透明光学材料中的光子导波微结构:制备与特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光子微结构是能够控制光子运动的微米、亚微米量级的结构,是目前国际上光学研究领域的前沿和热点之一,它通过人工方法在均匀的光学材料引入折射率的变化来调制光在结构中的传输模式,从而实现光学信号的传递、放大、探测、传感等,在光通信、计算和超快速信息处理等领域具有广泛的应用前景。在光学材料中,将多种功能的光子微结构结合在一起制备具有整体功能的光子集成芯片,可以实现光学器件的小型化、集成化。因此,制备高性能的功能光子微结构是实现光子集成芯片的基础。
     目前,应用于制备光子微结构的方法主要有载能离子束注入、飞秒激光写入、聚焦离子束刻蚀、离子交换等,运用这些制备方法已经在多种材料上实现了不同功能的光子微结构,例如多层介质膜、光波导、光学微腔、光子晶体等。多层介质膜在一维方向上存在折射率突变,对于不同波长的光通过折射率的突变以及介质膜的厚度对光的传输进行调制,对特定波长的光可以增强透射或者反射;光波导是一种由低折射率区域包裹高折射率区域,光在界面上发生全反射被限制在微小区域内传输的光学结构;光子晶体是一种人造的具有光子带隙特性的结构,它通过人工的引入周期性的折射率变化对光在结构中的传输进行调制;光学微腔是一种尺寸在微米或者亚微米量级的光学谐振腔,它利用在不均匀界面上光传播的反射、散射或衍射等效应,将光长时间限制在特定空间内传输的微小器件。
     载能离子束注入是一种成熟的材料表面改性技术,其主要依靠载能离子与材料的相互作用在衬底材料中沉积能量,导致材料的结构发生变化,从而引起折射率改变。该技术已经成功的在多种光学材料中制备了光波导结构,例如玻璃、单晶、多晶陶瓷、聚合物、半导体材料等。此外,利用聚焦的载能离子束写入光学材料可以实现材料折射率的微区改变,从而可以省去复杂的光刻、掩膜工艺,制备的通道光波导结构的对称性也比较高;飞秒激光写入采用高光密度的近红外飞秒脉冲激光与透明光学材料相互作用,产生非线性吸收改变透明光学材料的结构,引起材料的折射率变化,该技术适用于大部分透明光学材料,折射率变化形式根据写入条件和材料性质的不同主要分为两种:一种是在飞秒脉冲激光写入区域折射率降低,人们通常写入两条飞秒烧蚀痕迹,痕迹包裹的区域形成通道光波导,另一种是在飞秒激光写入区域折射率增加,在烧蚀区域形成对称性较高的通道光波导结构;聚焦离子束刻蚀技术是将高能带电离子聚焦到样品加工区域,通过高能带电离子的动能对样品加工区域进行轰击,将样品表面的原子从样品表面分离出去,达到对样品进行加工的目的,该技术适用于各种材料,是加工光学微腔以及光子晶体等光子微结构的有效手段,与载能离子束注入等材料改性技术相结合,可以制备出功能更加复杂多样的光子微结构;离子交换借助于离子置换反应将样品中的离子与溶液中的离子进行交换,从而在样品表面形成一层高折射率的区域,从而形成光波导结构。
     光子微结构依靠折射率的变化对光信号进行调制,因此样品制备方法对材料折射率的精确改变至关重要,这直接影响到光子微结构的光学性质,所以研究光子微结构的制各及其导波特性具有重要的意义。
     本文主要研究了透明光学材料中波导、光子晶体微腔结构的制备方法和特性,利用飞秒激光写入在ZnS、Nd:YAG、KTP晶体中制备双线型或包层光波导结构,利用载能离子辐照技术结合金刚石刀精密切割技术在ZnS晶体中制备脊型光波导结构,利用聚焦质子束写入技术在GLS玻璃中制备通道光波导结构,使用端面耦合装置测试在不同波长条件下光在波导结构中的传输模式以及传输损耗,通过测量波导的数值孔径获得波导的最大折射率变化,进行波导区域的折射率重构,并使用有限差分光束传播方法(Finite Difference Beam Propagation Method, FD-BPM)对波导的传输模式进行模拟计算,并与实验结果进行对比;利用载能离子束注入技术结合聚焦离子束刻蚀技术在Nd:YAG晶体中制备了光子晶体微腔结构,使用棱镜耦合装置对离子注入层的暗模特性进行分析,利用Rsoft软件中的BandSOLVE1.3模块来计算光子晶体结构的带隙情况,使用扫描近场光学显微镜(SNOM)测量该光子晶体微腔结构的近场光强分布,使用共聚焦显微镜对结构区域的荧光性质进行分析。
     主要结果如下:
