固体红外激光器理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光二极管泵浦的高功率固体激光器具有效率高、光束质量好,结构紧凑、寿命长等优势,在工业生产、科学研究和军事领域都有着广泛的应用。发射1.06μm近红外激光的掺Nd~(3+)固体激光器已经发展了棒状、盘片和光纤等多种工作介质形式,其中棒状激光晶体适应多样的泵浦耦合结构,拥有良好的谐振腔模式与泵浦模式交叠,以及实用性和紧凑性好等优势,依然是使用最广泛的激光介质。约2μm波长的中红外激光辐射由于具有对人眼安全,水的吸收系数高,适合于用光纤传输等诸多优点而被广泛应用于相干激光雷达,大气遥感探测,高精度外科手术等领域。其中氙灯泵浦室温工作的Cr:Tm:Ho:YAG激光器工作在2.1μm波长,可用于某些外科手术(包括切骨术、硬组织烧融和结石碎裂等)。目前,高功率固体激光器研究中最重要的问题之一是热管理问题,它包括三个方面:首先,提高泵浦源的辐射效率和激光的辐射转换效率以降低介质的上的热耗散总量;其次,实施有效的冷却,及时排除激光介质上的热沉积;第三,对冷却导致的热效应进行补偿和缓解。本论文围绕高功率固体激光器的热管理问题展开了较为深入的理论和实验研究。
     理论方面:给出了连续泵浦主动O开关运转Nd:YAG激光器热产生率的解析表达式。建立了热产生率与量子效率、斯托克斯效率、辐射量子效率、交叠效率和储能提取效率等因子的函数关系。考虑了Q开关重复频率及泵浦速率对热产生率的影响。研究结果表明,在其它条件相同时,主动Q开关运转固体激光器的热产生率高于连续运转情形。
     基于高斯光束的传输矩阵理论,构建了包含球面端面激光棒的谐振腔稳定性分析方法。并对特定的激光棒参数和谐振腔参数进行了数值计算。计算结果表明,对于几类典型的谐振腔如平平腔、平凹腔,球面端面激光棒可以显著的扩展强热聚焦作用下的稳定工作范围;球面端面激光棒在提高约束稳定性和热稳定性的同时,通常是以牺牲有效模式体积为代价的。
     实验方面:进行了LD侧面泵浦高功率Nd:YAG激光器的实验研究,采用了球面端面激光棒,LD阵列7向侧面泵浦。在最高泵浦电功率6820W时,获得最高的连续运转激光功率1414W,实现电光转换效率21%。实验上证明了球面端面激光棒的引入作为热透镜补偿的一种方式具有显著的可行性。
     设计出一种测量闪光灯泵浦固体激光器热透镜焦距的实验方法。该方法通过测定谐振腔由稳定区进入非稳定区的临界区域的泵浦能量,结合激光谐振腔稳定性条件,可以计算激光棒的热透镜效应系数。实验测量了氙灯泵浦Cr:Tm:Ho:YAG激光器不同泵浦条件下的热焦距值,结果表明,热焦距随泵浦脉冲宽度、冷却水温度等参数变化,在泵浦脉冲宽度分别为400μs,600μs,800μs时测得热透镜系数分别为5.59dpt/kW、4.84dpt/kW、4.38 dpt/kW。冷却水温分别为25℃,20℃,15℃时测得热透镜系数分别为5.76 dpt/kW、5.59 dpt/kW、5.36dpt/kw。利用算得的热焦距值,理论计算了激光棒的温度分布。
     对单脉冲和重复率泵浦Cr:Tm:Ho:YAG激光器的输出特性进行了实验研究。研究了谐振腔长度、输出镜透过率、冷却水温度、泵浦脉冲宽度、泵浦重复频率等参数对激光输出性能的影响。结果表明,激光输出能量随谐振腔长度的增加大幅度下降。输出能量随温度下降而上升的现象部分归结为Ho激光能级的准三能级本质,部分归结为高阶的热透镜效应。后两种参数对激光输出能量的影响归结为更复杂的多种因素,如上激光能级的有效储能,热透镜效应等。实验结果:单脉冲泵浦Cr:Tm:Ho:YAG激光器的输出能量最高达到3.3J,斜率效率4.9%。重复率10Hz泵浦时,获得最高平均功率25.8W,斜率效率4.3%。
Laser diode pumped high power solid state lasers have many applications in the manufactures,scientific researchs and military technologies,owing to the advantages of high efficiency,high beam quality,compact structure and being last.Solid state lasers doped Nd~(3+) operating at near-infrared 1.06μm have been designed into kinds of geometry including rod, disc and fiber.The laser rods adaptive to various pumping structure,with good overlap between resonator mode and pumping mode,compaction and convenience,are most extensively applied.Infrared 2μm laser has the advantages including eyes -safety,the strong absorption in water and low absorption in atmosphere,adaptive to fiber transmission,which are fit for the coherent laser radar,remote sensing and the precise surgery.Xenon Flashlamp-pumped Cr:Tm:Ho:YAG laser operating at 2.1μm is applicable in the osteotomy, the lithotripsy,the ablation of soft tissue and so on.Nowadays one of the most important problems in research of high power solid state lasers is the thermal management which consists of the three aspects:firstly,improving the radiation efficiency of the pump source and the enengy conversion efficiency of laser to depress the total heat dissipation in laser material. Secondly,actualizing the effective cooling to dispel the heat dissipation.Thirdly, compensating or lowering the thermal effects.This dissertation expatiated on the theoretical and experimental studies on the thermal management of high power solid state lasers.
