用于光互连的体波导光栅耦合器:分析、制备和应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
波导光栅在集成光学发展中扮演着重要的角色,提供了一种将光耦合输入或输出波导的便捷方式,这种十分具有吸引力的耦合方式可以有效减小光学系统、波导及电子器件的体积和重量。聚合物体波导光栅与表面浮雕光栅不同,前者通常位于波导层内。在这个位置,导模特别是零阶导模的振幅最大,导波光与光栅作用更强烈,因此有望获得更高的耦合效率。同时,体波导光栅还具有制备工艺简单、波导表面平整等优点。因此,制备可以实际应用的具有较高分辨率的聚合物体波导光栅受到各国研究者的重视。迄今,聚合物体波导光栅的制备方法基本上属于物理方法,并没有在材料内部引发本质性的化学变化,因此所制备的器件的长期稳定性难以保证。利用双光子引发光聚合反应可以在材料内部引起本质性的化学变化,致使材料折射率发生永久性变化,这种技术为制备体波导光栅带来了极大的便利。本文研究了体波导光栅耦合器的泄漏特性并提出利用双光子引发光聚合反应制备体波导光栅的新方法。主要取得以下几个方面的进展:
     基于等效传输线理论和微扰理论分析了体波导光栅的导波特性。体波导光栅做输入输出耦合器时,泄漏参数是一个重要的因子,它决定了进入光栅各衍射级中能量的大小。本文从理论上推导了泄漏参数同体波导光栅结构参数如光栅常数、光栅高度以及折射率调制深度之间的函数关系。数值计算的结果有助于设计具有较高耦合效率的体波导光栅。
     利用棱镜耦合法测量了由三元材料体系构成的聚合物平面波导的光传输模式和传输损耗。通过控制聚合物材料体系溶液的浓度,可以得到高质量的单模、双模和多模波导。利用光纤扫描的方法测量了聚合物薄膜波导TE和TM偏振模式的光传输损耗,分别只有0.38dB/cm和0.41dB/cm。
     首次证实双光子聚合反应能够在三元材料体系构造的固态聚合物薄膜中实现。根据双光子吸收上转换荧光的特点,给出了飞秒脉冲激光经高数值孔径显微物镜聚焦后正好位于波导层中的判据。研究了体波导光栅制备过程中加工系统的性能参数包括平台震动、扫描速度等对体波导光栅质量的影响。
     利用相衬显微镜研究了制备的体波导光栅,并利用原子力显微镜对体波导光栅的表面形貌进行了研究。随着入射光功率的增加,体波导光栅表面会出现明显的表面浮雕结构。经分析,这种结构是由于材料的膨胀而不是烧蚀引起的。
     实验测得体波导光栅的折射率调制深度达5.7×10~(-3)。研究了表面无形变的体波导光栅的输入耦合特性,实现了He-Ne光的输入耦合,最高耦合效率达11%。针对棱镜耦合测试系统对波导硬度及光洁度要求较高的缺点,提出了利用体波导光栅测量聚合物波导的厚度和折射率的新方法。
Waveguide grating structures have been playing an important role in the development of integrated optics. They provide a means of coupling light into or out of waveguide. This attractive coupling method reduces the size and weight of optical systems, integrated waveguides and electronic components to form photoelectric systems. In contrast to surface relief gratings, volume index grating is usually positioned inside the guided wave layer. In this position, the amplitude of the guided mode, especially fundamental mode, reaches a maximum and the interaction between guided mode and volume index grating is expected to be very strong. Therefore, a higher coupling efficiency can be achieved. Volume gratings have many advantages over their competitors, such as simpler fabrication method and smoother surface. Unfortunately, it seems to be very difficult to produce stable high-resolution volume index gratings in polymeric planar waveguide for practical application. At present, most methods utilize basically physical change of materials, and do not induce natural chemical change within the material. So it is very difficult to guarantee the long-term stability of the gratings. The two-photon initiated polymerization as a technique for the direct fabrication induces essential chemical processes and results in a permanent change of the refractive index of materials. This technique will achieve the flexibility of one-step fabricating gratings and be helpful for further procedures in integrated optics. The purposes of this dissertation are to study the coupling characteristics of volume waveguide gratings and to propose a novel method for fabricating volume waveguide gratings using two-photon initiated photo-polymerization. The main research content and achievements are shown as following.
     Basing upon equivalent transmission line method, a perturbation analysis on the guiding properties of volume waveguide gratings is presented. The leakage parameter is important for volume gratings used as input or output couplers. The leakage parameter, which influences the leakage energy into the diffracted orders scattered by the grating, is achieved as functions of the structure parameters of the volume grating, for example, grating period and thickness of the waveguide and index modulation. We provide an analysis in quality for the variation of the grating parameters. The result enables one to predict the changes of a with the parameter variation in coupling performance. It is therefore useful for design of volume waveguide gratings.
     By using the prism-in coupling method, the transmission modes have been obtained, and the optical transmission losses of guided modes have been measured at 632.8nm for the polymer film waveguides. By controlling the concentration of resin solution, waveguides of different guided modes can be achieved. The optical loss of the fundamental mode is 0.38dB cm~(-1) for TE polarization and 0.41dB cm~(-1) for TM polarization, respectively.
     This thesis first reports the existence of two-photon initiated photopolymerization in solid polymer waveguide film. Criterion of the laser beam focused by a high numerical aperture objective just lying in the waveguide film is presented. Influence of the system performance including the shake of the translator and the scanning speed on the quality of volume gratings is studied.
     The fabricated volume waveguide gratings were illustrated with a phase-contrast optical microscope. The surface topography of the grating samples was investigated by an atom force microscope. Characteristic microstructure simultaneously appears on the surface of the polymer film with increased incident power during the two-photon initiated photopolymerization. It is confirmed that the stable morphological change is attributed to material swelling.
     The corresponding index modulation depth of volume grating reaches 5.7×10~(-3). The input coupling characteristic of volume waveguide grating without surface morphology is investigated. We successfully demonstrated the implementation of input coupling by the volume waveguide grating at the wavelength of 632.8nm. The measured coupling efficiency was about 11%. Also a simple approach to measure the refractive index and thickness of the polymeric waveguide film is presented.
