基于非线性晶体利用光学差频产生THz波辐射的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
THz波作为电磁波谱的最后一个研究波段,其研究,包括THz波辐射源、THz波探测和THz波的传输及应用(THz光谱,THz成像,THz无线通讯等),已成为世界各国普遍公认的重要领域。THz技术为科学技术的创新、国民经济发展和国家安全等方面提供了一个非常诱人的机遇。以美、日为首的各个发达国家正投入大量人力和物力致力于这方面的研究。积极开展THz科学技术的研究工作对我国具有重要的战略意义。其中,THz波辐射源的研究是重中之重。本研究是THz波辐射源方面研究的重要部分,即利用光子学方法获得THz波辐射。我们致力研究基于非线性光学的全固态、结构紧凑(小型化)、室温下运转、可调谐的THz波辐射源系统。这是THz技术应用研究的基础。
     获得THz波辐射的方法很多,主要分为电子学和光子学两个大方向,本文的研究属于光子学领域,并且主要是采用非线性光学方法,包括非线性光学差频、THz波参量振荡和光学Cherenkov辐射等。国际上,非线性光学方法获得THz波辐射的研究水平已有目共睹,其中无机晶体中非线性光学差频获得THz波辐射的峰值功率已到几个kW;THz波参量振荡获得的相干THz波辐射已应用在高精度,高速数据采集的THz波光谱仪。目前国内差频THz波输出较国际水平有很大差距;应用研究集中在THz光谱和成像方面,这方面研究由于是同国外相关单位合作,所以水平同国际相当。本文作者查阅研读了大量相关文献资料,在理论上提出了周期极化晶体THz波参量振荡新的辐射结构;并给出了差频THz波辐射相关研究结果;实验上已获得稳定的双波长线偏振态输出,达到国际最高水平,目前实验成果和进度受限于THz波探测器。本文创新点:
     理论上首次给出倾斜周期极化铌酸锂晶体差频侧面辐射THz波的理论模型,并根据模型进行分析研究;
     理论上首次提出周期极化晶体垂直侧面辐射THz波参量振荡器的实验设计方案;
     理论上给出LD端面泵浦1064和946 nm双波长连续振荡阈值模型,研究了温度对输出功率的影响;实验上获得国际最高水平5.12 W功率输出;
     实验上获得领域内端面泵浦1318.8和1338.2 nm双波长连续、准连续最高功率输出。
The terahertz region of the electromagnetic spectrum spans the frequency range between the mid-infrared and the millimeter/microwave. This region has not been exploited fully to date owing to the limited number of suitable radiation sources and detectors. The researches including THz radiation source, THz detector, THz transmission and application (THz spectrum, THz imaging, THz wireless communication etc.) have been recognized research field in the world. THz technology has provided an attractive chance for the creation of science, the development of national economy and national security. Some developed countries such as America and Japan are devoting plenty of human and material resources to the THz research. Fully expanding research on THz science and technology has been of important strategetic meaning for our country. Moreover the research on THz source is the most important aspect of all. Our research belongs to the generation of THz radiation by using photonics methods. We are dedicating ourselves to research on all-solid-state, compactable, room-temperature, tunable THz radiation system via nonlinear optics because it is the foundation of THz wave application. The methods of THz generation can be divided into electronics and photonics. We use nonlinear optical method to obtain THz wave which belongs to photonics including nonlinear optical difference frequency generation, THz wave parametric oscillator and Cherenkov radiation etc. The author introduced new radiation structure of PPLN-THz parametric oscillator in theory and obtained conclusions of THz radiation via difference frequency generation based on seeking and reading plenty of articles. Experimentally we demonstrated stable dual-wavelength output to the best of our knowledge it is the highest level.
     Innovations:
     In theory introduced the model of surface-emitted THz wave by difference frequency generation in slant-strip-type PPLN for the first time and made necessary analyses based on the model
     In theory introduced new radiation structure of PPLN-THz parametric oscillator and obtained conclusions of THz radiation via difference frequency generation for the first time
     In theory established a threshold model for simultaneous dual-wavelength laser and analyzed the effects of the crystal temperature distributions determined by the incident power on the thresholds of simultaneous dual-wavelength laser
     To the best of our knowledge, the output of 5.12 W is the highest simultaneous dual-wavelength CW operation using the quasi-three-level transition at 946 nm and the four-level transition at 1064 nm of a Nd:YAG crystal end-pumped by an LD. Experimentally obtained end-pumped 1318.8 and 1338.2nm dual-wavelength laser with the highest output power in our research field
引文
[1] Ming Li, Fortin J, Kim J Y, et al., Dielectric constant measurement of thin films using goniometric terahertz time-domain spectroscopy, Quantum Electronics, IEEE, 2001, 7(4): 624-629.