     Theoretical studies:The theoretical model for the heat generation coefficient of continuous pumped actively Q- switched Nd:YAG laser was developed.The functional relation between the heat generation coefficient and quantum efficiency,Stokes efficiency, radiation efficiency,overlap efficiency and energy storage efficiency was founded.The model took into account the effects on the heat generation coefficient from repetition rate of Q-switch and pumping rate.It was found that the actively Q- switched operating solid satet laser has more heat dissipation than the free operating laser does.
     The model for calculating the stability of the resonator containing a laser rod with curvature ends was developed,which was based on the transfer matrix theory of Gauss beam. The results from the numerical simulations on some typical resonators indicate that the laser rod with curvature ends can expand the stable region of plano-plano,plano-concave and plano-convex cavity notability;despite the laser rod with curvature ends can improve the stability of above mentioned cavities,it costs the effective mode volume.
     Experimental studies:An experimental study on LD side pumped high power Nd:YAG laser was detailed,which employed a laser rod with curvature ends and was pumped by seven LD arrays around the rod.A output laser power of 1414W was achieved at the maximum pump electrical power of 6820W,realizing the electrical-optical conversion efficiency of 21%. The experimental results confirmed that employing the laser rod with curvature ends to compensating thermal lens effect is available.
     An experimental method measuring the thermal focal length of solid state laser was designed basing on the analysis of the dynamic thermal stable resonator.By measuring the pump energy where a stable resonator becomes unstable,taking into account the resonator stability conditions,the thermal lens coefficient of the laser rod can be calculated.The thermal focal lengths of flashlamp-pumped Cr:Tm:Ho:YAG laser in various pumping conditions was calculated and the effects of the pumping pulse width and the cooling water temperature was analyzed.The measured thermal lens coefficient is 5.59dpt/kW,4.84 dpt/kW,4.38 dpt/kW at the pumped pulse width of 400μs,600μs,800μs,respectively.The measured thermal lens coefficient is 5.76 dpt/kW,5.59 dpt/kW,5.36dpt/kW at the cooling water temperature of 25℃,20℃,15℃,respectively.Utilizing the above results,the temperature distribution in laser rod cross section was estimated.
     A Xenon Flashlamp-pumped Cr:Tm:Ho:YAG laser operating at 2.1μm operating at both single pulse and repetiotion-rate pump has been demonstrated.The resonator length,output couple transition,cooling water temperature,pumped pulse width and pumped repetition-rate dependents of laser output energy was investigated experimentally.It was founded that laser output energy decline with the resonator length increasing.The quasi-three level nature of Ho laser at room temperature and high order term of thermal lens effect take responsibility for the phenomenon which laser output energy increase with cooling water temperature reduced.The laser energy varies with pumped pulse width and pumped repetition-rate,which is by reason of some factors,such as effective storage energy and thermal lens effect.The maximum laser average power of 25.8W at 10Hz repetition frequency with slope efficiency of 4.3%and the maximum laser pulse energy of 3.3J with a maximum slope efficiency of 4.9%at single pulse pump are obtained.
引文
[1]Barnes.N.P. Solid-State Lasers From an Efficiency Perspective[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007,13(3):435-446
    