引文
[1]S E Miller.Integrated optics:an introduction.Bell System Technical Journal,1969,48:2059-2061
    [2]S.Somekh and A.Yadve.Fiber optic communications.Proc.Conf.International Telemetry,los Angeles,1972,407-418
    [3]于荣金.集成光学与光子学.光电子·激光,1998,9:162-165
    [4]张彤,崔一平.集成光学国际研究进展.电子器件,2004,27:196-201
    [5]小林功朗.光集成器件.科学出版社共立出版,2002
    [6]H.Osterberg,L.W.Smith.Transmission of optical energy along surfaces:Part Ⅰ,Homogeneous Media.J.Opt.Soc.Am.,1964,54:1073-1078
    [7]E.R.Schineller,R.F.Flam,D.W.Wilmot.Optical waveguides formed by proton irradiation of fused silica.J.opt.Soc.Am.,1968,58:1171-1176
    [8]唐天同,王兆宏.集成光学.科学出版社,2005
    [9]N.S.Kapany,J.J.Burke.Optical waveguides.Academic Press,1972
    [10]Y.Yano,T.Ono,K.Fukuehi,T.Ito.H.Yamazaki,M.Yarnaguchi and K.Emura.2.6terabit/s WDM transmission experiment using optical duobinary coding.ECOC'96,ThB.3.1
    [11]K.Kudo,M.Ishizaka,Y.Sasaki,H.Yamazaki and M.Yamaguchi.1.52-1.59-μm range different-wavelength modulator-integrated DFB-LDs fabricated on a single wafer.IEEE Photonies Tech.Lett.,1998,10:929-931
    [12]K.E.Stubkjaer.Tutorial:Wavelength conversion technology.OFC'98,paper TuR
    [13]S.Shibata,O.Sugihara,Y.Che,H.Fujimura,C.Egami,N.Okamoto.Formation of channel waveguide with grating in polymer films based on simultaneous photobleaching and embossing.Opt.Mater.,2002,21:495-498
    [14]M.Hikita,S.Tomaru,K.Enbutsu,N.Ooba,R.Yoshimura,M.Usui,T.Yoshida and S.Imamura.Polymeric optical Waveguide Films for Short-Distance Optical Interconnects.IEEE J.Sel.Top.Quant.,1999,5:1237-1242
    [15]Hong Ma,Alex K.-Y.Jen and Larry R.Dalton.Polymer-Based Optical Waveguides:Materials Processinga and Devices.Adv.Mater.,2002,14:1339-1365
    [16]N.Tessler,G.J.Denton and R.H.Friend.Lasing From Conjugated-polymer Microcavities.Nature,1996,382:695-697
    [17]V.G.Kozlov,V.Bulovic,P.E.Burrows and S.R.Forrest.Laser Action in Organic Semiconductor Waveguide and Double-heterostructure Devices.Nature,1997,389:362-364
    [18]N.Savage.Linking with light.IEEE Spectrum,2002,39:32-36
    [19]张以谟.计算机光互连技术的应用前景.激光与光电子学进展,2007,44:16-26
    [20]刘大力,何晓东,李公羽.光互连及其在光计算中的应用.长春邮电学院学报,2000.18:31-36
    [21]W.J.Goodman.Optical interconnection in 1980's.Optics & Photonics News,1990,16:21-23
    [22]W.T.Gathey,B.J.Smith.High com currency data bus using arrays of optical emitters and detector.Appl.Opt.,1979,18:1678-1691
    [23]B.Clymer.Optical computer switching network.Opt.Eng.,1985,24:74-81
    [24]A.D.Mcaulay.Deformablem irror nearest optical digital computer.Opt.Eng.,1986,25:76-81
    [25]Y.Olada.A multiprocessor system with optical buses:Dialog H.Nova Science Publishers,1990
    [26]A.Husain.Impact of G-bits fiber optics chip to chip interconnects on digital processing systems.Proceedings of SPIE,1983,417:53-60
    [27]J.W.Goodman.Optical interconnections for VLSI systems.IEEE Proc.,1984,72:850-866
    [28]D.A.B.Miller.Optics for low-energy communication inside digital processors:quantum detectors,sources,and modulators as efficient impedance converters.Opt.Lett.,1989,14:146-148
    [29]M.R.Feldman.Comparism between optical and electrical interconnects based on power and speed considerations.Appl.Opt.,1992,31:178-185
    [30]S.Kawai.Cascade-connective optical parallel logic processor using electrophotonic devices.Appl.Opt.,1992,31:187-191
    [31]陈益新.集成光学三十年.上海交通大学出版社,1999
    [32]M.Morimoto,R.Sugizaki and K.Suematsu.90°Light Beam Deflection Technology for Single-Mode optical Interconnection Systems.IEEE Photon.Technol.Lett.,2007,19:1868-1870
    [33]B.Wang,J.Jiang and G.P.Nordin.Compact slanted gating couplers,opt.Express,2004,12:3313-3326
    [34]T.Yaniamoto,M.Yamaguchi,K.Hirabayashi,S.Matsuo,C.Ammo,H.Iwamura,Y.Kohama,T.Kurokawa and K.Koyabu.High-density Digital Free-Space Photonic Switches using Micro-Beam Optical Interconnections.IEEE Photon.Technol.Lett.,1996,8:358-360
    [35]J.E.Leight,S.Homan,A.E.Willner,G.Giaretta,M.Y.Li,C.J.Chang-Hasnain.Experemental demonstration of reconfigurable and simultaneous wavelength-division-multiplexed multiple-plane optical interconnections.IEEE Photon.Technol.Lett.,1996,8:302-306
    [36]J.T.Kim,J.J.Ju,S.Park and M.-H.Lee.O/E integration of polymer waveguide devices by using replication technology.IEEE J.Select.Topics Quantum Electron.,2007,13:177-184
    [37]O.O.Ogunsola,H.D.Thacker,B.L.Bachim,M.S.Baldr,J.Pikarsky,T.K.Gaylord and J.D.Meindl.Chip-Level Waveguide-Mirror-Pillar optical Interconnect Structure.IEEE Photon.Technol.Lett.,2006,18:1672-1674
    [38]Y.J.Liu,L.Lin,C.Choi,B.Bihari and R.T.Chen.Optoelectronic integration of polymer waveguide array and metal-semiconductor-metal photo-detector through micro-mirror couplers.IEEE Photon.Technol.Lett.,2001,13:355-357
    [39]K.P.Jackson.optical Fiber Coupling Approaches for Multi-Channel Laser and Detector Arrays. SPIE, 1988,994:40-47
