非线性SPKF滤波算法研究及其在组合导航中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
捷联惯性导航系统(Strap-down Inertial Navigation System, SINS)和全球定位系统(Global Positioning System, GPS)所构成的组合导航系统本质上是非线性的,且具有模型不确定性。目前,应用于SINS/GPS组合导航系统的非线性滤波方法主要是扩展卡尔曼滤波器(Extended Kalman Filter, EKF)。然而,EKF存在一阶线性化精度偏低及需要计算非线性函数雅克比矩阵的缺点,造成了其在组合导航实际工程应用中估计精度不佳;且EKF不具有克服系统模型不确定的鲁棒性。近年来,随着对非线性滤波技术的需求不断加深,非线性滤波理论也取得了显著进步,尤其是以Sigma点卡尔曼滤波(Sigma Point Kalman Filter, SPKF)为代表的新兴非线性滤波方法的发展成熟,使得非线性滤波理论取得了长足的发展。
     SPKF具有实现简单、滤波精度高、收敛性好等优点,正逐渐成为当前及未来非线性滤波技术的研究热点和发展方向。本文以SINS/GPS组合导航系统为应用背景,针对SPKF所存在的理论局限性,主要在以下几方面进行了理论创新:
     1)根据线性最小方差估计准则,详细推导了非线性最优滤波递推公式。
     2)传统SPKF在噪声先验统计未知或时变情况下滤波精度下降甚至发散,针对此问题,基于极大后验估计原理,设计了一种带噪声统计估计器的自适应SPKF算法。
     3)类似于EKF,传统SPKF不具有克服系统模型不确定的鲁棒性,为此提出了一种带次优渐消因子的强跟踪SPKF算法。
     同时,将上述非线性SPKF滤波理论创新成果应用于SINS/GPS组合系统导航定位中,主要从以下几方面进行了研究:
     1)建立了以姿态、速度及位置等误差为基础的SINS/GPS组合导航系统非线性模型,并比较了EKF和SPKF的滤波性能,仿真结果验证了SPKF比EKF具有更好的定位精度。
     2)针对惯性器件随机噪声统计在恶略工作环境下具有时变性的特点,将自适应UKF算法应用于SINS/GPS组合系统中,仿真结果表明了自适应SPKF在滤波前不要求精确已知惯性器件随机噪声的先验统计,且具有应对惯性器件随机噪声统计变化的自适应能力。
     3)通常情况下,惯性器件随机常值漂移会被视为状态变量的一部分而采用滤波器进行估计,且其易受运行环境影响中不确定因素的影响而发生突变。为此,将强跟踪SPKF应用于SINS/GPS组合系统的仿真分析表明:强跟踪SPKF对突变的惯性器件随机常值漂移具有很强跟踪能力,验证了其具有克服组合导航系统模型不确定的鲁棒性。
SINS/GPS integrated navigation system is essentially non-linear, and has model uncertainty. At present, the non-linear filtering method applied for SINS/GPS integrated navigation system is mainly extended Kalman filter (EKF). However, EKF has some shortcomings including low precision resulted from the first-order linear and calculating Jacobian matrix of non-linear function, so its estimation accuracy is poor in the integrated navigation, and EKF does not have robustness to overcome the system model uncertainty. In recent years, with the deepening demand for non-linear filtering technique, non-linear filtering theory has made remarkable progress. Especially the emerging non-linear filtering methods, such as Sigma-point Kalman filter (SPKF) and particle filter (PF) developed, making non-linear filtering theory has made considerable development.
     SPKF with easy implementation, high precision and good convergence, etc., is becoming the research focus and development direction of the current and future non-linear filtering technique. This paper applies SINS/GPS integrated navigation system for the application background, and for the theory limitations existing in SPKF, the theory innovation is mainly made from the following aspects:
     1) According to the linear minimum variance estimation criteria, the recurrence formula of the non-linear optimal filter is derived in detail.
     2) For this problem that filtering accuracy of the traditional SPKF reduces or even diverges when noisy priori statistics is unknown or time-varying, based on maximum a posteriori estimation principle, a kind of adaptive SPKF algorithm with noise statistics estimator is designed.
     3) Similar to the EKF, the traditional SPKF does not have the robustness to overcome the system model uncertainty. For this, a strong track SPKF algorithmwith suboptimal fading factor is presented.
     Meanwhile, the above-mentioned non-linear filtering theory innovations about SPKF is used in SINS/GPS integrated system navigation, and the following aspects were mainly studied:
     1) This papr establishes the non-linear model of SINS/GPS integrated navigation system based on the errors of posture, speed and location, and compares the filtering performance of EKF and SPKF. Simulation results validate the SPKF has better positioning accuracy than EKF.