    [2]T.H.Mainan, Stimulited optical radiation in Ruby, Nature, 1960,NO4736:493~494
    
    [3]Geusic.J.E, Marcos.H.M, Van Uiteit..G.Laser oscillations in Nd-doped yttrium aluminum ,yttrium gallium and gadolinium garnets[J].Applied physics latters. 1964,4:182-184
    
    [4]Gualtiert.J.G, Delhery.G..P, Aucion.T.R et al. Infrared quantum counter action in Ho-doped crystals[J] .Applied physics latters. 1967,11:389-391
    
    [5]Walling, J.; Peterson, O.; Jenssen, H Tunable alexandrite lasers[J]. IEEE Journal of Quantum Electronics, 1980,16(12):1302-1315
    
    [6]Hoffstadt, A.Design and performance of a high-average-power flashlamp-pumped Ti:sapphire laser and amplifier[J] IEEE Journal of Quantum Electronics.1997,33(10):1050-1863
    
    [7]Newman.R. Excitation of Nd fluorescence inCaWO_4 by recombition radiation in GaAs[J].Journal of applied physics. 1963,34:437
    
    [8]Ross.M. YAG laser operation by semiconductor laser pumping[J].Proceeding of IEEE. 1968,56:196
    
    [9]Snitzer.E. Optical Maser Action of Nd~(+3) in a Barium Crown Glass[J].Physical review letters,1961,7(12):444-449
    
    [10] Jackson. Stuart D., King Terence A. High-power diode-clading-pumped Tm-doped silica fiber laser[J]. Optics letters, 1998, 23 (18): 1462-1464.
    
    [11]Bonnefois.Montmerle.A, Gilbert.M,Thro.P.Y. Thermal lensing and spherical aberration in high-power transversally pumped laser rods[J].Optics communications,2006(259):223-235
    
    [12]Weber.R, Neuenschwander. B , Weber.H.P,Termal Effects in Solid State Laser Materials[J]. Optical Materials ,1999,11:245-254
    
    [13]MacDonald.M.P, Graf.Th, Balmer.J.E, et al. Reducing thermal lensing in diode-pumped laser rods[J].Optics communications.2000,178:383-393
    
    [14]Kugler.N,Dong.S,Lu Qitao, et al. Investigation of the misalignment sensitivity of a birefringence-compensated two-rod Nd:YAG laser system[J]. Applied optics.1997,36(36):9359-9366
    [15]Kubodera.K,Noda.J.Pure single mode LNP solid state laser transmitter for 1.3μm fiberoptic co,unicatoin[J].Applied optics.1982,21:3466-3469
    [16]R.Lavi,S.Jackel,Y.Tzuk.Efficient pumping scheme for Neodymium-doped materials by direct excitation of the upper level lasing[J].Applied Optics,1999,38(36):7382-7385
    [17]R.Lavi,S.Jackel,Tal.A.885nm high power diode end pumped Nd:YAG laser[J].Optical communication.2001,195:427-430
    [18]Fan.T.Y.Diode pumped solid state lasers[J]Journal of Lincoln lab.1990,3:413
    [19]Sumida.D.S,Betin.A.A,Bruesselbach.H,etal.Diode-pumped Yb:YAG catches up with Nd:YAG[J].Laser focus world.1999,35(6):63-70
    [20]Honea.E.C,Beach.R.J,Mitchell.S.C,etal.Dual-rod Yb:YAG laser for high-power and high-brightness application[C].Advanced solid state laser conference 2000.
    [21]徐军等.激光材料科学与技术前沿[M]上海:上海交通大学出版社,2007:6
    [22]Ueda.K.Sekiguchi.H.,Kan.H.kW fiber lasers for industrial applications[C]CLEO/Pacific Rim 2003 - The 5th Pacific Rim Conference on Lasers and Electro-Optics,2003,2:15-19
    [23]Shcherbakov,E.New achievements in development of superpower industrial fiber lasers and their applications[C]Lasers and Electro-Optics Europe,2005.CLEO/Europe.2005Conference on.June 2005:719
    [24]李晋闽.高功率全固态激光器的研究与应用[J].红外与激光工程.2007,36:1-3
    [25]Giesen.A,Hugel.H,Voss.A.Scalable concept for diode pumped solid state laser[J]Applied physics B,1994,58:365-372
    [26]Karszewski.M,Brauch.U,Contag.K.100W TEM_(00) operation of Yb:YAG thin disc laser with high efficiency[C]Advanced solid state laser.OAS.1998,19:296-299
    [27]Stewen.C,Contag.K,Larionov.M.A 1-Kw CW thin disc laser[J].IEEE Journal of Selected Topics in Quantum Electronics,2000,6(4):650-657
    [28]Jeffrey.J,Kasinski,Burnham.R.L.Near-diffraction-limited,high-energy,high-power,diode-p umped laser using thermal aberration correction with aspheric diamond-turned optics[J].Applied optics. 1996,35(30):5949-5954
    