    [2] B Ferguson, S H Wang, D Gray, et al., Tray computed tomography, Optics Letters, 2002, 27:1312-1314.
    [3] WANG Shao-hong, ZHANG Xi-cheng, Terahertz tomographic imaging with a fresnel lens, Optics and Photonics News, 2002, 13(12):59-62.
    [4] JIANG Zhi-ping, ZHANG Xi-cheng. Terahertz imaging via electrooptic effect, Microwave Theory and Techniques, IEEE Transactions, 1999, 47(12):2644-2650.
    [5] ZHANG Xi-cheng, Terahertz electric field imaging, The Encyclopedia of Imaging Science & Technology, Imaging Technology & Systems Section, 2002, 2:1993-1404.
    [6] P R Smith, D H Auston, M C Nuss, Subpicosecond photoconducting dipole antennas, IEEE J. Quantum Electron., 1998, 24:255-260.
    [7] R Kohler, A Tredicucci, F Beltram, et al., Terahertz semiconductorhetero structure laser, Nature, 2002, 417:156-159.
    [8] R Paiella, F Capasso, C Gmachl, et al., Self-mode-locking of quantum cascade lasers with giant ultra-fast optical nonlinearities, Science, 2000, 290:1739-1742.
    [9] M Fujita, T Toyoda, J C Cao, et al., Induced charge-density oscillation under a quantizing magnetic field and intense terahertz radiation, Phys Rev B,2003,67:075105-1-075105-5.
    [10] H C Liu, C Y Song, Z R Wasilewski, et al., Coupled electron-phonon modes in optically pumped resonant intersubband lasers, Phys. Rev. Lett., 2003, 90:077402-1-077402-4.
    [11] J C Cao, X L Lei, Multiphoton-assisted absorption of terahertz radiation in InAs/AlSb heterojunction, Phys. Rev. B, 2003, 67:085309-1-085309-5.
    [12] B Ferguson, S Wang, D Gray, et al., T-ray computed tomography, Optics Letters, 2002, 15:1312-1314.
    [13] Tadao Nagatsuma, Exploring Sub-Terahertz Waves for Future Wireless Communications, IRMMW2006, plenary talk-4.
    [14] Jianming Dai, Xu Xie, Nicholas Karpowics, Hua Zhong, and X.-C. Zhang, THz Wave Photonics, IRMMW2006, plenary talk-11.
    [15] Yujie J. Ding and Xiaodong Mu, Power Scaling of Widely-Tunable Monochromatic and Quasi-Single-Cycle THz Sources, IRMMW2006,MonC3-7.
    [16] K. Miyamoto, T. Yamashita, A. Nawahara1, H. Ito, Frequency-agile coherent tunable THz-wave generation from 1.5 to 60 THz using Galvano controlled KTP-OPO, IRMMW2006, MonP-42.
    [17] Ruixiang Guo, Koichi Akiyama, Hiroaki Min, A high-resolution, wavelength-scanning, fast-data-acquisition THz-wave spectrometer for trace gases, IRMMW2006, TueB1-3.
    [18] Tomofumi Ikari1, Hiroaki Minamide1 and Hiromasa Ito, Energy scalable and high beam quality THzwave parametric oscillator using surface emitted cavity configuration, IRMMW2006, WedB1-3.
    [19] Hiroaki Minamide, Tomofumi Ikari, and Hiromasa Ito, Tunable quasi-monolithic THz-wave parametric oscillator in a ring-cavity configuration, IRMMW2006, WedP-21.
    [20] I. Tomita, R. Rungsawang, Y. Ueno, and K. Ajito, Widely Tunable Terahertz-Wave Generation by Collinearly Phase-Matched Difference-Frequency Generation from GaP, IRMMW2006, MonP-61.
    [21] S. Hayashi, T. Shibuya, H. Sakai, H. Kan, T. Taira, Y. Ogawa, C. Otani, and K. Kawase, Microlaser Pumped Narrow-linewidth Terahertz-Wave Parametric Generation, IRMMW2006, MonP-70.
    [22] M. Suzuki, M. Tonouchi, M. Yoshimura, M. Takagi, Y. Takahashi, S. Onduka, S. Brahadeeswaran, Terahertz emission from various organic crystals, IRMMW2006, WedP-19.
    [1] Rudeger Kohler, Alessandro Tredicucci, Fabio Beltram, et al., Terahertz semiconductor-heterostructure laser, Nature, 2002, 417:156-159.
    [2] Science, 1994, 264:22.
    [3] Kazarinov,Sov.Phys.Semi., 1971, 5:207.
    [4] Appl. Phys. Lett., 2004, 84:4068.
    [5] J. M. Yarborough, S. S. Sussman, H. E. Purhoff, et al., Efficient, tunable optical emission from LiNbO3 without a resonator, Appl. Phys. Lett., 1969, 15(3):102-105.