     硫化锌(ZnS)是一种性能优良的中红外光学晶体,其机械性能优良,不易潮解,化学稳定性良好。使用飞秒激光写入技术在ZnS晶体上制备了双线型通道光波导,在632.8nm波长下,对不同制备参数的波导结构进行导波模式分析和损耗对比,发现了各制备条件对波导导波特性的影响情况,获得了优化飞秒激光写入波导质量的途径;利用飞秒激光写入技术在ZnS晶体中制备了不同尺寸的圆形包层光波导,在中红外波长下(-4gm)测试其导波特性,其中在直径-50μm的包层波导结构中以单模模式传输,通过测量该波导结构的数值孔径获得波导区域的最大折射率差,重构其折射率分布,并使用FD-BPM对该波导结构的传输模式进行模拟计算,与实验结果基本一致,测得的包层光波导的传输损耗最小为-1.1dB/cm;使用载能碳离子辐照ZnS晶体表面形成平面光波导,结合金刚石刀精密切割技术对样品表面进行切割,在平面光波导结构上制备了宽度为-30和-45μm脊型光波导结构,在632.8nm波长下对脊型波导结构的传输模式进行分析,并测量了波导的传输损耗。
     钇铝石榴石(Y3A15012或YAG)晶体是一种机械性能和透光性质优异的光学材料,使用飞秒脉冲激光写入技术在YAG晶体中制备了圆形包层光波导,利用端面耦合装置测试了在中红外波长(-4μm)条件下波导结构的传输模式,通过测量波导结构的数值孔径获得波导区域的最大折射率改变,重构其折射率分布,使用FD-BPM计算获得其传输模式,与实验结果基本一致,测量了在TE和TM偏振下该波导结构的传输损耗,最小为-0.7dB/cm。
     掺钕钇铝石榴石(Nd:YAG)晶体保留了钇铝石榴石晶体的优异光学性质,同时也是一种性能优良的激光晶体。使用载能离子束注入技术在Nd:YAG晶体形成平面光波导结构,使用棱镜耦合装置测试其暗模特性,利用聚焦离子束刻蚀技术对波导层进行加工制备了光子晶体微腔结构,使用SNOM测试该结构的近场光强分布,532m的光在结构中心缺陷处近场光强获得了增强,-30%,这表明该结构可以将532nm的光限制在结构中心缺陷处传输,532nm波长位于光子晶体带隙波长范围中,同时也表明了该结构可以限制波长为1064nm(532nm的一阶带隙波长)的光的传输,使用共聚焦荧光显微镜测量了该结构区域的荧光强度分布,获得了-5%的不在带隙波长范围内的938nm的荧光增强,这是由于1064nm和938nm荧光发射峰都是由Nd3+的亚稳态电子能级4F3/2产生的。实验结果表明该光子晶体微腔结构可以用于降低波导激光阈值,增大波导激光输出功率,提高波导激光的效率。
     磷酸钛氧钾(KTiOPO4或KTP)晶体是一种性能优良的非线性光学晶体,其非线性系数大、热导率大,不吸潮、不潮解,透明范围较大,机械性能良好。使用飞秒激光写入技术在KTP晶体中制备了不同尺寸的半圆形包层光波导结构,利用端面耦合装置测试了TE和TM偏振的中红外波长-4μm激光在半圆形包层光波导结构中的传输模式,为单模或者多模传输,并测量了该包层光波导结构的传输损耗,最小为-0.4dB/cm。
     硫化镓镧(GaLaS或GLS)玻璃是一种新型的具有优异光学性能的硫族化物半导体材料,在红外波段具有很高的透过率,具有较高的折射率,物理、化学性质以及机械性能优良。利用聚焦质子束写入技术在GLS玻璃中制备了不同注入条件的通道光波导结构,测试了635nm、1064nm、1310nm以及1550nm的光在波导结构中的传输模式及导波特性,并测量了不同剂量下各个波长的光在波导结构中的传输损耗;通过测量波导的数值孔径获得了波导区域的最大折射率差,并重构了波导结构区域的折射率分布,使用FD-BPM模拟计算了1310nm和1550nm的波导传输模式,与实验结果对比,基本一致。
Photonic microstructure is one of the most focused points in modern optics, which can modulate the propagation mode of the light in photonic microstructure by changing artificially the refractive index of optical materials. Photonic microstructure, which can realize the transmission, amplification, detection, sensing of optical signal and so on, can be applied in optical communication, calculation and ultra-fast information processing. In the optical material, the fabrication of integrated photonic chip with various fuctions can promote the miniaturization and integration of optical device. So the fabrication of high-performance photonic microstructure is the basis of integrated photonic chip.