    [40]M. K. Kilcoyne, S. M. Beccue, B. Brar, G. Robinson and K. D. Pedrotti. Optical fiber crossbar switch. SPIE, 1990,1215:174-190
    [41]J. V. Erps, N. Hendrickx, C. Debaes, P. V. Daele and H. Thienpont. Discrete out-of-plane coupling components for printed circuit board-level optical interconnections. IEEE Photon. Technol. Lett., 2007, 19: 1753-1755
    [42]N. Hendrickx, J. V. Erps, G. V. Steenberge, H. Thienpon and P. V. Daele. Laser ablated micromirrors for printed circuit board integrated optical interconnections. IEEE Photon. Technol. Lett., 2007,19: 822-824
    [43]I.-K. Cho, K. B. Yoon, S. H. Ahn, M. Y. Jeong, H.-K. Sung, B. H. Lee, Y. U. Heo and H.-H. Park. Board-to-board optical interconnection system using optical slots. IEEE Photon. Technol. Lett., 2004,16: 1754-1756
    [44]S.-P. Han, J. T. Kim, S.-W. Jung, S.-H. Ahn, C.-G. Choi and M.-Y. Jeong. A reflective curved mirror with low coupling loss for optical interconnection. IEEE Photon. Technol. Lett., 2004,16: 185-187
    [45]M. L. Dakss, L. Kuhn, P. F. Heidrich and B. A. Scott. Grating coupler for efficient exicitation of optical guided waves in thin films. Appl. Phys. Let., 1970, 16: 523-525
    [46] N. Eriksson, M. Hagberg and A. Larsson. Highly directional grating outcouplers with tailorable radiation characteristics. IEEE J. Quantum Electron., 1996, 32: 1038-1047
    [47]M. Oh, S. Ura, T. Suhara and H. Nishihara. Integrated-optic focal spot intensity modulator using electrooptic polymer waveguide. J. Lightwave Tech., 1994, 12:1569-1576
    [48] A. Alphones. Double grating coupler on a grounded dielectric slab waveguide. Opt. Comm., 1992, 92: 35-39
    [49] L. Li. Analysis of planar waveguide grating couplers with double surface corrugations of identical period. Opt. Comm., 1995, 114: 406-412
    [50] M. Li and S. Sheard. Experimental study of waveguide grating couplers with parallelogramic tooth profiles. Opt. Engi., 1996, 35: 3101-3106
    [51]H. Kogelnik and T. P. Sosnowski. Holographic thin film couplers. Bell Syst. Tech., 1970,49:1602-1608
    [52] H. Kogelnik and C.V. Shank. Stimulated emission in a periodic structure. Appl. Phys. Lett., 1971,18: 152-154
    [53] M. D. McGehee, M. A. Diaz-Garcia, F. Hide, R. Gupta, E. K. Miller, D. Moses and A. J. Heegera. Semiconducting polymer distributed feedback lasers. Appl. Phys. Lett., 1998,72:1536-1538
    [54] G. Heliotis, R. Xia, D. D. C. Bradleya. Blue, surface-emitting, distributed feedback polyfluorene lasers. Appl. Phys. Lett., 2003, 83: 2118-2120
    [55] M. Goossens, A. Ruseckas, G. A. Turnbull and I. D. W. Samuela. Subpicosecond pulses from a gain-switched polymer distributed feedback laser. Appl. Phys. Lett., 2004,85:31-33
    [56] R. Xia, G. Heliotis, P. N. Stavrinou and D. D. C. Bradleya. Polyfluorene distributed feedback lasers operating in the green-yellow spectral region. Appl. Phys. Lett., 2005,87:031104-031106
    [57] A. Kearny and C. Forno. High temperature resistant gratings for moire interferometry. Experimental Techniques, 17: 9-12
    [58] V A Sychugov and T. V. Tulaikova. Method for preparing photoresist grating masks. Part II. Sov. J. Quantum Electron. 1980,10: 1029-1031
    [59] H. Xiao. Introduction to semiconductor manufacturing technology. N.J.:Prentice-Hall Inc, 2001
    [60] K.A. Bates, L. Lifeng, R. L. Roncone, J. J. Burke. Gaussian beams from variable groove depth grating couplers in planar waveguides. Appl.Opt., 1993, 32: 2112-2116
    [61]K. Avary, S. Rennon, F. Klopf, J. P. Reithmaier and A. Forchel. Reactive ion etching of deeply etched DBR-structures with reduced air-gaps for highly reflective monolithically integrated laser mirrors. Microelectron. Eng., 2001, 57: 593-598
    [62] K. O. Hill, Y. Fujii, D. C. Johnson and B. S. Kawasaki. Photosensitivity in optical fiber waveguides: application to reflection filter fabrication. Appl. Phys. Lett., 1978, 32: 647-649
    [63]P. J. Lemaire, R. M. Atkins, V. Mizrahi, W. A. Reed. High pressure H_2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO_2 doped optical fibres. Electron. Lett., 1993, 29: 1191-1193
    [64] W. H. Wong and E. Y. B. Pun. Polymeric waveguide wavelength filters using electron-beam direct writing. Appl. Phys. Lett., 2001, 79: 3576-3578
    [65]J.-W. Kang, M.-J. Kim, J.-P. Kim, S.-J. Yoo, J.-S. Lee, D. Y. Kim and J.-J. Kim. Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films. Appl. Phys. Lett., 2003, 82: 3823-3825
    [66]K. P. Kretsch, W. J. Blau, V. Dumarcher, L. Rocha, C. Fiorini and J.-M. Nunzi, S. Pfeiffer, H. Tillmann and H.-H. Horhold. Distributed feedback laser action from polymeric waveguides doped with oligo phenylene vinylene model compounds. Appl. Phys. Lett., 2000, 76: 2149-2151
    [67] J. Kobayashi, T. Ishii, Y. Maruo and T. Tamamura. Refractive index control of polyimide by synchrotron radiation, and the application to fabrication of a waveguide grating. Electronics and Communications in Japan, 2002, 85: 59-65