    [6] Kodo Kawase, Jun-ichi Shikata and Hiromasa Ito, Terahertz wave parametric source, J. Phys. D: Appl. Phys., 2002, 35:R1–R14.
    [7] YuJie J.Ding, Jacob B. Khuurgin, A new scheme for efficient generation of coherent and incoherent submillimeter to THz waves in periodically poled lithium niobate, Optics Communications, 1998, 148:105-109.
    [8] Y. S. Lee, T. Meade, V. Perlin, et al., Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poledlithium niobate, Applied Physics Letter, 2000, 76(18):2505-2507.
    [9] C. Weiss, G. Torosyan, Y. Avetisyan, et al., Generation of tunable narrow-band surface-emitted terahertz radiation in periodically poled lithium niobate, Optics Letters, 2001, 26:563-565.
    [10] Yuzo Sasaki, Avetisyan Yuri, Kodo Kawase, et al., Terahertz-wave surface-emitted difference frequency generation in slant-stripe-type periodically poled LiNbO3 crystal, Appl. Phys. Lett., 2002, 81:3323.
    [11] Yuzo Sasaki, Hiroyuki Yokoyama, Hiromasa Ito, Dual-wavelength optical-pulse source based on diode lasers for high-repetition-rate, narrow-bandwidth terahertz-wave generation, Opt. Exp., 2004, 12:3066.
    [12] Yuzo Sasaki, Yuri Avetisyan, Hiroyuki Yokoyama, et al., Surface-emitted terahertz-wave differencefrequency generation in two-dimensional periodically poled lithium niobate, Opt. Lett., 2005, 30:2927.
    [13] Y. Sasaki, H. Yokoyama and H. Ito, Surface-emitted continuous-wave terahertz radiation using periodically poled lithium niobate, Electronics Letters, 2005, 41(12):712-713.
    [14] K. Suizu, Y. Suzuki, Y. Sasaki, et al., Surface-emitted terahertz-wave generation by ridged periodically poled lithium niobate and enhancement by mixing of two terahertz waves, Opt. Lett., 2006, 31:957.
    [15] G. L. Carr, Michael C. Martin, Wayne R. McKinney, et al., High power Terahertz Radiation From Relativistic Electronics, Nature, 2002, 420:153-156.
    [16] D.Prober, Appl.Phys.Lett., 1993, 62(17):2119.
    [17] Kanglin Wang and Daniel M. Mittleman, Metal wires for terahertz wave guiding, Nature, 2004, 432:376-379.
    [18] S.John, Strong localization of photons in certain disordered dielectric superlattices, Phys.Rev.Lett., 1987, 58(23), 2486-2489.
    [19] E.Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics, Phys.Rev.Lett., 58(20):2059-2062.
    [20] Sergey Savel’ev, A. L. Rakhmanov, and Franco Nori, Using Josephson Vortex Lattices to Control Terahertz Radiation:Tunable Transparency and Terahertz Photonic Crystals, Phys.Rev.Lett., 2005, 94, 157004-4.
    [1] J. K. Neeland, V. Evtuhov, Phys. Rev., 1967, 156:244.
    [2] P. H. Klein, W. J. Croft, J. Appl. Phys., 1967, 38:1603.
    [3] T. Kushida, J. E. Geusic, Phys. Rev. Lett., 1968, 21:1172.
    [4] T. Kushida, H. M. Marcos, J.E. Geusic, Phys. Rev., 1968, 167:289.
    [5] M. J. Weber, T. E. Varitimos, Optical Spectra and Intensities of Nd3+ in YAlO3, J. Appl. Phys., 1971, 42:4996.
    [6] M. Birnbaum, J. A. Gelbwachs, J. Appl. Phys., 1972, 43:2335.
    [7] H. G. Danielmeyer, Appl. Phys., 1973, 1:269.
    [8] W. F. Krupke, M. D. Shinn, J. E. Marion, J. A. Caird, S. E. Stokowski, J. Opt. Soc. Am. B, 1986, 3:102.
    [9] N. P. Barmes, D. J. Gettemy, L Esterowitz, R. A. Allen, IEEE J. Quantum Electron., 1987, 23:1434.
    [10] S. Singh, R. G. Smith, L. G. Van Uitert, Stimulated-emission cross section and fuorescent quantum efficiency of Nd3+ in yttrium aluminum garnet at room temperature, Phys. Rev. B, 1974, 10(6):2566-2572.
    [11] J. Marling, 1.05-1.44μm tenability and performance of the CW Nd:YAG laser, IEEE J. Quantum Electron., 1978, 14(1): 56-62.
    [12] R.W. Farley, P.D. Dao, Appl. Opt., 1995, 34:4269.