    [29] Magni V. Resonators for Solid-state Lasers with Large-volume Fundamental Mode and High-Alignment Stability [J]. Applied Optics 1986,25(1):107-117
    
    [30]Greiner.U.J, Klingenberg.H.H. Thermal lens correction of a diode-pumped Nd:YAG laser of high TEMoo power by an adjustable-curvature mirror[J].Optics letters. 1994,19( 16): 1207-1209
    
    [31 ]Levine.F.A. TEM_(00) Enhancement in CW Nd-YAG by Thermal Lensing Compensation[J]. IEEE Journal of Quantum Electronics, 1971, April: 170-172
    
    [32]Hanna.D.C,Sawyers.C.G,Yuratich.M.A. Telescopic resonators for large-volume TEMoo-mode operation[J]Optics and quantum electronics. 1981,13:493-507
    
    [33]Koch.R. Self-adaptive optical elements for compensation of thermal lensing effects in diode end-pumped solid state lasers-proposal and preliminary experiments[J].Optics communications. 1997,140:158-164
    
    [34]L(o|¨)rtscher.J.P, Steffen.J. Dynamic Stable Resonators: A Design Procedure[J].Optical and Quantum Electronics, 1975, 7:505-514
    
    [35]Chesler.R.B,Maydan.D. Convex-Concave Resonators for TEM00 Operation of Solid-State Ion Lasers[J]Journal of applied physics, 1972,439(5):2254-2257
    
    [36]Thompson.B.A,Ara Minassian, Eason.R.W. Efficient operation of solid-state adaptive laser oscillator[J]. Applied optics.2002,41(27):5638-5644
    
    [37]Weber.R, Graf. T, P.Heinz. Self-adjusting compensating thermal lens to balance the thermally induced lens in solid-state lasers[J]. IEEE Journal of Quantum Electronics.2000,36(6)757-764
    
    [38]Wyss.Eduard, Roth. Michelle,Grof.Thomas.Thermoptical compensation methods for high-power laser[J]. IEEE Journal of Quantum Electronics, 2002,38(12): 1620-1628
    
    [39]Koechner.W. Transient thermal profile in optically pumped laser rods[J]. Journal of applied physics. 1973,44(7):3162-3170
    