     The main fabrication methods of photonic microstructure contain ion implantation, femtosecond laser inscription, focused ion beam milling and ion exchange. The structure of photonic microstructure, including multilayer dielectric film, phase grid, optical waveguide, optical microcavity and photonic crystal, has been realized in many optical materials. Thereinto, ion implantation is a mature modification method in the material surface. In the process of ion implantation, the ion beam interacts with the target material, resulting in energe loss of ions and the structural changes of optical material. And in the surface layer of target material, the refractive index changes. By the method of ion implantation, the waveguide structures have been fabricated successfully in more than100optical materials, involving optical crystal, glasses, single crystals, poly-crystalline ceramics, semiconductors and organic materials. Moreover, the focused ion beam can induce the refractive index change of localized area. Femtosecond laser inscription technology employs near-infrared femtosecond laser pulse with high light density to scan optical transparent materials, effecting nonlinear absorption of energe. And then, in the focal volume of the laser pulse, some controlled micro-modifications occur. Concerning the optical properties, in some optical materials, there is an increase of the refractive index in the focal volume. However, in most of the crystals, the femtosecond laser induces a reduction of the refractive index in the focal volume. The focused ion beam milling is a widely used processing method, which can drive the surface atoms out of sample by the charged ions with high energy. The technology is capable of cutting away or building the photonic microstructure (optical microcavity and photonic crystal, etc). By combination of focused ion beam milling and other modification method, the versatile photonic microstructures can be achieved. The technology of ion exchange is based on the ions exchange of sample and solution, to form waveguide area with a high refractive index.
     The photonic microstructure modulates the transmission mode with the help of refractive index change, so precise control of refractive index is very vital. The select of fabrication method directly affects the optical properties of photonic microstructure. Therefore, the research for fabrication method and waveguiding properties of photonic microstructure is of great significance.
     In this dissertation, we report on:the fabrication of channel or cladding waveguide structure by femtosecond laser inscription in ZnS, Nd:YAG, KTP crystals; the fabrication of ridge waveguide structure by combination of ion implantation and precise diamond dicing in ZnS crystal; the fabrication of channel waveguide structure by focused proton beam writing in GLS glass; the fabrication of photonic crystal fibre-like with the hole hexagonal array in Nd:YAG crystal by ion implantation and focused ion beam milling. The prism coupling arrangement is used for analysis of waveguide dark-mode. The end-face coupling arrangement is ultilized to measure near-field intensity distributions and propagation losses, and numerical aperture of waveguide structure. By means of the N.A., we can obtain the maximum refractive index change between waveguide region and bulk. And then the reconstructed refractive index profiles can be achieved. The near-field intensity distribution can ben calculated by the Finite Difference Beam Propagation Method (FD-BPM). The BandSLOVE1.3of RSoft software is emolyed to compute the band gap of photonic microstructure in Nd:YAG crystal. With the help of the scanning near-field optical microscope (SNOM) and confocal microscopy, the near-field intensity distribution and luminescent property in the Nd:YAG photonic microstructure can ben obtained. Main results are as follows:
     Zinc sulfide (ZnS) crystal is an excellent mid-infrared optical crystal. We report on the fabrication of the double-line channel waveguides by femtosecond laser inscription in ZnS crystal. In the wavelength of632.8nm, we analysed transmission properties of the waveguides with different parameters and then find the approach of improving wave-guiding properties.
     The cladding waveguide structure was fabricated in ZnS crystal by femtosecond laser inscription. We measured the near-filed intensity distribution at the wavelength of4μm by end-face coupling arrangement. Thereinto, the mode in the cladding waveguide structure with diameter of50μm is single-mode. According the reconstructed refractive index profiles, the calculated near-field intensity distributions were achieved by FD-BPM. The experimental results are in good accordance with the calculated ones. The measured minimum transmission loss is~1.1dB/cm.
     The planar waveguide was fabricarted by ion implantation in ZnS crystal. In order to get ridge waveguide we incised the planar waveguide layer by precise diamond dicing. The end-face coupling arrangement was ultilized to research the transmission properties of ridge waveguides with the width of~30and45μm in the wavelength of632.8nm.
     Yttrium aluminium garnet (Y3AI5O12or YAG) is a crystalline material with good mechanical property and high transparency (0.4-5.5μm). We report on the fabrication of cladding waveguide structure by femtosecond laser inscription in YAG crystal. The end-face coupling arrangement was employed to measure near-field intensity distribution at the wavelength of~4μm, in good agreement with the calculated results by FD-BPM. The minimum propagation loss for the cladding waveguide structure was measured,~0.7dB/cm.