    [13] J. Song, D.Y. Shen, A.P. Liu, C. Li, N.S. Kim, K. Ueda, Appl. Opt., 1999, 38:5158.
    [14] Y. Qi, Y.K. Bu, Q. Zheng, Q.H. Xue, Z.Q. Ye, Laser Infra., 2004, 34:436.
    [15] P.X. Li, D.H. Li, C.Y. Li, Z.G. Zhang, Opt. Commun., 2004, 235:169.
    [16] S.Singh, R.G.Smith, and L.G.Van Uitert, Physical, Review B, 1974, 10:2566.
    [17] Cohen, M.G. (Quantronix Corp., Smithtown, NY, USA), Continuous-wave mode locked Nd:YAG laser: a picosecond pump source for the future, Proceedings of the SPIE - The International Society for Optical Engineering, 1982, 322:44-51.
    [18] R. Zhou, W. Q. Wen, Z. Q. Cai, X. Ding, P. Wang, J. Q. Yao, Efficient stable simultaneous continuous wave dual-wavelength diode-end-pumped Nd:YAG laser operating at 1319nm and 1338nm and their frequency doubling, Chin. Opt. Lett., 2005, 3(10):597-599.
    [19] Y. F. Chen, Pump-to-mode size ratio dependence of thermal loading in diode-end-pumped solid-state lasers, J. Opt. Soc. Am. B, 2000, 17(11):1835-1840.
    [20] H. M. Kretschmann, F. Heine, G. Huber, et al., All-solid-state continuous-wave doubly resonant all-intracavity sum-frequency mixer, Opt. Lett., 1997, 22(19):1461-1463.
    [21] Y. F. Chen, CW dual-wavelength operation of a diode-end-pumped Nd:YVO4 laser, Appl. Phys. B, 2000, 70:475-478.
    [22] Y. F. Chen, S. W. Tsai, S. C. Wang, et al., Efficient generation of continuous-wave yellow light by single-pass sum-frequency mixing of a diode-pumped Nd:YVO4 dual-wavelength laser with periodically poled lithium niobate, Opt. Lett., 2002, 27(20):1809-1811.
    [23] M. P. Macdonald, Th. Graf, J. E. Balmer, H. P. Weber, Reducing thermal lensing in diode-pumped laser rods, Opt. Commun., 2000, 178:383-393.
    [24] M. Pollnau, P. J. Hardman, M. A. Kern, et al., Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG, Phys. Rev. B, 1998, 58(24):16076-16092.
    [25] J. Song, D.Y. Shen, A.P. Liu, et al., Appl. Opt., 1999, 38:5158.
    [26] R.W. Farley, P.D. Dao, Appl. Opt., 1995, 34:4269.
    [27] H. Y. Shen, W.X. Lin, R.R. Zeng, et al., Appl. Opt., 1993, 32:5952.
    [28] Y.F. Chen, S.W. Tsai, S.C. Wang, et al., Opt. Lett., 2002, 27:1809.
    [29] J. Liao, J.L. He, H. Liu, et al., Appl. Phys. Lett., 2003, 82:3159.
    [30] X. X. Zhang, M. Bass, B.H.T. Chai, et al., J. Appl. Phys., 1996, 80:1280.
    [31] C.G. Bethea, IEEE J. Quantum Electron., 1973, 9:254.
    [32] H. Su, H.Y. Shen, W.X. Lin, et al., J. Appl. Phys., 1998, 84:6519.
    [33] Y. F. Chen, Appl. Phys. B, 2000, 70:475.
    [34] Pingxue Li, Dehua Li, Chunyong Li, et al., Optics Communications, 2004, 235:169-174.
    [35] TSO YEE FAN, ROBERT L. BYER Modeling and cw operation of a quasi-three-level 946nm Nd:YAG laser, IEEE Journal of quantum Electronics, 1987, QE-23:605-612.
    [36] FAN T. Y., BYER R. L., Diode laser-pumped solid-state lasers, IEEE J. Quantum Electron., 1988, 24 (6):895-912
    [37] W.P. Risk, J. Opt. Soc. Am. B, 1988, 5:1412.
    [38] S. Singh, R.G. Smith, L.G. Van Uitert, Phys. Rev., 1974, 10:2556.
    [39] Yu J., Theoretical study on thermal beam focusing in longitudinally-pumped solid-state laser rods, High Power Laser Part. Beams, 2000, 12(1):27-31
    [40] Innocenzi M. E., Yura H. T., Fincher C. L., et al., Thermal modeling of continuous-wave end-pumped solid-state lasers, Appl. Phys. Lett., 1990, 56(19):1831-1833.
    [41] Frauchiger J., Albers P., P. Weber H., Modeling of thermal lensing and higher order ring mode oscillation in end-pumped CW Nd:YAG lasers, IEEE J. Quantum Electron., 1992, 28(4):1046-1056.