    [40]Foster.J.D,Osterink.L.M. Thermal effects in a Nd:YAG laser[J]Journal of applied physics. 1970,41 (9):3656-3663
    [41]Brown.D.C.Utralhigh-average-power diode pumped Nd:YAG and Yb:YAG lasers[J].IEEE Journal of Quantum Electronics.1997,33(5):861-873
    [42]Ken-ichi Matsuno,Toshio.S.Development of high-power all-solid-state lasers in Japanese MITI project[C].Proceeding of SPIE.2000(3889):172-181
    [43]Takada.A,Akiyama.Y,Takase.T.Diode-pumped cw Nd:YAG lasers with more than 1-kW output power r[C].OSA Advanced solid-state-lasers.1999,2.1,MB18.
    [44]Akiyama.Y,Takada.A,Takase.T.Efficient 2-kW diode-pumped cw Nd:YAG single rod laser[C].OSA Advanced solid-state-lasers.2000,(2000)
    [45]Fujikawa.S,Furuta.K,Konuo.S.1 -kW high-quality beam generation from a diode-side-pumped Nd:YAG rod laser[C].OSA TOPS Advanced solid-state-lasers.2002,68:543-547
    [46]Akiyama.Y,Takase.H,Sasaki.M.Efficient 10kW diode-pumped Nd:YAG rod laser[C]Proceeding of SPIE.2003,(4831):96-100
    [47]Redmond.S,Mcnaught.S,Zamel.J.15kW near-diffraction-limited single-frequency Nd:YAG laser[C]OSA 2007
    [48]Wang Hailin,Huang weiling,Zhou zhuoyou.High power cw diode-side-pumped Nd:YAG rod laser[J].Chinese optics letters.2003,1(9):541-543
    [49]张宝忠,孙慧平,刘萍,等.先进制造业中的激光测试与激光加工技术[J].机械设计与制造.2006,6:158-160
    [50]Henderson.S.W,Suni.P.J.M,Hale.C.P,et al Coherent laser radar at 2μm using solid-state lasers[J].IEEE transactions on geoscience and remote sensing.1993,31(1):4-15
    a[51]Yu.jirong,Singh.U.N,Barnes.N.P,et al.An eye safe all solid state laser for coherent wind lidar in space[C]SPIE.3504:152-158
    [52]Schafer.S.A,Durville.F.M,Jassemnejad.B,et al.Mechanism of biliary stone fragmentation using the Ho:YAG lasr[J]IEEE transactions on biomedical engineering.1994,41(3):276-283
    [53]Knudsen.B.E,D.M,Glickman.R.D.Performance and safety of Holmium:YAG laser optical fibers[J].Journal of endourology.2005,19(9):1092-1098
    [54]Johnson.L.F,Geusic.J.E,Van Uitert.L.G.Coherent oscillations from Tm~(3+),Ho~(3+),Yb~(3+) and Er~(3+) ions in yttrium aluminum garnet[J].Applied physics letters.1965,7(5):127-129
    [55]Antipenko.B.M,Glebov.A.S,Kiseleva.T.I.Soviet tech.phys.lett.1985,11:284
    [56]Hanssen.C.H,Djeu.N.Further investigation of a 2μm Tm:YVO_4 laser[J].IEEE Journal of Quantum Electronics,1994,30(2):275-279
    [57]Sato.A,Asai.K.Lasing characteristics and optimization of a diode-side-pumped Tm,Ho:GdVO_4 laser[J]Optics letters.2004,29(8):836-838
    [58]Storm.M.Holmim YLF amplifier performance and the prospects for multi-joule energies using diode-laser pumping[J].IEEE Journal of Quantum Electronics,1993,29(2):440-451
    [59]Honea.E.C,Beach.R.J,Sutton.S.B,et al.115-W Tm:YAG diode pumped solid-state laser[J]IEEE Journal of Quantum Electronics.1997,33(9):1592-1600
    [60]Li Yufeng,Yao Baoquan,Wang Zhenguo,et al.Tunable CW Tm,Ho:YLF laser at 2μm[J].Chinese optics letters.2006,4(8):470-471
    [61]Yao Yu-cheng,Li Zhen-jia,Huang Chu-yun et al Theoretical simulation of Cr,Tm,Ho:YAG laser[J]ACTA PHOTONICA SINICA,2007,36(7):1351-1355
    姚育成,李正佳,黄楚云等.Cr,Tm,Ho:YAG激光器的理论模拟[J]光子学报,2007,36(7):1351-1355
    [62]Payne.S.A,Chase.L.L,Smith.L.K,et al Infrared cross-section measurements for crystals doped with Er~(3+),Tm~(3+),and Ho~(3+)[J]IEEE Journal of Quantum Electronics.1992,28(11):2619-2630
    [63]Barnes.N.P.,Walsh.B.M,Filer.E.D.Ho:Ho Upconversion:Application to Ho Lasers[J].Journal of Optical Society of America B,2003,20(6):1212-1219
    [64]Norman P.Barnes,Elizabeth D.Filer,Clyde A.Morrison,et al Ho:Tm laser I:theoretical[J]IEEE J.Quantum Electron.1996,32:92-103
    [65]Johnson.L.F,Boyd.G..D,Nassau.K.Optical maser characteristics of Ho~(+3) in CaWo_4[C].Proc.IRE.1962,50:87-88
    [66]Johnson.L.F,Van Uitert.L.G.,Rubin.J.J,at al.Energy transfer from Er~(3+) to Tm~(3+) and Ho~(3+)ions in crystals[J].Physics review.1963,133(2A):A494-A498