     Nd3+doped YAG crystal is one of the best laser gain medium. We report on the fabrication of photonic crystal microcavity with the hole hexagonal array in Nd:YAG crystal by ion implantation and focused ion beam milling. The light intensity enhancement (-30%) at532nm observed at an artificial photonic defect of the structure have been achieved. The result demonstate the wavelength of532nm and 1064nm in the band gap could be confined in the photonic crystal microcavity. The μ-PL intensity enhancement (~5%) at938nm also has been detected. The photonic microstructure can be applied to reduce the threshold, increase the output power and improve the efficiency of waveguide laser.
     Potassium titanium oxide phosphate (KTiOPO4or KTP) is a low-cost efficient nonlinear optical crystal in the visible to infrared spectral region. We report on the fabrication of cladding waveguides with the shape of semicircle in KTP crystal by femtosecond laser inscription. We employ the end-face coupling arrangement to measure near-field intensity distributions of cladding waveguides with the width of50,120,160μm at the wavelength of~4μm. The guiding properties show very good performance, with single mode or multi-mode behavior for both TE and TM polarizations. The minimum propagation loss of KTP semicircle cladding waveguides is~0.4dB/cm.
     Sulfide gallium lanthanum (GaLaS or GLS) is a novel chalcogenide glass with excellent optical properties. We report on the fabrication of channel waveguide by focused proton beam writing in GLS glass. The propagation properties have been measured by the end-face coupling arrangement at the wavelength of635,1064,1310and1550nm. The measured near-field intensity distributions are in good agreement with the calculated ones. The minimum propagation loss of GLS channel waveguide is~2.0dB/cm.
引文
1. [美]A. Yariv:现代通信光电子学,电子工业出版社,2004
    2.[英]S. O. Kasap:光电子学与光子学的应用及原理,电子工业出版社,2003
    3.刘颂豪:光子学技术与应用,广东科技出版社,2006
    4.王启明:光子学技术,清华大学出版社,2002
    5. S.-S. Kim, C. Young, and B. Mizaikoff, Anal. Bioanal. Chem.390 (2008), 231-237
    6.[日]西原浩:集成光路,科学出版社,2004
    7.陈益新:集成光学,科学出版社,1980
    8. S. E. Miller, Bell System Technical Journal,48 (1969) 2059
    9. M. Saruwatari, IEEE J. Sel. Top. Quantum Electron.,6 (2000) 1363
    10. C. A. Brackett, IEEE J. Sel. Areas Commun.,8 (1990) 948
    11. B. Ramamurthy and B. Mukherjee, IEEE J. Sel. Areas Commun.,16 (1998) 1061
    12. M. Bruel, Electron. Lett.31 (1995) 1201
    13. M. Levy, A. M. Radojevic, M. Alexe and U. Gosele, Wafer Bonding:Applications and Technology, Springer Series in Material Science (2004)
    14.1. Rabiei and P. Gunter, Appl. Phys. Lett.85 (2004) 4603
    15. P. K. Tien, R. Ulrich, and R. J. Martin, Appl. Phys. Lett.14 (1969) 291
    16. G. Poberaj, M. Koechlin, F. Sulser, A. Guarino, J. Hajfler, and P. Gunter, Opt. Mater.31 (2009) 1054
    17. T. Yamashiki, and K. Tsuda, Opt. Lett.28 (2003) 316
    18. F. Bruno, M. Guidice, R. Recca, and F. Testa, Appl. Opt.30 (1991) 4560
    19. F. Chen, Laser Photon. Rev.6 (2012) 622
    20. F. Chen, J. Appl. Phys.106 (2009) 081101
    21.Olivares, M. L. Crespillo, O. Caballero-Calero, and M. D. Ynsa, A. Garcia-Cabanes, M. Toulemonde, Ch. Trautmann, and F. Agullo-Lopez, Opt. Express 17 (2009) 24175
    22. Y. Jia, N. Dong, F. Chen, J. R. Vazquez de Aldana, Sh. Akhmadaliev and S. Zhou, Opt. Express 20 (2012) 9763