    [68]K. Kaneko,H.-B. Suna, X.-M. Duan and S. Kawata. Two-photon photoreduction of metallic nanoparticle gratings in a polymer matrix. Appl. Phys. Lett., 2003, 83: 1426-1428
    [69]T. Kavc, G. Langer, W. Kern, G. Kranzelbinder, E. Toussaere, G. A. Turnbull, I. D. W. Samuel, K. F. Iskra, T. Neger and A. Pogantsch. Index and relief gratings in polymer films for organic distributed feedback lasers. Chem. Mater., 2002, 14: 4178-4185
    [70] T. Todorov, L. Nikolova, N. Tomova. Polarization holography. 1: a new high-efficiency organic material with reversible photoinduced birefringence. Appl. Opt., 1984,23:4309-4212
    [71]C.Wang,H.Fei,J.Xia,Y.Yang,Z.Wei,Q.Yang and G.Sun.Optically controlled image storage in azobenzene liquid-crystalline polymer films,Appl.Phys.B,1999,68:1117-1120
    [72]Z.Sekkat and M.Dumont.Photoassisted poling of azo dye doped polymeric films at room temperature.Appl.Phys.B,1992,54:486-489
    [73]S.M.Ho,C.Barrett and J.Paterson.Synthesis and optical properties of poly {(4-ni triphenyl)-[3-[N-[2-(methaeryloyloxy)ethl]-earbazolyl]]diazene}.Macromole.,1996,29:4613-4618
    [74]R.A.Lessard,C.Malouin and R.Changkakoti.Dye-doped polyvinyl alcohol recording materials for holograohy and nonlinear optics.Opt.Eng.,1993,32:665-670
    [75]M.Albota,D.Beljonne,J.-L.Bredas,J.E.Ehrlich,J.-Y.Fu,A.A.Heikal,S.E.Hess,T.Kogej,M.D.Levin,S.R.Marder,D.McCord-Maughon,J.W.Peny,H.R6ckel,M.Rumi,G.Subramaniam,W.W.Webb,X.-L.Wu and C.Xu.Design of organic molecules with large two-photon absorption cross section.Science,1998,281:1653-1656
    [76]B.H.Cumpston,S.P.Ananthavel,S.Barlow,D.L.Dyer,J.E.Ehrlich,L.L.Erskine,A.A.Heikal,S.M.Kuebler,I..-Y.S.Lee,D.McCord-Maughon,J.Qin,H.RoEckel,M.Rumi,X.-L.Wu,S.R.Marder and J.W.Perry.Two-photon polymerization initiators for threedimensional optical data storage and mierofabrication.Nature,1999,398:51-54
    [77]M.Campbell,D.N.Sharp,M.T.Harrison,R.G.Denning and A.J.Turberfield.Fabrication ofphotonic crystals for the visible spectrum by holographic lithography.Nature,2000,404:53-56
    [78]S.Kawata,H.-Bo Sun,T.Tanaka and K.Takada.Finer features for functional microdevices.Nature,2001,412:697-698
    [79]G.L.Stegeman,D.Sarid,J.J.Burke and D.G.Hall.Scattering of guided waves by surface periodic gratings for arbitrary angles of incidence: perturbsation field theory and implications to normal-mode analysis. J. Opt. Soc. Am., 1981, 71: 1947-1952
    [80] M. T. Wlodoczyk and S. R. Seshadri. Analysis of grating couplers for planar dielectric waveguides. J. Appl. Phys., 1985, 58: 69-73
    [81]W. Streifer, D. Scifres and R. Burnham. Coupling coefficients for distributed feedback single- and double-heterostructure diode lasers. IEEE J. Quant. Electron., 1975,11:867-873
    [82] W. Streifer, D. Scifres and R. Burnham. TM-mode coupling coefficients in guided-wave distributed feedback lasers. IEEE J. Quant. Electron., 1976, 12: 74-78
    [83] E. A. J. Marcatili. Dielectric rectangular wave-guide and directional coupler for integrated optics. Bell System Tech., 1969,48: 2071-2102
    [84] T. Tamir. Inhomogeneous wave types at planar interfaces: II-surface wave. Optik, 1973,37:204-226
    [85] S. T. Peng, T.Tamir and H. L.Bertoni. Theory of periodic dielectric waveguides. IEEE Trans. Microwave Theory Tech., 1975,23: 123-133
    [86] S. T.peng and T. Tamir, TM-mode perturbation analysis of dielectric gratings. Appl. Physics, 1975, 6: 35-38
    [87] K. C. Chang, V. Shah and T. Tamir. Scattering and guiding of waves by dielectric gratings with arbitrary profiles. J. Opt. Soc. Am., 1980, 70: 804-813
    [88] H. Kogelnik. Coupled wave theory for thick hologram gratings. Bell Syst. Tech. J. 1969,48:2909-2947
    [89] A. W. Snyder. Coupled-Mode Theory for Optical Fibers. J. Opt. Soc. Am., 1972, 62: 1267-1277
    [90] D. Marcuse. Theory of dielectric optical waveguides. Academic Press, New York, 1972
    [91] A. Yariv. Coupled-mode theory for guided-wave optics. IEEE J. Quant. Electron., 1973,9:919-933
    [92] M. G . Moharam and T. K. Gaylord. Rigorous coupled-wave analysis of planar-grating diffraction.J.Opt.Soc.Am.,1981,71:811-818
    [93]J.M.Tsui,C.Thompson,V.Mehta,J.M.Roth,V.I.Smirnov and L.B.Glebov.Coupled-wave analysis of apodized volume gratings.Opt.Express,2004,12:6642-6653
    [94]S.M.Norton,T.Erdogan and G.M.Morris.Coupled-mode theory of resonant-grating filters.J.Opt.Soc.Am.A,1997,14:629-639
    [95]A.A.Abouelsaood and S.A.El-naggar.A rigorous,coupled-Wave transfer matrix method for two-dimensional threshold analysis of distributed feedback semiconductor lasers.Journal of Computational Electronics 2004,3:67-80
    [96]A.Hardy,M.Osinski and W.Streifer.Application of coupled-mode theory to nearlyparallel waveguide systems.Electron.Lett.,1986,22:1249-1250