    [67]Johnson.L.F,Geusic.J.E,Van Uitert.L.G.Efficient,high-power coherent emission from Ho~(3+) ions in yttrium aluminum garnet,assisted by energy transfer[J].Applied physics letters.1966,8(8):200-202
    [68]Devor.D.P,Soffer.B.H.2.1-μm laser of 20W output power and 4-percent efficiency from Ho~(3+) in sensitized YAG[J].IEEE Journal of Quantum Electronics.1972,8(2):231-234
    [69]Beck.R,Gurs.K.Ho laser with 50W output and 6.5%slope efficiency[J].Journal of applied physics.1975,46(12):5224-5225
    [70]B.M.Antipenko,V.A.Buchenkov,A.S.Glebov Spectroscopy of YAG:CrTmHo laser crystals[J]Opt Spectrosc.(USSR) 1988,64:772-774
    [71]Teichmann.H.O,Duczynski.E.W,Huber.G.Proc.SPIE 1989,1021:74
    [72]Gregory J.Quarles,Annette Rosenbaum,Isaac D.Abella.Efficient room-temperature operation of Cr~(3+) -sensitized,flashlamp-pumped,2μm lasers[J]Optics and Quantum Electronics 1990,22:141-152
    [73]Li.Cheng,Shen.DY,Song.J.Flash lamp pumped high power Cr:Tm:YAG and Cr:Tm:Ho:YAG operating at 2 micron-meter wavelength.[C].Proceedings of SPIE.2000,(3898):274-278
    [74]叶洪波,邝能俊,朱长虹等.室温下Ho~(3+)YAG激光器输出3J的2.1μm激光[J].激光技术.1996,20(6):352-355
    [75]黄莉蕾,纪元新,陈萧竹等.Cr:Tm:Ho:YAG晶体的光谱及其激光特性[J].光电子·激光,1998,9(3):214-216
    [76]杨继超,北京理工大学学位论文,1997.10
    [77]鲁士平,光电子技术与信息,1997,10(1):封4
    [78]姚育成,李正佳,黄楚云等.Cr:Tm:Ho:YAG激光器的研究及设计[J]应用激光,2006,26(4):239-242.
    [79]刘磊,陈慧敏,李家泽.高功率Cr:Tm:Ho:YAG激光器的实验研究[J].光学技术,2004,30(4)505-507
    [80]刘磊,栗苹,闫晓鹏,李家泽.多路Cr:Tm:Ho:YAG激光器合光路的设计[J].激光杂志,2006,27(5):30-31
    [81]李新伟,王义荣.钬激光在神经外科手术中的应用.[J]全科医学临床与教育.2006,4(3)199-202
    [82]郭启霞,周晨冈.Ho:YAG激光治疗仪及其医学医用[J]激光生物学报.1997,6(2):1090-1092
    [83]朱箐,包晓青,张慧国,等.Ho:YAG激光心肌血管重建术的实验研究[J].应用激光.2000,20(4)187-190
    [84]黄楚云,刘莉,李正佳.激光碎石应用及研究进展[J].中国激光医学杂志.2005,14(6):390-393
    [85]Albrecht.G.F,Sutton.S.B,George,et al.The heat capacity disk laser[C].SPIE.1998,3346:661-667
    [86]Shah.A.L,Datta.S.N,Singh.A.R.Investigating transient thermal effects in flash-lamp-pumped heat capacity Nd:YAG rod laser[J]IEEE Journal of quantum electronics.2008,44(11):1033-1041
    [87]Laporta.P,Magni.V,Svelto.O.Comparative Study of the Optical Pumping Efficiency in Solid-State Lasers[J].IEEE Journal of Quantum Electronics,1985,21(8):1211-1218
    [88]Oliver.J.R,Barnes.F.A comparison of rare-gas flashlamps[J].IEEE Journal of quantum electronics.1969,5(5):232-237
    [89]Lee.S,Kim.S.K,Yun.M,et al.Design and fabrication of a diode-side-pumped Nd:YAG laser with a diffusive optical cavity for 500-W putput power[J].Applied optics.2002,41(6):1089-1904
    [90]Whittle.J,Skinner.D.R.Transfer efficiency formula for diffusely reflecting laser pumping cavities[J].Applied optics.1966,5(7):1179-1182
    [91]Cross.P.L,Barnes.N.P,Skolaut.M.W,et al.Blackbody absorption efficiencies for six lamp pumped Nd laser materials[J].Applied optics.1990,29(6):791-797
    [92]Lupei.V,Lupei.A,Georgescu.S.Effects of energy transfer quantum efficiency of YAG:Nd[J]Journal of applied physics.1989,66(8):3792-3797
    [93]Barnes.N.P,Storm.M.E,Cross.P.L,etal.Efficiency of Nd material with laser diode pumping[J]IEEE Journal of Quantum Electronics,1990,26(3):558-569
    [94]Devor.D.P,Deshazer.L.G,Pastor.R.C,Nd:YAG Quantum Efficiency and Related Radiative Properties[J].IEEE Journal of Quantum Electronics,1989,25(8):1863-1873
    [95]Mangir.M.S,Rockwell.D.A.Measurements of heating and energy storage in flashlamp-pmped Nd;YAG and Nd-doped phosphate laser glasses[J].IEEE Journal of quantum electronics.1986,22(4):574-580
    [96]Barnes.N.P,Walsh.B.M.Corrections to "Amplified Spontaneous Emission-Application to Nd:YAG lasers"[J].IEEE Journal of quantum electronics.1999,35(7):1100
    [97]Haag.G,Munz.M,Marowsky.G.Amplified spontaneous emission(ASE) in laser oscillators and amplifiers[J]IEEE J.Quantum Electron.1983,19(6):1149-1160
    [98]Peterson.P,Sharma.M,Gavrielides.A.Extraction efficiency and thermal lensing in Tm:YAG lasers[J]Optics and quantum electronics.1996,28:595-707