    23. N. Dong, Y. Yao, Y. Jia, F. Chen, S. K. Vanga, A. An. Bettiol and Q. Lu, Opt. Mater.35 (2012) 184
    24. H. Hu, F. Lu, X. L. Wang, F. Chen and K. M. Wang, Opt. Express 20 (2012) 21114
    25. Y. Ren, N. Dong, F. Chen and D. Jaque, Opt. Express 19 (2011) 5522
    26. Y. Li, P. Lu, N. Dai, X. Wang, Y. Wang, B. Yu and H. Long, Appl. Phys. B 88 (2007) 227
    27. B. Qian, Y. Liao, G. Dong, F. Luo, L. Su, S. Sun and J. Qiu, Chin. Phys. Lett.26 (2009) 070601
    28. S. J. Beecher, R. R. Thomson, D. T. Reid, N. D. Psaila, M. Ebrahim-Zadeh and A. K. Kar, Opt. Lett.36 (2011) 4548
    29. A. Rodenas and A. K. Kar, Opt. Express 19 (2011) 17820
    30. J. Gottmann, D. Wortmann, I. Vasilief, L. Moiseev and D. Ganser, Appl. Surf. Sci. 254(2007)1105
    31. S. Campbell, R. R. Thomson, D. P. Hand, A. K. Kar, D. T. Reid, C. Canalias, V. Pasiskevicius and F. Laurell, Opt. Express 15 (2007) 17146
    32. S. M. Eaton, C. A. Merchant, R. Iyer, A. J. Zilkie and A. S. Helmy, Appl. Phys. Lett.92(2008)081105
    33. B. McMillen, K. P. Chen, H. An, S. Fleming and V. Hartwell, Appl. Phys. Lett.93 (2008) 111106
    34. A. Rodenas, L. M. Maestro, M. O. Ramirez, G. A. Torchia, L. Roso, F. Chen and D. Jaque, J. Appl. Phys.106 (2009)
    35. C. Grivas, C. Corbari, G. Brambilla and P. G. Lagoudakis, Opt. Lett.37 (2012) 4630
    36. A. G. Okhrimchuk, A. V. Shestakov, Ⅰ. Khrushchev and J. Mitchell, Opt. Lett.37 (2005)2248
    37. S. Muller, T. Calmano, P. Metz, N. Hansen, C. Krankel and G. Huber, Opt. Lett. 37 (2012)5223
    38. W. F. Silva, C. Jacinto, A. Benayas, J. R. Vazquez de Aldana, G. A. Torchia, F. Chen, Y. Tan and D. Jaque, Opt. Lett.35 (2010) 916
    39. J. R. Macdonald, R. R. Thomson, S. J. Beecher, N. D. Psaila, H. T. Bookey and A. K. Kar, Opt. Lett.35 (2010) 4036
    40. M. Heinrich, A. Szameit, F. Dreisow, S. Doring and J. Thomas, Appl. Phys. Lett. 93(2008)101111
    41. Y. Zhang, Q. Chen, H. Xia and H. Sun, Nano Today 5 (2010) 435
    42. R. Keil, M. Heinrich, F. Dreisow, T. Pertsch, A. Tunnermann, S. Nolte, D. N. Christodoulides and A. Szameit, Sci. Rep.1 (2011) 1
    43. M. Gorram, V. Coda, P. Thevenin and G. Montemezzani, Appl. Phys. B 95 (2009)
    44. V. A. Ganshin, Y. N. Korkishko, T. V. Morozova and V. V. Saraikin, Phys. Status Solidi A 114 (1989) 457
    45. J. T. Cargo, A. J. Filo, M. C. Hughes, V. C. Kannan, F. A. Stevie, J. A. Taylor and J. R. Holmes, J. Appl. Phys.67 (1990) 627
    46. J. M. Cabrera, J. Olivares, M. Carrascosa, J. Rams, R. Muler, E. Dieguez, Adv. Phys.45 (1996) 349
    47. R. V. Schmidt and I. P. Kaminow, Appl. Phys. Lett.25 (1974) 458
    48. S. Fries, P. Hertel and H. P. Menzler, Phys. Status Solidi A 108 (1988) 449
    49. E. Yablonovitch, Phys. Rev. Lett.58 (1987) 2059
    50. S. John, Phys. Rev. Lett.58 (1987) 2486
    51. E. Yablonovitch, T. J. Gmitter and K. M. Leung, Phys. Rev. Lett.67 (1991) 2295
    52. K. Ohtaka, Phys. Rev. B 19 (1979) 5057
    53. T. F. Krauss, R. M. De La Rue and S. Brand, Nature 383 (1996) 699
    54. J.W. Galusha, L. R. Richey, J, S. Gardner, J. N. Cha and M. H. Bartl, Phys. Rev. E. 77(2008)050904
    55. A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F.Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader and H. M. van Driel, Nature 405 (2000) 437