    [1] Wang Diankui, Yao Jianquan, et al, Temperature tunable optical parametric oscillation in MgO:LiNbO3, Acta Optica Sinica, 1992,12(7):611-615.
    [2] Yao Jianquan, nonlinear optical frequency conversion and tunable laser technology, 1995, chapter5, 193.
    [3] Wang Diankui, Researches on operating characteristics and experiments of optical parametric oscillator in MgO:LN and KTP crystals, dissertation, 1991, 43.
    [4] N. Uchida, Two-oscillator description of the optical properties of oxygen octahedra ferroelectrics, 1973, J. Appl. Phys. 44:2072.
    [5] David E. Zelmon, David L. Smalln, Dieter Jundt, Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol. % magnesiumoxide–dopedlithium niobate, J. Opt. Soc. Am. B, 1997,14(12)3319.
    [6] Jun-ichi Shikata, Kodo Kawase, Ken-ichi Karino, et al., Tunable Terahertz-Wave Parametric Oscillators Using LiNbO3 and MgO: LiNbO3 Crystals, IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2000, 48(4):653-661.
    [7] S.Kojima, Composition variation of optical phonon damping in lithium niobate crystals, Jpn. J. Appl. Phys., 1993, 32:4373–4376.
    [8] U. T. Schwartz and M. Maier, Asymmetric Raman lines caused by an an harmonic lattice potential in lithium niobate, Phys. Rev. B, Condens. Matter, 1997, 55:11041-11044.
    [9] A.S. Barker and R. Loudon, Phys. Rev. 158, 433.
    [10] D.R. Bosomworth, Appl. Phys. Letters 9, 330.
    [11] W.G. Spitzer, D.A. Kleinmann, Infrared Lattice Bands of Quartz, Phys. Rev. 1961,121(5):1324-1335.
    [12] M. Schall, H. Helm, and S.R. Keiding, Far Infrared Properties of Electro-optic Crystals Measured by THz Time-domain Spectroscopy, International Journal of Infrared and Millimeter Waves, 1999, vol.20(4),595-604.
    [13] A.S. Barker, Jr., and R. Loudon, Doelectric Properties and Optical Phonons in LiNbO3, Physical Review,1966, vol.158(2),433-445.
    [14] A.S. Barker, Jr., A.A. Ballman, and J.A. Ditzenberger, Infrared Study of the Lattice Vibrations in LiTaO3, Physical Review B, 1970,vol.2(10),4233-4239.
    [15] Tiequn Qiu and Max Maier, Long-distance propagation and damping of low-frequency phonon polaritons in LiNbO3, Physical Review B, 1997, 56(10):R5717-R5720.
    [16] G. D. Boyd, T. J. Bridge, M. A. Pollack, et al., Microwave Nonlinear Susceptibilities Due to Electronic and Ionic Anharmonicities in Acentric Crystals, Phys.Rev.Lett.,1971, 26(7),387-390.
    [17] G. D. Boyd, M. A. Pollack, Microwave Nonlinearities in Anisotropic Dielectrics and Their Relation to Optical and Electro-Optical Nonlinearities, Physical Review B, 1973, 7(12):5345-5359.
    [18] G. D. Boyd, D. A. Kleinman, Parametric Interaction of Focused Gaussian Light Beam, Journal of Applied Physics, 1968, 39(8):3597-3639 Appendix 2.
    [19] D. F. Nelson, M. Lax, Theory of Acoustically Induced Optical Harmonic Generation, Physical Review B, 1971,3(8):2795-2812.
    [20] Toshiaki Suhara, Yuri Avetisyan, and Hiromasa Ito, Theoretical Analysis of Laterally Emitting Terahertz-Wave Generation by Difference-Frequency Generation in Channel Waveguides, IEEE JOURNAL OF QUANTUM ELECTRONICS, 2003, 39(1):166-171.
    [21] Y. Avetisyan, Y. Sasaki, H. Ito, Analysis of THz-wave surface-emitted difference-frequency generation in periodically poled lithium niobate waveguide, Appl. Phys. B, 2001, 73:511-514.
    [22] 蓝信钜等,《激光技术》,2001,chapter1:28.
    [23] A.Yariv:Quantum Electronics (Wiley, New York 1975).
    [24] Furukawa, Y. (Magnetic & Electron. Mater. Res. Lab., Hitachi Metals Ltd., Saitama, Japan); Sato, M.; Nitanda, F.; Ito, K., Growth and characterization of MgO-doped LiNbO3 for electro-optic devices, Journal of Crystal Growth, 1990, 99(1-4)2:832-6.
    [25] S. R. Marder, J. W. Perry, and W. P. Schaefer, Science, 1989, 245:626.
