天与力学学院,2006.
    56.Chiu,T.C.,Erdagan,E,One-dimensional wave propagation in a functionally graded elastic medium,Journal of Sound and Vibration,1999,Vol.222:453~487.
    57.Bruck,H.A.,A one-dimensional model for designing functionally graded materials to manage stress waves,International Journal of Solids and Structures,2000,Vol.37:6383~6395.
    58.Liu,GR.,Han,X.,Lam,K.Y.,An integration technique for evaluating confluent hypergeometric functions and its application to functionally graded materials,Computers and Structures,2001,Vol.79:1039~1047.
    59.Han,X.,Liu,G.R.,Lam.K.Y.,Transient waves in plates of functionally graded materials,International Journal of Numerical Methods in Engineering,2002,Vol.52:851~865.
    60.Chakraborty,A.,Gopalakrishnan,S.,A higher-order spectral element for wave propagation analysis in functionally graded materials,ACTA Mechanics,2004,Vol.172(1-2):17~43.
    61.Li,X.Y,Wang,Z.K,Huang,S.H.,Love waves in functionally graded piezoelectric materials,International Journal of Solids and Structures,2004,Vol.41:7309~7328.
    62.Du,J.K.,Jin,X.Y,Love wave propagation in functionally graded piezoelectric material layer,Ultrsonics,2007,Vol.46:13~22.
    63. Loy, C.T., Lam, K.Y., Reddy, J.N., Vibration of functionally graded cylindrical shells, International Journal of Mechanical Sciences, 1999, Vol. 41:309-324.
    64. Pradhan, S.C., Loy, C.T., Lam, K.Y., Reddy, J.N., Vibration characteristics of functionally graded cylindrical shells under various boundary conditions, Applied Acoustics, 2000, Vol. 61:111-129.
    65. Gong, S.W., Lam, K.Y., Reddy, J.N., The elastic response of functionally graded cylindrical shells to low-velocity impact, International Journal of Impact Engineering, 1999, Vol. 22: 397-417.
    66. Han, X. Liu, GR., Xi, Z.C., Lam, K.Y., Transient waves in a functionally graded cylinder, International Journal of Solids and Structures, 2001, Vol. 38: 3021—3037.
    67. Han, X., Liu, GR., Elastic waves in a functionally graded piezoelectric cylinder, Smart Materials and Structures, 2003, Vol. 12: 962—971.
    68. Sofiyev, A.H., The stability of compositionally graded ceramic-metal cylindrical shells under aperiodic axial impulsive loading, Composite Structures, 2005, Vol. 69: 247—257.
    69. Elmaimouni, L., Lefebvre, J.E., Zhang, V, Gryba, T., Guided waves in radially graded cylinders: a polynomial approach, NDT&E International, 2005, Vol. 38: 344—353.
    70. Liao, S.J., Beyond Perturbation: Introduction to the Homotopy Analysis Method, Chapman& Hall/CRC, 2003.
    71. Liao, S.J., The proposed homotopy analysis technique for the solution of nonlinear problems, PhD thesis, Shanghai: Shanghai Jiao Tong University, 1992.
    72. Liao, S.J., On the Homotopy analysis method for nonlinear problem, Applied Mathematics and Computation, 2004, Vol. 147(2): 499—513.
    73. Liao, S.J., An explicit totally analytic approximation of Blasius's viscous flow problem, International Journal of Non-Linear Mechanics, 1999, Vol. 34(4): 759—779.
    74. Allan, F.M., Syam, M.I., On the analytic solution of non-homogeneous Blasius problem. Journal of Computational and Applied Mathematics, 2005, Vol. 182: 362—371.
    75. Allan, F.M., Derivation of the Adomian decomposition method using the homotopy analysis method, Applied Mathematics and Computation, 2007, Vol. 190(1): 6—14.
    76. Hayat, T., Sajid, M., On analytic solution for thin film flow of a fourth grade fluid down a vertical cylinder, Physics Letter A, 2007, Vol. 361: 316—322.
    77.Sajid,M.,Hayat,T.,Non-similar series solution for boundary layer flow of a third-order fluid over a stretching sheet,Applied Mathematics and Computation,2007,Vol.189(2):1576~1585.