    56. K. J. Vahala, Nture 424 (2003) 839
    57. R. K. Chang and A. J. Campillo, Optical Processes in Microcavities, World Scientific,1996
    58. M. Malak, N. Gaber, F. Marty, N. Pavy, E. Richalot and T. Bourouina, Opt. Express 21 (2013) 2378
    59. F. C. Favero, L. Araujo, G. Bouwmans, V. Finazzi, J. Villatoro and V. Pruneri, Opt. Express 20 (2012) 7112
    60. L. Yang, Ju. Motohisa, T. Fukui, L. X. Jia, L. Zhang, M. M. Geng, P. Chen and Y. L. Liu, Opt. Express 17 (2009) 9337
    61. M. F. Yanik, S. Fan and M. Soljacic, Appl. Phys. Lett.83 (2003) 2739
    62. J. Bravo-Abad, A. Rodriguez, P. Bermel, S. G. Johnson, J. D. Joannopoulos and M. Soljacic, Opt. Express 15 (2007) 16161
    63. A. R. Cowan and J. F. Young, Phys. Rev. E 68 (2003) 046606
    64. M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi and T. Tanabe, Opt. Express 13 (2005) 2678
    65. T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya and H. Taniyama, Nature Photon. 1 (2007)49
    66. Y. Xiao, B. Min, X. Jiang and C. H. Dong, Quantum Electronics 44 (2008) 1065
    67. H. Kudo, R. Suzuki and T. Tanabe, Phys. Rev. A 88 (2013) 023807
    68. P.-M. Coulon, M. Hugues, B. Alloing, E. Beraudo, M. Leroux and J. Zuniga-Perez, Opt. Express 20 (2012) 18707
    69. G. Zhu, C. Xu, L. Cai, J. Li, Z. Shi, Y. Lin, G. Chen, T. Ding, Z. Tian and J. Dai, ACS Appl. Mater. Interfaces 4 (2012) 6195
    70. G. Liu, Y. Ning, X. Qi, Y. Zhang, Z. Wang, X. Zhang, J. Shi, L. Zhang, W. Wang, Y. Sun, J. Cui, L. Qin, Y. Liu and L. Wang, Optoelectronics Letters 7 (2011) 105
    71. F. Chen and J. R. Vazquez de Aldana, Laser & Photon. Rev.8 (2014) 250
    72. P. D. Townsend, P. J. Chandler and L. Zhang, Optical Effects of Ion Implantation (Cambridge University Press,1994, Cambridge)
    73. K. Liu, E. Y. B. Pun,T. C. Sum and A. A. Bettiol, Appl. Phys. Lett.84 (2004) 684
    74. Y. Yao, Y. Tan, N. Dong, F. Chen and A. A. Bettiol, Opt. Express 18 (2010) 24516
    75. F. Watt, M. B. H. Breese, A. A. Bettiol and J. A. van Kan, Mater. Today 10 (2007) 20
    76. J. A. Van Kan, A. A. Bettiol and F. Watt, Appl. Phys. Lett.83 (2003) 1629
    77. A. Benayas, D. Jaque, Y.C. Yao, F. Chen, A. A. Bettiol, A. Rodenas and A. K. Kar, Opt. Lett.35 (2010) 3898
    78.顾文琪,马向国,李文萍:聚焦离子束微纳加工技术,北京工业大学出版社,2006
    79. T. Nishikawa, A. Ozawa, Y. Nishida, M. Asobe, F. L. Hong and T. W. Hansch, Opt. Express 17 (2009) 17792
    80. J. Sun, Y. Gan and C. Q. Xu, Opt. Lett.36 (2011) 549
    81. W. Bogaerts, V. wiaux, D. Taillaert and S. Beckx, Opt. Commun.2 (2002) 1
    82. M. Settle, M. Salib, A. Michaeli and T. F. Krauss, Opt. Express 14 (2006) 2440
    83.1. Marki, M. Salt and H. P. Herzig, Appl. Phys. Lett.98 (2005) 013103
    84. R. M. Monterealia, A. Mancinia, G. C. Righinib and S. Pelli, Opt. Commum.153 (1998) 223
    85. R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg and Y. Aida, J. Vac. Sci. Technol. B 29 (2011) 06F309
    86. S. Kedia and R. Vijaya, Bull. Mater. Sci.34 (2011) 383
    1.谭杨:山东大学博士学位论文,光学晶体波导中的激光和非线性效应2011
    2.孔艳霞:山东大学硕士学位论文,离子注入YAG激光晶体光波导2010
    3.董宁宁:山东大学博士学位论文,介电晶体光波导和纳米颗粒中的微荧光及非线性效应2012
    4. 刘秀红:山东大学博士学位论文,离子注入钒酸钇光波导及其平板光子晶体结构的研究2012
    5. Rsoft Design Group, Computer software BEAMPROP, http://www.rsoftdesign.com
    6. B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi,O. J. F. Martin and D. W. Pohl, J. Chem. Phys.112 (2000) 7761