     2) For time-varying characteristics of inertial device random noise statistics on the working environment with a slightly evil, the adaptive UKF algorithm is applied to SINS/GPS integrated system. Simulation results show that the adaptive SPKF does not require to precisely know the priori statistics of inertia device random noise before the filter, and has a adaptive capacity to response to changes in inertial random noise statistics.
     3) Under normal circumstances, inertial device regular random drift will be seen as part of the state variable to been estimated in fitering, and is prone to mutation caused by the uncertain factors of operation environmental. For this, the strong tracking SPKF is applied to SINS/GPS integrated system, and simulation analysis shows that strong track SPKF has a strong ability to track inertial device regular random drift when it has a mutation, and possesses a robustness to overcome model uncertainty of the integrated navigation system.
引文
[1] Farrel J A, Barth M. The global position system & inertial navigation[M]. McGraw-Hill, 1999
    [2]张树侠,孙静.捷联式惯性导航系统.北京:国防工业出版社, 1992
    [3] Parkinson B W, James J, Spilker J. Global Positioning System: Theory and Application. AIAA, INC, 1997
    [4]王惠南. GPS导航原理与应用.北京:科学出版社, 2003
    [5]王厚基. GLONASS和GNSS简介.海洋技术. 1998, 17(2): 9-17页
    [6] Bornemann Wilfried. Navigation satellite system Galileo. Acta Astronautica. 2004, 54(11): 821-823P
    [7]陈秀万,方裕,尹军,张怀清编著.伽利略卫星导航系统.北京:北京大学出版社, 2005
    [8]周露,刘宝忠.北斗卫星定位系统的技术特征分析与应用.全球定位系统. 2004, 4: 12-16页
    [9]羽佳.双星定位法与北斗1号卫星导航系统.航天返回与遥感. 2004, 25 (1) : 65-67页
    [10]干国强,邱致和等.导航与定位——现代战争的北斗星.北京:国防工业出版社, 2000
    [11] Kaplan E D, Hegarty C J(著),寇艳红(译). GPS原理与应用(第二版).北京:电子工业出版社, 2007
    [12]袁建平,罗建军,岳晓奎等.卫星导航原理与应用.北京:中国宇航出版社, 2003
    [13] Rounds S F, Casey J M. A Fully Integrated GPS/Doppler/Inertial Navigation System. The First Technical Meeting of the Institute of Navigation. Colorado Springs, 1987
    [14] Knight D T. GPS Integration With Low Cost Inertial Navigation Unit. The First Technical Meeting of the Institute Of Navigation, Colorado Springs. 1987
    [15] Lionel E, Peters B L. Low Cost High Accuracy Integrated GPS-Inertial Navigation for Reconnalssance Missions. IEEE PLANS'88, 1988
    [16] Karatsinide S E. Enhancing Filter Robustness in Cascaded GPS-INS Integrations. IEEE Transactions on Aerospace and Electronic Systems. 1994, 30(4): 1001-1008P
    [17] Diese J W. Integration of GPS/INS for Maximum velocity accuracy. Navigation. 1987, 34(3): 287-292P
    [18] Buechler D. Integration of GPS and Strap-down inertial subsystems into a single unit. Navigation. 1987, 34(2): 141-147P
    [19] Spalding K J. Advanced GPS-Inertial integration concept. AIAA-3501- CP, 1989
    [20] West-Vukovich G, Zywiel J, Scheminger B, Russell H, Burke S. The Honeywell Helicopter Integrated Navigation System. IEEE PLANS'88, 1988
    [21]秦永元,张洪钱,汪叔华.卡尔曼滤波与组合导航原理.西安:西北工业大学出版社, 1998
    [22]李涛.非线性滤波方法在导航系统中的应用.长沙:国防科学技术大学, 2003
    [23] Harry C S. A new algorithm for the initial alignment of integrated INS/GPS systems. Proceeding of ION 2000. Anaheim, 2000, 145-151P
    [24] Qi H H, Moore J B. Direct kalman filtering approach of GPS/INS integration. IEEE Trans on AES. 2002, 38(2): 687-693P
    [25] Nuibe W H, A comparison of loose and tight GPS/INS integration using real ins and gps data. Air Force Institute of Technology. Wright-Patterson AFB,OH, 1995
    [26] Schwarz K P. Aided versus embeded: a comparison of two approaches to GPS/INS integration, IEEE PLANS'94, 314-322P
    [27]黄凤钊,彭允祥. GPS/SINS伪距(伪距变化率)组合导航系统试验研究.中国惯性技术学报. 1998, 6(2): 1-9页
    [28] Williamson W, Ming J, Speyer J L, Farrell H. A comparison of state space, range space, and carrier phase differential GPS/INS navigation. Proceedings of the American Control Conference, Chicago, 2000
    [29]杨春钧,袁信,谢克明.伪距、伪距增量、载波相位双差/惯性深组合系统.太原理工大学学报. 1998, 18(1): 69-74页
    [30]王惠南,何峰.利用GPS载波相位实时测定动态飞行器姿态.空间科学学报. 1998, 18(1): 69-74页
    [31] Wendel J, Trommer G. F. Tightly Coupled GPS/INS Integration for Missile Applications. Aerospace Science and Technology. 2004, 31(8): 627-634P.