    [97]S.T.Peng,T.Tamir and H.L.Bertoni.Leaky-wave analysis of optical periodic couplers.IEEE Electron.Lett.,1973,13:245-256
    [98]K.Handa,S.T.Peng and T.Tamir.Improved perturbation analysis of dielectric gratings.Appl.Phys.,1975,5:325-328
    [99]S.T.Peng and T.Tamir.TM-mode perturbation analysis of dielectric gratings.Appl.Phys.,1975,7:35-38
    [100]R.Moshrefzadeh,X.Mai,C.T.Seaton and G.I.Stegeman.Efficient grating couplers for polymer waveguides.Appl.Opt.,1987,26:2501
    [101]F.W.Dabby,M.A.Saifi and A.Kestenbaum.High-frequency cutoff periodic dielectric waveguides.App.Phys.Lett.,1973,22:190-192
    [102]D.C.Flanders,H.Kogelnik,R.V.Schmidt and C.V.Shank.Grating filters for thin-film optical waveguides.Appl.Phys.Lett.,1974,24:194-196
    [103]J.B.Shellan,C.S.Hong and A.Yariv.Theory of chirped gratings in broad band filters.Opt.Commun.,1977,23:398-400
    [104]P.S.Cross.Reflection spectrum distortion due to Bragg-frequency variation in tapered highly reflective surface-wave gratings.Appl.Phys.Lett.,1977,31:562-564
    [105]I.Ketskemety and Z.Bor.Improved line narrowing and wavelength stabilization technique of distributed feedback dye lasers.Opt.Commun.,1977,22:275-277
    [106]K.Wagatsuma,H.Sakaki and S.Saito.Mode conversion and optical filtering of obliquely incident waves in corrugated waveguide filters.IEEE J.Quantum Electron.,1979,15:632-637
    [107]Y.-T.Lu,Z.-L.Yang,S.Chia.Fabrication of a deep polyimide waveguide grating for wavelength selection.Opt.Commun.,2003,126:127-132
    [108]M.-C.Oh,M.-H.Lee,J.-H.Ahn,H.-J.Lee and S.G.Han Polymeric wavelength filters with polymer gratings.Appl.Phys.Lett.,1998,72:1559-1561
    [109]A.Kocabas,A.Aydinli Polymeric waveguide Bragg grating filter using soft lithography.Opt.Express,2006,14:10228-10232
    [110]V.V.Wong,J.Ferrera,J.N.Damask,T.E.Murphy,H.I.Smith and H.A.Haus.Distributed Bragg grating integrated-optical filters:Synthesis and fabrication.J.Vac.Sci.Technol.B,1995,13:2859-2865
    [111]M.A.Bader,H.-M.Keller,G.Marowsky.Polymer-based waveguides and optical svitching.Opt.Mater.1998,9:334-341
    [112]M.A.Bader,G.Marowsky.Bragg gratings in planar polydiactylene waveguides and their application in integrated optics.Synthetic Metals,2001,124:141-143
    [113]V.G.Kozlov,G.Parthasarathy,P.E.Burrows and S.R.Forrest.Optically pomped blue organic semiconductor lasers.Appl.Phys.Lett.,1998,72:144-146
    [114]F.Hide,M.A.Diaz-Garcia,B.J.Schwartz,M.R.Andersson and Q.Bei.Semiconducting polymers:a new class of solid-state laser materials.Science,1996,273:1833-1836
    [115]N.Tessler,G.J.Denton and R.H.Friend.Lasing from conjugated-polymer microcavities.Nature,1996,382:695-697
    [116]V.Bulovic,V.G.Kozlov,V.B.Khalfin,S.R.Forrest.Transform-limited,narrow-linewidth lasing action in organic semiconductor microcavities,Science,1998,279:553-555
    [117]C.Hochfilzer,G.L.Leising,Y.Gao,E.Forsythe and C.W.Tang.Emission process in bilayer organic light emitting diodes.Appl.Phys.Lett.,1998,73:2254-2256
    [118]M.Reufer,S.Riechel,J.M.Lupton,J.Feldmann U.Lemmer D.Schneider,T.Benstem,T.Dobbertin and W.Kowalsky.Low-threshold polymeric distributed feedback lasers with metallic contacts.Appl.Phys.Lett.,2004,84:3262-3264
    [119]G.Heliotis,R.Xia,D.D.C.Bradley,G.A.Tumbull,I.D.W.Samuel,P.Andrew and W.L.Barnes.Two-dimensional distributed feedback lasers using a broadband,red polyfluorene gain medium.J.Appl.Phys.,2004,96:6959-6965
    [120]G.A.Tumbull,P.Andrew,M.J.Jory,W.L.Barnes and I.D.Samuel.Relationship between photonic band structure and emission characteristics of a polymer.Phys.Review B,2001,64:125122
    [121]P.Andrew,G.A.Tumbull,I.D.W.Samuel and W.L.Barnes.Photonic band structure and emission characteristics of a metal-backed polymeric distributed feedback lasers.Appl.Phys.Lett.,2002,81:954-956
    [122]Y.G.Li,D.Chen and C.S.Yang.Sub-microns period grating couplers fabricated by silicon mold.Optics & Laser Technology,2001,33:623-626
    [123]K.E.Zinoviev,C.Dominguez and A.Vila.Diffraction grating couplers milled in Si_3N_4 rib waveguides with a focused ion beam.Opt.Express,2005,13:8618-8624
    [124]A.Kocabas,F.Ay,A.Dana and A.Aydinlil.An elastomeric grating coupler.J.Opt.A:Pure Appl.Opt.,2006,8:85-87
    [125]K.Chaganti,I.Salakhutdinov,I.Avrutsky,G.W.Auner and J.Mansfield Sub-micron grating fabrication on hafnium oxide thin-film waveguides with focused ionbeam milling.Opt.Express,2006,14:1505-1511
    [126]S.M.Schultz,E.N.Glytsis and T.K.Gaylord.Volume grating preferential-order focusing waveguide coupler.Opt.Lett.,1999,24:1708-1710
    [127]S.Sainov,N.Tomova,V.Dragostinova and E.Ivakin.Real time evanescent wave hologram. J. Mod. Opt., 1988, 35: 155-157
    [128] K. Ogawa and W. S. C. Chang. Analysis of holographic thin film grating coupler. Appl. Opt, 1973, 12: 2167-2171