    7. R. Krutokhvostov, A. A. Govyadinov, J. M. Stiegler, F. Huth, A. Chuvilin, P. S. Carney and R. Hillenbrand, Opt. Express 20 (2012) 593
    8. S. I. Bozhevolnyi and L. Kuipers, Semicond. Sci. Technol.21 (2006) R1
    9. K. Okamoto, M. Loncar, T. Yoshie, A. Scherer, Y. Qiu and P. Gogna, Appl. Phys. Lett.82 (2003)1676
    10. P. Kramper, M. Agio, C.M. Soukoulis, A. Birner, F. Miiller, R.B. Wehrspohn, U. Gosele and V. Sandoghdar, Phys. Rev. Lett.92 (2004) 113903
    11. B. Cluzel, K. Foubert, L. Lalouat, J. Dellinger, D. Peyrade, E. Picard, E. Hadji, F. de Fornel, Appl. Phys. Lett.98 (2011) 081101
    12. E. P. Buurman, R. Sanders, A. Draaijer, H. C. Gerritsen, J. J. F. van Veen, P. M. Houpt and Y. K. Levine, Scanning 14 (1992) 155
    13. P. M. Delaney, M. R. Harris and R. G. King, Appl. Opt.33 (1994) 573
    14. N. S. Claxton, T. J. Fellers and M. W. Davidson:Laser Scanning Confocal Microscopy,2006
    15.[日]西原浩:集成光路,科学出版社,2004
    16.曹庄琪:导波光学,科学出版社,2007
    17. M. Notomi, Phys. Rev. B 15 (2000) 20696
    18. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi and I. Yokohama, Phys. Rev. Lett.87 (2001) 253902
    19. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus and I. Kim, Science 284 (1999) 1819
    20. M. Florescu, P. J. Steinhardt and S. Torquato, Phys. Rev. B 87 (2003) 165116
    21. A. G. Okhrimchuk, A. V. Shestakov, I. Khrushchev and J. Mitchell, Opt. Lett.37 (2005)2248
    22. S. Muller, T. Calmano, P. Metz, N. Hansen, C. Krankel and G. Huber, Opt. Lett. 37(2012) 5223
    23. W. F. Silva, C. Jacinto, A. Benayas, J. R. Vazquez de Aldana, G. A. Torchia, F. Chen, Y. Tan and D. Jaque, Opt. Lett.35 (2010) 916
    24. J. R. Macdonald, R. R. Thomson, S. J. Beecher, N. D. Psaila, H. T. Bookey and A. K. Kar, Opt. Lett.35 (2010) 4036
    25. M. Heinrich, A. Szameit, F. Dreisow, S. Doring and J. Thomas, Appl. Phys. Lett. 93(2008)101111
    26. F.Chen and
    27. F. Qiu and T. Narusawa, Jpn. J. Appl. Phys.49 (2010) 092503
    28. F. Chen, Laser Photon. Rev.6 (2012) 622
    29.刘颂豪:光子学技术与应用,广东科技出版社,2006
    30. X. Z. Liu, F. Lu, F. Chen, R. F. Zhang, H. P. Liu, L. Wang, G. Fu and H. S. Wang, Opt. Commum.274 (2007) 80
    31. X. Z. Liu, F. Lu, F. Chen, Y. Tan, R. F. Zhang, H. P. Liu, L. Wang, G. Fu and L. L. Wang, Opt. Commum.281 (2008) 1529
    32. R. Ramponi, R. Osellame and M. Marangoni, Rev. Sci. Instrum.73 (2002) 3
    33. J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tunnermann, Appl. Phys. B 97 (2009) 251
    34. R. Regener and W. Sohler, Appl. Phys. B 36 (1985) 143
    35.顾文琪,马向国,李文萍:聚焦离子束微纳加工技术,北京工业大学出版社,2006
    1. S.-S. Kim, C. Young, and B. MizaikofF, Anal. Bioanal. Chem.390 (2008) 231
    2. G. Z. Mashanovich, M. M. Milosevic, M. Nedeljkovic, N. Owens, B. Xiong, E. J. Teo, and Y. Hu, Opt. Express 19 (2011) 7112
    3. http://www.ispoptics.com
    4. G. Assanto, B. Svensson, D. Kuchibhatla, U. J. Gibson, C. T. Seaton, and G. I. Stegeman, Opt. Lett.11 (1986) 644
    5. B. C. Svensson, C. T. Seaton, U. J. Gibson, and G. I. Stegeman, Appl. Phys. Lett. 53(1988)941
    6. A. Goudarzi, G. M. Aval, R. Sahraei, and H. Ahmadpoor, Thin Solid Films 516 (2008)4953
    7. E. M. Gavrishchuk and E. V. Yashina, J. Opt. Technol.71 (2004) 822
    8. B. Svensson, G. Assanto, and G. Ⅰ. Stegeman, J. Appl. Phys.67 (1990) 3882