    [32] Park J G, Lee J G, Park C G. SDINS/GPS in-flight alignment using GPS carrier phase rate. GPS Solutions. 2004, 8: 74-81P
    [33] Moafipoor S, Brzezinska D G, Toth C K. Tightly Coupled GPS/INS/CCD Integration Based on GPS Carrier Phase Velocity Update. ION NTM 2004, San Diego, 2004
    [34] Wendel J, Meister O, Trommer G F. Time-Differenced Carrier Phase Measurements for Tightly Coupled GPS/INS Integration. IEEE PLANS'06, 2006
    [35]陈家斌,袁信.动态用户惯性速度辅助的GPS码环稳定性研究[J],中国惯性技术学报. 1994, 2(3): 112-117页
    [36] Gustafson D, Dowdle J, Flueckiger K. Deeply-Integrated Adaptive GPS-Based Navigator with Extended-Range Code Tracking. US6, 331, 835, B1, 2001
    [37] Gustafson D, Dowdle J, Flueckiger K. A High Anti-Jam GPS-Based Navigator. ION NTM-2000, Anaheim, CA, 2000
    [38]刘志俭. GPS载波相位差分技术、捷联惯性导航系统初始对准技术及其组合技术研究.博士学位论文.长沙:国防科技大学, 2003
    [39] Wolf R, Hein G W. An Integrated Low-cost GPS/INS Attitude Determination and Position Location System. ProceedingS of ION-GPS'96[C], Lansas City, Missouri, 1996
    [40]曹娟娟,房建成,盛蔚.大失准角下MIMU空中快速对准技术.航空学报. 2007, 28(6): 1395-1400页
    [41]汤勇刚.载波相位时间差分_捷联惯导组合导航方法研究.博士学位论文.长沙:国防科学技术大学, 2007
    [42]丁杨斌,申功勋. Unscented粒子滤波在静基座捷联惯导系统大方位失准角初始对准中的应用研究.航空学报. 2007, 28(2): 397-401页
    [43]文成林,周东华著.多尺度估计理论及应用.北京:清华大学出版社, 2002
    [44] Uhlmann J K. Algorithm for multiple target tracking. American Science. 1992, 80(2): 128-141P
    [45] Sorenson H W. Kalman filtering: Theory and application. New York: IEEE Press, 1985
    [46] Maybeck P S. Stochastic models estimation and control. New York: Academic, 1970
    [47] Caballero-Gil P, Fuster-Sabater A. A wide family of nonlinear filter functions with a large linear span. Information Science. 2003, 164(1-4): 197-207P
    [48] Jazwinski A H. Stochastic processes and filtering theory. New York: Academic, 1970
    [49] Maybeck P S. Stochastic Models,Estimation and Control. New York: Academic Press, 1979
    [50] Zhou D H, Wang Q L. Strong tracking filtering of nonlinear systems with colored noise. Journal of Beijing Institute of Technology. 1997, 17(3): 321-326P
    [51]曲丛善,许化龙,谭营.非下行贝叶斯滤波算法综述.电光与控制. 2008, 15(8): 64-71页
    [52] Julier S J, Uhlmann J K. A new approach for filtering nonlinear system. Proceedings of the 1995 American Control Conference. 1995: 1628- 1632P
    [53] Julier S J, Uhlmann J K. A new method for the nonlinear transformation of means and covariances in filters and estimators. IEEE Transactions on Automatic Control. 2000, 45(3): 477-482P
    [54] N(?)rgarrd M, Poulsen N K, Ravn O. New developments in state estimation for nonlinear systems. Automatica. 2000, 36(11): 1627-1638P
    [55] Merwe R V D. Sigma-Point Kalman Filters for Probabilistic Inference in Dynamic State-Space Models. http://www.cslu.ogi.edu/publications, 2004
    [56] Julier S J, Uhlmann J K. A general method for approximating nonlinear transformation of probability distributions. http://www.eng.ox.ac.uk, 1996
    [57] Julier S J, Uhlmann J K. Reduced sigma point filters for the propagation of means and covariances through nonlinear transformations. Proceedings of American Control Conf. Jefferson City, 2002: 887-892P
    [58] Merwe R V D,Wan E A. Sigma-Point Kalman Filters for Integrated Navigation. Proceedings of the 60th Annual Meeting of the Institute of Navigation (ION). Dayton, 2004
    [59] Lachapelle G. Sigma-Point Kalman Filtering for Integrated GPS and Inertial Navigation[J]. IEEE Transactions on Aerospace and Electronic Systems. 2006, 42(2): 750-756P
    [60] Farid G, Fang J C, Anwar A G. GPS/SINS navigation data fusion using quaternion model and unscented Kalman filter. Proceedings of the 2006IEEE International Conference on Mechatronics and Automation. Luoyang, China, 2006