    [129] A. Wdithrich and W. Lukosz. Holography with guide optical waves. Appl. Phys, 1980,22:161-170
    [130] W. Driemeier. Bragg-effect grating couplers integrated in multicomponent polymeric waveguides. Opt. Lett, 1990,15: 725-727
    [131] Q. Huang and P. R. Ashley. Holographic Bragg grating input-output couplers for polymer waveguides at an 850-nm wavelength. Appl. Opt, 1997, 36: 1198-1203
    [132] T. Hirose, T. Omatsu, R. Kato, K. Hoshino, K. Harada, T. Watanabe and M. Fujii. Azo-benzene polymer thin-film laser amplifier with grating couplers based on light-induced relief hologram. Opt. Commun, 2003, :228 279-283
    [133] K. Chaganti, I. Salakhutdinov, I. Avrutsky and G. W. Auner. A simple miniature optical spectrometer with a planar waveguide grating coupler in combination with a plano-convex lens. Opt. Express, 2006, 14: 4064-4072
    [134] A. Katzir, A. C. Libanos, J. B. Shellan and A. Yariv. Chirped grating in integrated optics. IEEE J. Quant. Elect, 1977,13: 296-304
    [135] D. R. Scifres, R. D. Burham and W. Streifer. Output coupling and distributed feedback utilizing substrate corrugations in double-heterostructure GaAs lasers. Appl. Phys. Lett, 1975, 27: 295-297
    [136] S. M. Schultz, E. N. Glytsis and T. K. Gaylord. Design, fabrication, and performance of preferential-order volume grating waveguide couplers. Appl. Opt, 2000, 39:1223-1232
    [137] D. Suh, H. Ryu, Y. Park and M. C. Paek. Ultraviolet-replicated focusing grating coupler in polymers at a wavelength of 405 nm. Appl. Phys. Lett, 2005, 87: 161111
    [138] D. Heitmann and C. Ortiz. Calculation and experimental verification of two-dimensional focusing grating couplers. IEEE J. Quantum Electron, 1981, 17: 1257-1263
    [139]R.Waldhausl,B.Schnabel,P.Dannberg,E.-B.Kley,A.Brauer and W.Karthe.Efficient coupling into polymer waveguides by gratings.1997,36:9383-9393
    [140]D.Heitmann and C.Ortiz.Calculation and experimental verification of two-dimensional focusing grating couplers.IEEE J.Quantum Electron.1981,17:1257-1263
    [141]S.Ura,T.Suhara,H.Nishihara and J.Koyama.An integrated-optic disc pickup device.J.Lightwave Technol.,1986,4:913-918
    [142]M.Fujimura,T.Suhara and H.Nishihara.Integrated acousto-optic correlator using a biaxial focusing grating coupler.Int.J.Optoelectron.,1993,8:7-12
    [143]S.Ura,T.Kimura,T.Suhara and H.Nishihara.An integrated-optic device using electrooptic polymer waveguide on Si substrate for modulating focus spot intensity distribution.IEEE Photon.Technol.Lett.,1993,5:1291-1293
    [144]T.Suhara,H.Nisbihara and J.Koyama.High-performance focusing grating coupler fabricated by electron-beam writing.Presented at the Topical Meet,Integrated and Guided-wave Opt.,ThD-4,Kissimmee,FL,1984,24-27
    [145]F.Lin,E.M.Strzelecki and T.Jannson.ptical multiplanar VLSI interconnects ased on multiplexed waveguide holograms.Appl.Opt.,1990:29,1126-1133
    [146]F.Lin,E.M.Strzelecki,C.Nguyen and T.Jannson.Highly parallel single-mode multiplanar holographic interconnects.Opt.Lett.,1991,16:183-185
    [147]M.R.Wang,G.J.Sonek,R.T.Chen and T.Jannson.Large fanout optical interconnects using thick holographic gratings and substrate wave propagation.Appl.Opt.,1992,31:236-249
    [148]C.C.Zhou,S.Sutton,R.T.Chen and B.M.Davies.Surface-normal 4 x 4nonblocking wavelength-selective optical crossbar interconnect using polymer-based volume holograms and substrate-guided waves.IEEE Phot.Technol.Lett.,1998,10:1581-1583
    [149]E.N.Glytsis,N.M.Jokerst,R.A.Villalaz,S.Y.Cho,S.D.Wu,Z.Huang,M.A. Brooke and T. K. Gaylord. Substrate-embedded and flip-chip-bonded photodetector polymer-based optical interconnects: analysis, design, and performance. J. Lightwave Tech., 2003,21: 2382-2394
    [150] A. B. Greenwell, S. Boonruang and M. G. Moharam. All-dielectric unidirectional dual-grating output coupler. Opt. Express, 2006,15: 266-277
    [151] M. Lehtonen, G. Genty and H. Ludvigsen Tapered microstructured fibers for efficient coupling to optical waveguides: a numerical study. Appl. Phys. B, 2005, 81:295-300
    [152] P. Bienstman, S. Assefa, S. G. Johnson, J. D. Joannopoulos, Gale S. Petrich and L. A. Kolodziejski. Taper structures for coupling into photonic crystal slab waveguides. J. Opt. Soc. Am. B, 2003,20: 1817-1821
    [153] A. R. Nelson. Coupling optical waveguides by tapers. Appl. Opt., 1975, 14: 3012-3015
    [154] S. Ura, R. Nishida, T. Suhara and H. Nishihara. Wavelength-selective coupling between vertically integrated thin-film waveguides via supermode by a pair of grating couplers. IEEE Photon. Technol. Lett., 2001,13: 678-680
    [155] K. Kintaka, J. Nishii, Y. Imaoka, J. Ohmori, S. Ura, R. Satoh and H. Nishihara. A guided-mode-selective focusing grating coupler IEEE Photon. Technol. Lett., 2004, 16:512-514