    [26] F. Pan, K. McCallion, and M. Chiappetta, Appl. Phys. Lett., 1999, 74:492.S.
    [27] Shunichi Sohma, Hidenori Takahashi, Tetsuo Taniuchi, et al., Organic nonlinear optical crystal DAST growth and its device applications, Chemical Physics, 1999, 245:359-364.
    [28] K. Kawase, M. Mizuno, S. Sohma, et al., Difference-frequency terahertz-wave generation from 4-dimethylamino-N-methyl-4-stilbazolium-tosylate by use of an electronically tuned Ti:sapphire laser, Opt. Lett., 1999, 24:1065-1067.
    [29] X.-C. Zhang, X. F. Ma, Y. Jin, et al., Appl. Phys. Lett., 1992,61:3080.
    [30] T. J. Carrig, G. Rodriguez, T. S. Clement, et al., Appl. Phys. Lett., 1995, 66:10.
    [31] D. Grischkowsky, S?ren Keiding, Martin van Exter, and Ch. Fattinger, Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors, J. Opt. Soc. Am. B, 1990, 7(10):2006-2015.
    [32] Markus Walther, Kasper Jensby, and S?ren Rud Keiding, Hidenori Takahashi and Hiromasa Ito, Far-infrared properties of DAST, Opt. Lett., 2000, 25(12):911-913.
    [33] Shunichi Sohma, Hidenori Takahashi, Tetsuo Taniuchi, Hiromasa Ito, Organic nonlinear optical crystal DAST growth and its device applications, Chemical Physics, 1999, 245:359-364.
    [34] F. Pan, K. McCallion, M. Chiappetta, Waveguide fabrication and high-speed in-line intensity modulation in 4-N, N-dimethylamino-4’-N’-methyl-stilbazolium tosylate, Appl. Phys. Lett., 1999, 74:492.
    [35] S. R. Marder, J. W. Perry, and W. P. Schaefer, Science, 1989, 245:626.
    [36] H. Nakanishi, H. Matsuda, S. Okada, and M. Kato, Proc. MRS Int. Mtg. Adv. Mater., 1989, 1:97.
    [37] H. Nakanishi, H. Matsuda, S. Okada, M. Kato, Japan Patent Application No. Toku-Gan-Sho 61-192404, 1986.
    [38] H. Nakanishi, “Organic material for nonlinear optics,” Japanese patent 1,716,929 (March 23, 1990).
    [39] F. Pan, G. Knopfle, Ch. Bosshard, S. Follonier, R. Spreiter, M.S. Wong, P. Gunter, Appl. Phys. Lett., 1996, 69:13.
    [40] U. Meier, M. Bosch, Ch. Bosshard, et al., J. Appl. Phys., 1998, 83:3486.
    [41] T.J. Carrig, G. Rodriguez, T.S. Clement, et al., Appl. Phys. Lett., 1995,66:10.
    [42] Q. Wu, X.-C. Zhang, Appl. Phys. Lett., 1996, 68:1604.
    [43] F. Tsunesada, T. Iwai, T. Watanabe, H. Adachi, M. Yoshimura, Y. Mori, T. Sasaki, High-quality crystal growth of organic nonlinear optical crystal DAST, Journal of Crystal Growth, 2002, 237-239:2104-2106.
    [44] F. Pan, G. Knopfle, Ch. Bosshard, S. Follonier, R. Spreiter, M.S. Wong, P. Gunter, Appl. Phys. Lett., 1996, 69:13.
    [45] R. Mohan Kumar, D. Rajan Babu, G. Ravi, R. Jayavel, Growth and characterization of 4-dimethylamino-N-methyl-4-stilbazoliumtosylate (DAST) single crystals, Journal of Crystal Growth, 2003, 250:113-117.
    [46] Hiroaki ADACHI, Tetsuo TANIUCHI, Masashi YOSHIMURA, et al., High-Quality Organic 4-Dimethylamino-N-methyl-4-stilbazolium Tosylate (DAST) Crystals for THz Wave Generation, Japanese Journal of Applied Physics, 2004, 43(8B):L1121-l1123.
    [47] A.K. Dharmadhikari, Basudev Roy, Sukhdev Roy, J.A. Dharmadhikari, Alpana Mishra, G. Ravindra Kumar, Higher-order optical nonlinearities in 4’-dimethylamino-N-methyl-4-stilbazolium tosylate, Optics Communications, 2004, 235:195-200.
    [48] F. Pan, G. Knopfle, Ch. Bosshard, et al., Electro-optic properties of the organic salt 4-N,N-dimethylamino-48-N8-methyl-stilbazolium tosylate, Appl. Phys. Lett., 1996, 69 (1):13-15.