    [61] Zhang Y L, Gao F, Tian L. INS/GPS Integrated Navigation for Wheeled Agricultural Robot Based on Sigma-point Kalman Filter. Asia Simulation Conference-7th International Conference on System Simulation and Scientific Computing, 2006
    [62] Merwe R V D, Wan E A. The Square-root Unscented Kalman Filter For State and Parameter-eatimation. International Conference on Acoustics, Speech, and Signal Processing. Salt Lake City, 2001
    [63] Rezaie J, Moshiri, B, Araabi B N, Asadian A. GPS/INS integration using nonlinear blending filters. SICE Annual Conference, 2007
    [64]潘泉,杨峰,叶亮,梁彦,程咏梅.一类非线性滤波器—UKF综述.控制与决策. 2005, 20(5): 481-48页
    [65]宫晓琳,房建成.模型预测滤波在机载SAR运动补偿POS系统中的应用.航空学报. 2008, 29 (1): 102-108页
    [66] Huang A J. A tutorial on Bayesian estimation and tracking techniques applicable to non-linear and non-Gaussian process. http://www.mitre.org/work, 2005
    [67] Doucet A, Godsill S, Chistophe A. On sequential Monte Carlo sampling methods for Bayesian filtering. Statistics and Computing. 2000, 10(3): 197-208P
    [68] Handschin J E. Monte Carlo techniques for prediction and filtering of nonlinear stochastic processes. Automatica. 1970, 6(3): 555-563P
    [69] Hammersley J M, Morton K W. Poor man’s Monte Carlo. Journal of the Royal Statistical Society. 1954, 16(1): 23-38P
    [70] Gordon N, Salmond D. Novel approach to non--linear and non--Gaussian Bayesian state estimation. Proceedings of Institute Electric Engineering.1993, 140(2): 107-113P
    [71] Isard M, Blake A. Condensation-conditional density propagation for visual tracking. International Journal of Computer Vision. 1998, 29(1): 5-28P
    [72] Cho J U, Jin S H, Pham X D, et al. A real-time object tracking system using a particle filter. Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. 2006: 2822-2827P
    [73] Haykin S, Huber K, Chen Z. Bayesian sequential state estimation for MIMO wireless communications. Proceedings of the IEEE. 2004: 439- 454P
    [74]葛哲学,杨拥民,温熙森.强跟踪UKF方法及其在故障辨识中的应用.仪器仪表学报. 2008, 29(8): 1670-1674页
    [75]陈记争,袁建平,方群.基于修正Rodrigues参数和UKF的姿态估计算法.宇航学报. 2008, 29(5): 1622-1626页
    [76] Titterton D H, Weston J L. Strapdown inertial navigation technology[M]. Institution of Engineering and Technology, 2004. (2nd Edition)
    [77] Gustafsson F, Ahlqvist S, Forssell U, Persson N. Sensor fusion for accurate computation of yaw rate and absolute velocity. In SAE 2001, Detroit, 2001
    [78] Hall P. A Bayesian approach to map-aided vehicle positioning. Master Thesis LiTH-ISY-EX-3104, Dept of Elec. Eng. Linkoping University, S-58183 Linkoping, Sweden, 2001
    [79] Bergman N. Recursive Bayesian Estimation: Navigation and Tracking Applications. Dissertation nr. 579, Linkoping university, Sweden, 1999
    [80] Carvalho H, Moral P D. Optimal nonlinear filtering in GPS/INS integration. IEEE Trans on AES. 1997, 33(3): 835-849P
    [81] Babak Azimi-Sadjadi, Approximate Nonlinear Filtering with Applications to Navigation. Linkoping Univ, Linkoping, Sweden, 2001
    [82] Thomas S, Fredrik G, Per-Johan Nordlund. Marginalized Particle Filters forMixedLinear/Nonlinear State-Space Models. IEEE Transactions on Signal Processing. 2005, 53(7): 2279-2289P
    [83]胡士强,敬忠良.粒子滤波综述.控制与决策. 2008, 20(4): 361-371页
    [84] Doucet A, Davy M. Particle filtering for multi-target tracking and sensor management. The 5th International Conference on Information Fusion. Annapolis. 2002: 474-481P