    [156] K. Kintaka, J. Nishii, J. Ohmori, Y. Imaoka, M. Nishihara, S. Ura, R. Satoh, H. Nishihara. Integrated waveguide gratings for wavelengthdemultiplexing of free space waves from guided waves. Opt. Express, 2004, 12: 3072-3078
    [157] J. Ohmori, Y. Imaokay, S. Uraz, K. Kintakai, R. Satoh and H. Nishihara. Integrated optic add/drop multiplexing of free-space waves for intra-board chip-to-chip optical interconnects. Jap. J. Appl. Phys., 2005,44: 7987-7992
    [158] X. Q. Yu, X. Zhang, K.-S. Wong, G. B. Xu, X. G. Xu, Y. Ren, W. He, X.-G. Xu, Z. S. Shao, X. T. Tao and M. H. Jiang. A fabrication of coupling grating in the polymeric waveguide by using two-photon initiated photonpolymerization. Mater. Lett.,2004,58:3879-3883
    [159]F.Goos and H.Hanchen.Ein neuer und fundamentaler versuch zur totalreflexion.Ann.Phys.,1947,1:333-346
    [160]F.Goos and H.Hanchen.Neumessung des strahlversetzungsefektes bei Totalreflexion.Ann.Phys.,1949,5:251-252
    [161]蔡履中,王成彦,周玉芳.光学.山东大学出版社,2002
    [162]李玉权,催敏.光波导理论与技术.人民邮电出版社,2002
    [163]秦秉坤,孙雨南.介质光波导及其应用.北京理工大学出版社,1991
    [164]A.亚里夫,P.叶.晶体中的光波.科学出版社,1991
    [165]T.Tamir and S.T.Peng.Analysis and Design of grating couplers.Appl.Phys.,1977,14:235-254
    [166]K.Ogawa,W.S.C.Chang,B.L.Sopori and F.J.Rosenbaum.A theoretical analysis of etched grating couplers for integrated optics.IEEE J.Quant.Electron.,1973,9:29-42
    [167]陈抗生,郑国武.波导系统的等效网络分析.电子工业出版社,1994
    [168]K.A.Bates,L.F.Li,R.L.Roncone and J.J.Burke.Gaussian beams from variable groove depth grating couplers in planar waveguide.Appl.Opt.,1993,32:2112-2115
    [169]G.Pueeetti,I.Ledoux,J.Zyss.Measurement of quardratic hyperpolarizabilities of unsymmetrical donor-aeceptor bi- and polyaryls:effect of size and torsion angle of aryl units.Chem.Phys.,1992,160:467-475
    [170]P.Keller.Synthesis of liquid crystalline side-chain polyitaconates via phase-transfer catalysis.Maeromolecules,1985,18:2337-2339
    [171]T.Kanetake,K.Ishikawa,T.Koda.Highly oriented polydiacetylene films by vacuum deposition.Appl.Phys.Lett.,1987,51:1957-1959
    [172]X.Zhang,X.Q.Yu,Y.M.Sun,W.He,Y.Z.Wu,Y.G.Feng,X.T.Tao and M.H.Jiang.Synthesis and nonlinear optical properties of two new two-photon initiators:triphenylamine derivatives.Opt.Mater.2006,28:1366-1371
    [173] X. Zhang, X. Q. Yu, Y. M. Sun, Y. Z. Wu, Y. G Feng, X. T. Tao and M. H. Jiang. Synthesis and nonlinear optical properties of a new D-pi-A two-photon photonpolymerization initiator. Mater. Lett., 2005, 59: 3485-3488
    [174] A. Chen, V. Chuyanov, S. Garner, H. Zhan, W. H. Steier, J. Chen, J. Zhu, F. Wang, M. He, S. S. H. Mao, L. R. Dalton Electro-optic modulator with a high-μβ chromophore and a constant-bias field. Opt. Lett., 1998,23:478-480
    [175] H. L. Yang, Q. Ren and Y. Z. Fan. Measurement Method of the Thickness Uniformity for Polymer Films. Semiconductor Photonics and Technology, 2003,9: 128-132
    [176] J. Li, Z. T. Gu and F. X. Gan. Determination of Optical Parameters of GeTe Semiconductor Films Annealed at Diferent Temperatures. Acta Optica Sinica, 2000,20:128-1133
    [177] A. C. Adams, D. P. Schinke and C. D. J. Capio. The deposition of silicon dioxide films at reduced Pressure. Electrochem. Soc: Solid-state science and technology, 1979,126:1539-1543
    [178] F. Chen, L. Wang, X. L. Wang, K. M. Wang and Q. M. Lu. Channel waveguide array in ce-doped potassium sodium strontium barium niobate crytal fabricated by He+ ion implantation. Appl. Phys. Lett., 2006, 89: 191102-191104
    [179] M, Goppert-Mayor. Ann. Phys. Lpz, 1931, 9: 273-295
    [180] W. Kaise, C. G B. Garret. Two-Photon Excitation in CaF_2:Eu~(2+). Phys. Rev. Let., 1961,7:229-231
    [181] I.G. Gut, Y. Hefetz, 1. E. Kochevar and F. Hillenkamp. Two-Photon Absorption Cross Sections of Guanosine 5'-Monophosphate and Uridine 5'-Monophosphate at 532 nm. J. Phys. Chem., 1993,97: 5171-1575
    [182] T. C. S. Peter, Y. D. Chen, R. M. Barry and M. B. Keith. Two-Photon Excitation Fluorescence Microscopy. Annu. Rev. Biomed. Eng., 2000, 02:399-408
    [183] J. H. Strikler, W. W. Webb. Three-dimensional optical data storage in refractive media by two-photon point excitation. Opt. Lett., 1991, 16: 1780-1782
    [184]S.Maruo,O.Nakamura and S.Kawata.Three-dimensional microfabrication with two-photon-absorbed photopolymerization.Opt,Lett.,1977,22:132-134
    [185]M.Gu and D.Day.Use of continuous-wave illumination for two-photon three-dimensional optical bit data storage in a photobleaching polymer.Opt.Lett.,1999,24:288-290
    [186]P.J.Mukesh,E.P.Haridas.Three-dimensional optical circuitry using two-photon-absorbed photonpolymefization.Opt.Lett.,1997,22:132-134
    [187]H.B.Sun,S.Matsuo and H.Misawa.Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin.Appl.Phys.Lett.,1999,74:786-788
    [188]M.Campbell,D.N.Sharp and M.T.Harrison.Fabrication of photonic crystals for the visible spectrum by holographic lithography.Nature,2000,404:53-56.