    [49] S. Brahadeeswaran, S. Onduka, M. Takagi, et al., Growth of high-quality DAST crystals for THz applications, Journal of Crystal Growth, 2006, 292:441-444.
    [50] A.S. Haja Hameed, W.C. Yu, Z.B. Chen, C.Y. Tai, C.W. Lan, An investigation on the growth and characterization of DAST crystals grown by two zone growth technique, Journal of Crystal Growth, 2005, 282:117-124.
    [51] A.S. Haja Hameed, W.C. Yu, C.Y. Tai, C.W. Lan, Effect of sodium toluene sulfonate on the nucleation, growth and characterization of DAST single crystals, Journal of Crystal Growth, 2006, 292:510-514.
    [52] Timothy J. Carrig, G. Rodriguez, Tracy Sharp Clement, Scaling of terahertz radiation via optical rectification in electro-optic Crystals, Appl. Phys. Lett., 1995, 66 (2):121-123.
    [53] Kodo Kawase, Takaaki Hatanaka, Hiromasa Ito, et al., Tunable terahertz-wave generation from DAST crystal by dual signal-wave parametric oscillation of periodically poled lithium niobate, Opt. Lett., 2000, 25:1714-1716.
    [54] T. Taniuchi, J. Shikata and H. Ito, Tunable terahertz-wave generation in DAST crystal with dual-wavelength KTP optical parametric oscillator, ELECTRONICS LETTERS, 2000, 36:1414-1416.
    [55] Tetsuo TANIUCHI, Jun-ichi SHIKATA, and Hiromasa ITO, Widely Tunable Terahertz Electromagnetic Radiation by Nonlinear Optical Effect, Rev. Laser Eng., 2002, 30:365.
    [56] Arno Schneider, Ivan Biaggio, Peter Gunter, Optimized generation of THz pulses via optical rectification in the organic salt DAST, OpticsCommunications, 2003, 224:337-341.
    [57] T. Taniuchi, S. Okada and H. Nakanishi, Widely-tunable THz-wave generation in 2–20 THz range from DAST crystal by nonlinear difference frequency mixing, ELECTRONICS LETTERS, 2004, 40:60.
    [58] P. E. Powers, R. A. Alkuwari, and J. W. Haus, Terahertz generation with tandem seeded optical parametric generators, Opt. Lett., 2005, 30:640-642.
    [59] A. Schneider, M. Stillhart, and P. Gunter, Generation of THz and IR Radiation in DAST crystals, Proc. of SPIE, 6100:1C-1-8.
    [60] K. Suizu, A. Nawahara, T. Yamashita, and H. Ito, Random frequency accessible broad tunable THz-wave source using phase-matched DAST crystal DFG, Proc. of SPIE, 6103:0A-1-12.
    [61] Zhou Yang, Aravazhi, S., Schneider, A., Seiler, P., Jazbinsek, M., Gunter, P., Synthesis and crystal growth of stilbazolium derivatives for second-order nonlinear optics, Advanced Functional Materials, 2005, 15(7):1072-1076.
    [62] Taniuchi, Tetsuo, et al., Terahertz properties of a new organic crystal, 4 prime -dimethylamino-N-methyl-4-stilbazolium p –chlorobenzenesulfonate, Japanese Journal of Applied Physics, Part 2: Letters, 2005, 44(28-32):L932-L934.
    [63] Blanca Ruiz, Zhou Yang, Volker Gramlich, et al., Synthesis and crystal structure of a new stilbazolium salt with large second-order optical nonlinearity, J. Mater. Chem., 2006, 16:2839 – 2842.
    [64] T. Taniuchi, S. Okada, and H. Nakanishi, Widely tunable terahertz-wave generation in an organic crystal and its spectroscopic application, J. Appl. Phys., 2004, 95:5984-5988.
    [65] G. Kn?pfle, R. Schlesser, R. Ducrte, and P. Günter, Nonlinear Opt. 9:143, 1995.
    [66] F. Pan, G. Kn?pfle, Ch. Bosshard, et al., Electro-optic properties of the organic salt 4-N,N-dimethylamino-48-N8-methyl-stilbazolium tosylate, Appl. Phys. Lett., 1996, 69(1):13-15.
    [67] Arno Schneider, Max Neis, Marcel Stillhart, et al., Generation of terahertz pulses through optical rectification in organic DAST crystals: theory and experiment, J. Opt. Soc. Am. B, 2006, 23(9):1822-1835.
    [1] Y.R. Shen(ed.), nonlinear infrared generation, springer Verlag,1977, chapter2.2.
    [2] M. Schall, H. Helm, and S. R. Keiding, Far infrared properties of electro-optical crystals measured by THz time domain spectroscopy, Int. J. Infrared and MM waves, 1999, 20:595.