    9. K. Sasaki, Y. Kudo, A. Fukuda, H. Awata, and O. Hamano, Appl. Opt.21 (1982) 3552
    10. G. Z. Mashanovich, M. M. Milosevic,M. Nedeljkovic, N. Owens, B. Xiong, E. J. Teo, and Y. Hu, Opt. Express 19 (2011) 7112
    11. M. M. Milosevic, P. S. Matavulj, P. Yang, A. Bagolini, and G. Z. Mashanovich, J. Opt. Soc. Am. B 26 (2009) 1760
    12. A. J. Maker and A. M. Armani, Opt. Lett.36 (2011) 3729
    13. A. Rodenas, G. Martin, B. Arezki, N. Psaila, G. Jose, A. Jha, L. Labadie, P. Kern, A. Kar, and R. Thomson, Opt. Lett.37 (2012) 392
    14. X. Fang, Y. Bando, U. K. Gautam, T. Zhai, H. Zeng, X. Xu, M. Liao, and D. Golberg, Crit. Rev. Solid State 34 (2009) 190
    15. F. Chen and J. R. Vazquez de Aldana, Laser Photonics Rev.8 (2014) 251
    16. N. Huot, R. Stoian, A. Mermillod-Blondin, C. Mauclair, and E. Audouard, Opt. Express 15 (2007) 12395
    1. J. Dong, P. Deng, F. Gan, Y. Urata, R. Hua, S. Wada, and H. Tashiro, Opt. Commun.197(2001)413
    2. E. Kanchanavaleerat, D. Cochet-Muchy, M. Kokta, J. StoneSundberg, P. Sarkies, J. Sarkies, and J. Sarkies, Opt. Mater.26 (2004) 337
    3. C. Evangelatos, P. Bakopoulos, G. Tsaknakis, D. Papadopoulos, G. Avdikos, A. Papayannis, and G. Tzeremes, Appl. Opt.52 (2013) 8795
    4. T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, Appl. Phys.B 100 (2010) 131
    5. A. G. Okhrimchuk, A. V. Shestakov, Ⅰ. Khrushchev, and J. Mitchell, Opt. Lett.30 (2005)2248
    6. J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tunnermann, Appl. Phys. B 97 (2009) 251
    7. F. Chen, Laser Photon. Rev.6 (2012) 622
    8. G. Vazquez, J. Rickards, G. Lifante, M. Domenech, and E. Cantelar, Opt. Express 11 (2003) 1291
    1. W. P. Risk. T. R. Gosnell, and A. V. Nurmikko, Compact blue-green lasers (Cambridge University Press,2003, London)
    2. T. Y. Fan, C. E. Huang, B. Q. Hu, R. C. Eckardt, Y. X. Fan, R. L. Byer, and R. S. Feigelson, Appl. Opt.26 (1987) 2390
    3. F. Chen and J. R. Vazquez de Aldana, Laser Photonics Rev.8 (2014) 251
    4. N. Dong, Y. Tan, A. Benayas, J. V. de Aldana, D. Jaque, C. Romero, F. Chen, and Q. Lu, Opt. Lett.36 (2011) 975
    5. M. Pierrou, F. Laurell, H. Karlsson, T. Kellner, C. Czeranowsky, and G. Huber, Opt. Lett.24 (1999) 205
    6. J. C. Baumert, F. M. Schellenberg, W. Lenth, W. P. Risk, and G. C. Bjorklund, Appl. Phys. Lett.51 (1987) 2192
    7. K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, Appl. Phys. Lett.74 (1999) 914
    8. J. D. Bierlein and C. B. Arweiler, Appl. Phys. Lett.49 (1986) 917
    9. M. Pysher, Y. Miwa, R. Shahrokhshahi, R. Bloomer, and O. Pfister, Phys. Rev. Lett.107(2011)030505
    1. T. Schweizer, D. J. Brady, and D. W. Hewak, Opt. Express 1 (1997) 102
    2. T. Schweizer, B. N. Samson, J. R. Hector, W. S. Brocklesby, D. W. Hewak, and D. N. Payne, Infrared Phys. Technol.40 (1999) 329
    3. M. Hughes, W. Wang, and D. Hewak, Appl. Phys. Lett.90 (2007) 131113
    4. F. Chen, Laser Photon. Rev.6 (2012) 622
    5. J. D. Shephard, R. Ⅰ. Kangley, R. J. Hand, D. Furniss, A. B. Seddon, Physics and Chemistry of Glasses-European Journal of Glass Science and Technology Part B 44 (2003) 267
    6. T. Schweizer, D. J. Brady, and D. W. Hewak, Opt. Express 1 (1997) 102
    7. J. E. McCarthy, H. T. Bookey, N. D. Psaila, R. R. Thomson, and A. K. Kar, Opt. Express 20 (2012) 1545
    8. F. Qiu and T. Narusawa, Jpn. J. Appl. Phys.49 (2010) 092503