    78.Hayat,T.,Javed,T.,Analytic solution for rotating flow and heat transfer analysis of a third grade fluid,ACTA Mechanics,2007,Vol.191(3-4):219~229.
    79.Hayat,T.Ahmed,N.,On the MHD flow of a second grade fluid in a porous channel,Computational Mathematical Application,2007,Vol.54(3):407~414.
    80.Hayat,T.,Khan.S.B.,Rotation flow of a third grade fluid in a porous space with Hall current,Nonlinear Dynamic,2007,Vol.49(1-2):83~91.
    81.Abbasbandy,S.,The application of Homotopy Analysis Method to nonlinear equations arising in heat transfer,Physics Letter A,Vol.360(1):109~113.
    82.Abbasbandy,S.,Homotopy Analysis method for heat radiation equations,International Communications in Heat and Mass Transfer,2007,Vol.34(3):380~387.
    83.Yang,H.J.,Shi,Y.R.,Solving solitary wave solutions of nonlinear evolution equations with the Homotopy Analysis Method,ACTA Physics Sinica,Vol.56(6):3064~3069.
    84.Wang,J.,Chen,J.k.,Liao,S.J.,An explicit solution of the large deformation of a cantilever beam under point load at the free tip,Journal of Computational and Applied mathematics,2007(doi:10.1016/j.cam.2006.12.009).
    85.廖振鹏.工程波动理论导论.科学出版社.2002:44—53.
    86.Tiersten,H.F.,Linear piezoelectric plate vibration,Plenum Press,1969.
    87.Yang,J.S.,An Introduction to the theory of the piezoelectricity,Springer-Verlag,2005.
    88.ANSI/IEEE std 176-1987,IEEE standard on piezoelectricity,IEEE Inc,1988.
    89.Chen,W.Q.,Wang,H.M.,Bao,R.H.,On calculating dispersion curves of waves in a functionally graded elastic plate,Composites Structures,2007,Vol.81:233~242.
    90.Hasheminejad,S.M.,Rajabi,M.,Acoustic resonance scattering from a submerged functionally graded cylindrical shell,Journal of Sound and Vibration,2007,Vol.302(1-2):208~228.
    91.王骥,杜建科,潘悄悄.基于特征解的有限弹性板的声表面波的二维分析.中国科学G辑.2007,Vol.37(1):89-105.
    92.Yuan,F.G.,Hsieh,C.C.,Three-dimensional wave propagation in composite cylindrical shells,
    ??Composite Structures,1998,Vol.42:153~167.
    93.Kamili,M.T.,Shodja,H.M.,The scattering of electro-elastic waves by a spherical piezoelectric particle in a polymer matrix,International Journal of Engineering Science,2006,Vol.44:633~649.
    94.Martin,P.A.,On flexural waves in cylindrically anisotropic elastic rods,International Journal of Solids and Structures,2005,Vol.42:2161~2179.
    95.Martin,P.A.,Berger,J.R.,Waves in wood:free vibration of wooden pole,Journal of the Mechanics and Physics of Solids,2001,Vol.49:1155~1178.
    96.Markus,S.,Mead,D.J.,Axisymmetric and asymmetric wave motion in orthotropic cylinders,Journal of Sound and Vibration,1995,Vol.181(1):127~147.
    97.Markus,S.,Mead,D.J.,Wave motion in three-layered orthotropic-isotropic-orthotropic,composite shell,Journal of sound and Vibration,1995,Vol.181(1):149~167.
    98.Lee,P.C.Y.,Wang,J.,Vibrations of AT-cut quartz strips of narrow width and finite length,Journal of Applied Physics,1994,Vol.75(12):7681~7695.
    99.Lee,P.C.Y,Wang,J.,Thickness-shear and flexural vibrations of contoured crystal strip resonators,Journal of Applied Physics,1996,Vol.79(1):3403~3410.
    100.Lee,P.C.Y,Wang,J.,Frequency-temperature relations of thickness-shear and flexural vibrations of contoured quartz resonators,Journal of Applied Physics,1996,Vol.80(6):3457~3465