    [3] K. Kawase, M. Mizuno, S. Sohma, H. Takahashi, T. Taniuchi, Y. Urata, S. Wada, H. Tashiro, and H. Ito, Difference-frequency terahertz-wave generation from 4-dimethylamino-N-methyl-4-stilbazolium-tosylate by use of an electronicallytuned Ti:sapphire laser, Opt. Lett., 1999, 24:1065.
    [4] Y. Avetisyan, Y. Sasaki, H. Ito, Analysis of THz-wave surface-emitted difference-frequency generation in periodically poled lithium niobate waveguide, Appl. Phys. B, 2001, 73:511–514.
    [5] A. S. Barker, Jr., and R. Loudon, Dielectric properties and optical phonons in LiNbO3, Physical Review, 1967, 158(2):433-445. 第六章
    [1] J. M. Yarborough, S. S. Sussman, H. E. Purhoff, et al., Efficient, tunable optical emission from LiNbO3 without a resonator, Appl. Phys. Lett., 1969, 15:102-105.
    [2] J. Gelbwachs, R. H. Pantell, H. E. Puthoff, et al., A tunable stimulated Raman oscillator, Appl. Phys. Lett., 1969, 14:258-262.
    [3] Kodo Kawase, Manabu Sato, Tetsuo Taniuchi, et al., Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler, 1996, 68:2483-2485.
    [4] T. Edwards, D. Walsh, M. Spurr, C. Rae, M. Dunn, and P. Browne, "Compact source of continuously and widely-tunable terahertz radiation.," Opt. Express, 2006, 14(4):1582-1589.
    [5] K.Kawase, H.Ito, et al. US Patent 6697186.
    [6] Kazuhiro Imai,K. Kawase,US Patent 6903341.
    [7] J. Nishizawa, and K,Suto, Japanese Patent 8444479
    [8] 姚建铨,“准相位匹配 PPLN、PPKTP、PPRTA 光学参量振荡器及其应用”,第一届海峡两岸晶体材料及其产业化研讨会文集 2001,11.
    [9] Lu Yang, Zhang Baigang, Ding Xin, Wang Peng, Ji Feng, Zhang Tieli, Yao Jianquan, High conversion efficiency continuous wave quasi-phase-matched second harmonic generation in MgO doped stoichiometric lithium tantalate, Proceedings of SPIE - The International Society for Optical Engineering, v 5646, Nonlinear Optical Phenomena and Applications, 2005, 421-426.
    [10] Yao Jianquan, Lu Yang, Zhang Baigang, Wang Peng, New research progress of THz radiation, Journal of Optoelectronics Laser, 2005,16(4):503-510. (in Chinese)
    [11] Yang Lu, Baigang Zhang, Enbang Li and Jianquan Yao, Design of a broadband source by using the retracing behavior of a collinear quasi-phase-matching optical parametric generator, Optics Express, 2006, 14(25):12316-12326.
    [12] Lu Yang, Zhang Baigang, Xu Degang, Ding Xin, Wang Peng, Zhang Tieli, Ji Feng, Yao Jianquan, High power output quasi-continuous-wave nanosecond optical parametric generator based on periodically poled lithium niobate, Optoelectronics Letters, 2005,1(1):0010-0012.
    [13] Yao Jianquan, Zhang Baigang, Lu Yang, Ding Xin, Xu Degang, Wang Peng,Wavelength tunable optical parametric oscillator based on periodically poled lithium niobate, Rengong Jingti Xuebao/Journal of Synthetic Crystals, 2004, 33(4):465.
    [14] Zhang Baigang, Yao Jianquan, Lu Yang, et al., Broadening angular acceptance bandwidth of second-harmonic generation by using nearly ideal temperature quasi-phase-matching, Optics Communications, 2005,254:344-352.
    [15] Zhang BaiGang, Yao JianQuan, Lu Yang, et al., High-average-power nanosecond quasi-phase-matched single-pass optical parametric generator in periodically poled lithium niobate, Chinese Physics Letters, 2005, 22(7):1691-1693.
    [16] Zhang BaiGang, Yao JianQuan, Lu Yang, et al., High-efficiency single-pass cw quasi-phase-matched frequency doubling based on PP-MgO:SLT, Chinese Physics, v 14, n 2, Feb. 2005, 353-8.
    [17] Zhang Baigang, Yao Jianquan, Lu Yang, et al., Total internal reflection noncollinear quasi-phase-matching PPLN OPO, Proceedings of SPIE - The International Society for Optical Engineering, v 5646, Nonlinear Optical Phenomena and Applications, 2005, 206-211.
    [18] Zhang Baigang, Yao Jianquan, Lu Yang, et al., Accurate determining of grating period of periodically poled crystal by using tuning characteristics of QPM-OPO, Journal of Optoelectronics Laser, 2004,15(3):337-340. (in Chinese)