    [99]Barnes.N.P,Murray.K.E,Jani.M.Flash lamp pumped Ho:Tm:Cr:YAG and Ho:Tm:Er:YLF lasers[J].Applied optics.1997,36:3363-3374
    [100]Laporta.P,Brussard.M.Design criteria for mode size optimization in diode-pumped solid-state lasers[J].IEEE Journal of quantum electronics.1991,27(10):2319-1326
    [101]Kapoor.R,Mukhopadhyay.P.K,George.J.A new approach to compute overlap efficiency in axially pumped solid state lasers[J]Optics express.1999,5(6):125-133
    [102]Wenjie Xie,Tam.S.Ch,Loy.L.Y,et al.Thermal lensing of diode side-pumped solid state lasers[J].Optics and laser technology.2000(32):199-203
    [103]赵鸿.二极管侧面泵浦倍频固体激光技术研究[D].西安:中国科学院西安光学精密机械研究所2001
    [104]A.Yariv,李宗琦译,光电子学导论[M].北京:科学出版社,1983:132-135
    [105]Koechner.W.Solid-State Laser Engineering[M]5th BeiJing:WPCBJ,2005:406
    [106]Fan.T.Y.Heat Generation in Nd:YAG and Yb:YAG[J].IEEE Journal of Quantum Electronics,1993,29(6):1457-1459
    [107]Barnes.N.P,Walsh.B.M.Amplified spontaneous emission-application to Nd:YAG lasers[J].IEEE J.Quantum Electron.1999,36(1):101-109
    [108]Bass.M,Weichman.L.S,Vigil.S,et al.The Temperature Dependendce of Nd~(3+) Doped Solid-State Lasers[J].IEEE Journal of Quantum Electronics,2003,39(6):741-748
    [109]Rapaprot.A,Zhao Shenzhi,Xiao Guohua.Temperature dependence of 1.06μm stimulated emission cross section of neodymium in YAG and in GSGG[J].Applied optics.2003,41(33);7052-7057
    [110]Edandson.A.C,Albrecht.G.F.Modeling Predicting the Temperature Dependendce of the Gain Coefficient and the extractable stored energy density in Nd:phosphate glass lasers[J].Journal of Optical Society America B,1992,9(2):214-222
    [111]Kortz.H.P,Ifflander,Weber.H.Stability and beam divergence of multimode lasers with interl variable lenses[J].Applied optics.1981,20(23):4124-4134
    [112]Kogelnik.H,Li.T.Laser beam and resonators.[J].Applied optics,1966,5(10):1550-1567
    [113]Xie Wenjie,Tam Siu-chung,Lam Yee Loy,etal.Thermal and optical properties of diode side- pumped solid state laser rod[J]Optics and laser technology.2000,(32):193-198
    [114]Koechnor.W.Thermal Lensing in a Nd:YAG Laser Rod[J].Applied Optics,1970,9(11):2548-2553
    [115]Klein P..H,Croft.W.J.Thermal conductivity,diffusivity,and expansion of YO,YAlO and La in the rang 77-300K[J]Journal Applied physics.1967,38:1603-1607
    [116]Gupta.T.K,Valentich,Thermal expansion of yttrium aluminum garnet[J].J.Amer.Ceram.soc.1971,54:355-357
    [117]Alton.W.J,Barlow.A.J,Temperature dependence of elastic constants of yttrium aluminum garnet[J].Journal of applied physics.1967,38:3023-3024
    [118]赵凯华,钟锡华编.光学[M].北京:北京大学出版社,1982
    [119]吕百达著.激光光学:光束描述、传输变换与光腔技术物理[M].北京:高等教育出版社,2003.12
    [120](日)斋藤富士郎著.崔承甲译.超高速光器件[M]北京:科学出版社;日本:共立出版,2002
    [121]Whittle.J,Skinner.D.R.Transfer efficiency formula for diffusely reflecting laser pumping cavities[J].Applied optics.1966,5:1179-1182
    [122]Koechnor.W.Absorbed Pumped Power Thermal Profile and Stresses in a cw pumped Nd:YAG Crystal[J].Applied Optics,1970,9(6):1429-1434
    [123]苏铿著.稀土化学[M]郑州:河南科学技术出版社,1993.8
    [124]Wei.Chen,Studies of crystalline paramagnetic Ho~(3+),Tm~(3+),and Cr~(4+) lasers and Q-switches[D].Faculty of the graduate school university of southern California.1995
    [125]Fan.T.Y,Byer.R.Modeling and CW operation of a quasi-three-level 946nm Nd:YAG laser[J].IEEE Journal of Quantum Electronics.1987,23(5):605-612
    [126]Barnes.N.P.Physics of quasi four level lasers[C].SPIE.2379:2-9
    [127]Haim Lotem,Yehoshua Kalisky,Jacob Kagan.A 2 μm Holmium laser[J].IEEE Journal of quantum electronics.1988,24(6):1193-1200
    [128]Duczynski.E.W,Huber.G..CW double cross pumping of the ~5I_7-~5I_8 laser transition in Ho~(3+)-doped garnets[J]Applied physics letters.1986,48(23):1562-1563
    [129]Brian M.Walsh,Norman P.Barnes,Baldassare Di.Bartolo The temperature dependence of energy transfer between the Tm ~3F_4 and Ho ~5I_7 manifolds of Tm-sensitized Ho luminescence in YAG and YLF[J] Journal of Luminescence 2000,90: 39-48
    