    [189]S.M.Kirkpatfick,J.W.B.Baur,C.M.Clark,L.B.Denny,D.W.Tomlin,B.R.Reinhardt,R.Kannan and M.O.Stone.Holographic recording using two-photon induced photopolymerization.Appl.Phys.,1999,69:461-464
    [190]J.F.Zhai,Y.Q.Shen,J.H.Si,J.R.Qiu and K.Hirao.The fabrication of permanent holographic gratings in bulk polymer medium by a femtosecond laser.J.Phys.D:Appl.Phys.2001,34:3466-3469
    [191]H.C.Guo,H.B.Jiang,L.Luo,C.Y.Wu,H.-C.Guo,X.Wang,H.Yang,Q.H.Gong,F.P.Wu,T.Wang and M.Q.Shi.Two-photon polymerization of gratings by interference of a femtosecond laser pulse.Chem.Phys.Lett.,2003,374:381-384
    [192]V.K.S.Hsiao,T.-C.Lin,G.S.He,A.N.Cartwright,P.N.Prasad,L.V.Natarajan,V.P.Tondiglia and T.J.Bunning.Optical microfabrication of highly reflective volume Bragg gratings.Appl.Phys.Lett.,2005,86:131113-131115
    [193]S.H.Wu,J.Serbin and Min Gu.Two-photon polymerisation for three-dimensional micro-fabrication.J.Photochem.Photobio.A:Chemistry,2006,181:1-11
    [194]L.H.Nguyen,M.Straub and M.Gu.Acrylate-Based photopolymer for two-Photon microfabrication and photonic applications.Adv.Funct.Mater.2005,15:209-216.
    [195]K.D.Belfield,X.B.Ren,E.W.V.Stryland,D.J.Hagan,V.Dubikovsky and E.J.Miesak.Near-IR Two-Photon Photoinitiated Polymerization Using a Fluorone/Amine Initiating System.J.Am.Chem.Soc.122(2000)1217-1218
    [196]M.Rumi,J.E.Ehrlich,A.A.Heikal,J.W.Perry,S.Barlow,Z.Hu,D.McCord-Maughou,T.C.Parker,H.Rockel,S.Thayumanavan,S.R.Marder,D.Beljonne and J.-L.Bredas.Structure-Property Relationships for Two-Photon Absorbing Chromophores:Bis-Donor Diphenylpolyene and Bis(styryl)benzene Derivatives.J.Am.Chem.Soc.122(2000)9500-9510
    [197]刘立鹏,周明,戴起勋,潘传鹏,蔡兰.飞秒激光三维微细加工技术.光电工程,2005,32:93-96
    [198]E.Y.Pan,N.W.Pu and Y.P.Tong.Fabrication of high-aspect-ratio sub diffraction limit microstructures by two-photonabsorption photopolymerization.Appl.Phys.B,2003 77:485-488
    [199]蒋中伟.飞秒激光双光子三维微细加工技术的研究.中国科学技术大学,博士学位论文,2004
    [200]J.Serbin,A.Egbert,A.Ostendorf,B.N.Chichkov,R.Houbertz,G.Domann,J.Schulz,C.Cronauer,L.Frohlich and M.Popall.Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics.Opt.Lett.,2003,28:146-148
    [201]W.Zhou,S.M.Kuebler,K.L.Braun,T.Yu,J.K.Cammack,C.K.Ober,J.W.Perry,S.R.Marder,An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication.Science,2002,296:1106-1109
    [202]蔡璐.扫描电子显微镜在材料分析和研究中的应用.南京工程学院学报(自然科学版),2003,1:39-42
    [203]J.Serbin,A.Ovsianikov and B.Chichkov.Fabrication of woodpile structures by two-photon polymerization and investigation of their optical properties.Opt.Express,2004,12:5221-5228
    [204]C.Diamond,Y.Boiko and S.Esener.Two-photon holography in 3-D photopolymer host-guest matrix.Opt.Express,2000,64-68
    [205]S.Klein,O.Crégut,D.Gindre,A.Boeglin and K.D.Dorkenoo.Random laser action in organic film during the photopolymerization process.Opt.Express,2005,13:5387-5392
    [206]M.Richardson,A.Zoubir,C.Rivero,C.Lopez,L.Petit and K Richardson.Femtosecond laser micro-structuring and refractive index modification applied to laser and photonic devices.SPIE,2004,5347:18-27
    [207]T.W.Walker,A.H.Guenther,P.Nielsen.Pulse laser-induced damage to thin-film optical coatings-part 1:Theory.IEEE J.Quantum Electron.,1981,17:2053-2065
    [208]H.Kumagai,K.Midorikawa,K.Toyoda.Ablation of polymer films by a femtosecond high-peak-power Ti:sapphire laser at 790nm,Appl.Phys.Lett.,1994,65:1850-1852
    [209]S.Baudach,J.Bonse and W.Kautek.Ablation experiments on polyimide with femtosecond laser pulses.Appl.Phys.A,1999,69:395-398
    [210]J.Kruer,S.Martin,H.Madebach,L.Urech,T.Lipper,A.Wokaun and W.Kautek.Femto- and nanosecond laser treatment of doped polymethylmethacrylate.Appl.Surf.Sci.,2005,247:406-411
    [211]李晓溪.飞秒激光作用下透明材料的烧蚀机理及其超快动力学研究.中国科学院上海光学精密机械研究所,博士学位论文,2005
    [212]P.Hariharan.Optical holography-principles.Cambridge University Press,1984
    [213]H.Taunaumanga,M.Solygac,M.O.Tija and A.Miniewiczc.On the efficient mixed amplitude and phase grating recording in vacuum deposited Disperse Red 1.Thin Solid Films,2004,461:316-324
    [214]Q.Gong,G.Assanto,R.Zanoni,G.1.Stegeman,R.Burzynski and P.N.Prasad.Efficient grating coupling to poly-4BCMU optical waveguides.Appl.Opt.,1990, 29: 3887-3890
    [215] J. C. Brazas and L. F. Li. Analysis of input-grating couplers having finit length. Appl. Opt., 1995, 34: 3786-3792