    [130]Brian M.Walsh, Norman P. Barnes, Baldassare Di.Bartolo On the distribution of energy between the Tm ~3F_4 and Ho ~5I_7 manifolds in Tm-sensitized Ho luminescence[J] Journal of Luminescence 1997,75:89-98
    
    [131]Kalisky.Y,Kagan.J,Sagie.D. Spectroscopic properties energy transfer and laser operation of pulsed holmium lasers [J] Journal of applied physics. 1991,70(8):4095-4100
    
    [132]Grant. W.J .C. Role of rate equation in the theory of luminescent energy transfer[J] .Physical review B.1971,4(2):648-663
    
    [133]L.B.Shaw, R.S.F.Chang, and N.Djeu. Measurement of up-conversion energy-transfer probabilities in Ho:Y_3Al_5O_(12) and Tm:Y_3Al_5O_(12)[J] Physical Review B. 1994,50:6609-6619
    
    [134]Murphy.J, Ohlmann.R.C, Mazelsky.R. Energy transfer from 3d to 4f electrons in LaALO_3:Cr,Nd[J].Physical review letters, 1964,13(4):136-137
    
    [135]Walsh.B.M,Grew.GW, Barnes.N.R Energy levels and intensity parameters of Ho~(3+) ions in Y_3Al_5O_(12) and L_3uAl_5O_(12)[J] Journal of physics and chemistry of solid.2006,67:1567-1582
    
    [ 136]A.A.Nikitichev.Temperature dependence of the gain in Y_3Al_5O_(12):Cr:Tm:Ho[J] SovJ.Quantum Eeltron. 1988,18:918-919
    
    [137]B.M.Antipenko,V.A.Buchenkov,A.S.Glebov,et al.Spectroscopy of YAG: Cr:Tm:Ho laser crystals[J] Opt.Spectrosc.(USSR). 1988,64:772-774
    
    [138]G.Kintz, I.D.Abella, L.Esterowitz Up-conversion coefficient measurement in Tm:Ho:YAG at room temperature[C] in Proc.Intl.Conference on Laser '87. 398,1988
    
    [139]A.A.Nikitichev.Up-conversion coefficient measurements in Tm:Ho:YLF and YAG crystals[C]. OSA Proceedings on Advanced solid-state laser, 1995
    
    [140]Gunnar. Rustad and Knut. Stenersen.Modeling of laser-pumped Tm and Ho lasers accounting for upconversion and ground-state depletion[J]IEEE J.Quantum Electron.1996,32:1645-1656
    
    [141]Tyminsky.J.K. Gain dynamics of Tm:Ho:YAG pumped in near infrared [J].Journal of applied physics, 1989,65(8):3181-3188
    
    [142]Docchio.F. The rod image: a new method for the calculation of pump efficiency in reflecting close-coupled cavities[J].Applied optics. 1985, 24(22):3746-3751
    [143]Barton.T.G, Guttenberger.R,Forth.H.J. Effects of simmer current on flash-lamp impedence and their combined influence on the output of the Cr:Tm:Ho:YAG laser [J] .Applied optics. 1995,34(12):2004-2012
    
    [144]Song Feng, Zhang.Chaobo, Ding.Xin, et al.Determination of thermal focal length and pumping radius in gain medium in laser-diode-pmped Nd:YVO_4 laser[J] .Applied physics letters.2002,81(12):2145-2147
    
    [145]Vittorio Magni. Resonators for solid-state lasers with large-volume fundamental mode and high-alignment stability[J] Applied Optics 1986,25(1): 107-117
    
    [146]Kurtev, S Z; Denchev, O E; Savov, S D .Effects of thermally induced birefringence in high-output-power electro-optically Q-switched Nd:YAG lasers and their compensation[J]Applied Optics. 1993 ,32 (3): 278-285