    [85] Hue C, Cadre J, Perez P. Sequential Monte Carlo methods for multiple target tracking and data fusion. IEEE Transactions on Signal Processing. 2002, 50(2): 309-325P
    [86] Storvik G.. Particle filters for state-space models with the presence of unknown static parameters. IEEE Transactions on Signal Processing. 2002, 50(2): 281-289P
    [87] Chib S, Nardari F, Shephard N. Markov chain Monte Carlo methods for stochastic volatility models. Journal of Econometrics. 2002, 8(1): 281-316P
    [88] Papavasiliou A. Adaptive particle tilters with applications. Princeton: University of Princeton, 2002
    [89] Heinrich A. Application of statistical bootstrapping in finance. Oxford: University of Oxford, 2000
    [90] Isard M, Blake A. Condensation-conditional density propagation for visual tacking[J]. Journal of Computer Vision. 1998, 29(1): 5-28P
    [91] Isard M, Blake A. Condensation: Unifying low-level and high-level tracking in a stochastic framework. Proceedings of the 5th European Conference on Computer Vision. Berlin, 1998: 893-908P
    [92] Maccormick J F. Stochastic algorithms for visual tracking. Paris: Telos Press, 2003
    [93] Morales R,Poole D. Real-time monitoring of complex industrial processes with particle filters. Orlando: University of British Columbia, 2003
    [94] Karlsson R, Jansson J. Model-based statistical tracking and decision making for collision avoidance application. Volvo Car/Control & Communi- cation Active Safety. 2003: 1-6P
    [95] Vaswani N, Chellappa R. A particle filtering approach to abnormality detection in nonlinear systems and its application to abnormal activity detection[R]. Marland: University of Maryland, 2003
    [96] Doucet A. On sequential Monte Carlo Methods for Bayesian Filtering. Department of Engineering, Cambridge University, 1998
    [97] Smith A F M, Geland A E. Bayesian Statistics without tears: a sampling-resampling perspective. The American Statistican. 1992, 46(2): 84-88P
    [98] Higuchi T. Monte Carlo Filter using the Genetic Algorithm Operators. Journal of Statistical Computation and Simulation. 1997, 59(1): 1-23P
    [99] Kitagawa G. Monte Carlo filter and smoother for non-Gaussian nonlinear state space models. Journal of Computational and Graphical Statistics. 1996, 48(5): 1-25P
    [100]沈忠,俞文伯,房建成.基于UKF的低成本SINS/GPS组合导航系统滤波算法.系统工程与电子技术. 2007, 29(3): 408-411页
    [101] Merwe R V D, Wan E A. The unscented particle filter. Proceedings of Symposium on Adaptive Systems for Signal Processing, Communication and Control (AS-SPCC), Canada, 2000
    [102] Zhao M, Zhang S T, Zhu G. The application research of Unscented Particle Filter algorithm to GPS/DR. Proceedings of the 6th World Congress on Intelligent Control and Automation. Dalian, China, 2006
    [103] Aggarwal P, Syed Z. Hybrid Extended Particle Filter (HEPF) for Integrated Civilian Navigation System. Position, Location and navigation Symposium, 2008
    [104] Blom H A P, Bar-Shalom Y. The interacting multiple model algorithm for systems with Markovian switching coefficients. IEEE Transactions on Automatic Control. 1988, 33(8): 780-783P
    [105] Bar-Shalom Y, Chang K C, Blom H A P. Tracking a maneuvering target using input estimation versus the interacting multiple model algorithm. IEEE Transactions on Aerospace and Electronic Systems. 1989, 25(2): 296-300P
    [106]石玥.多传感器系统数据融合算法.博士学位论文.清华大学博士论文, 2007
    [107] Mazor E, Averbuch A, Bar-Shalom, Y, et al. Interacting multiple model methods in target tracking: a survey. IEEE Transactions on Aerospace and Electronic Systems. 1998, 35(1), 103–123P
    [108] Blackman S, Popoli R. Design and analysis of modern tracking systems. Norwood, MA: Artec.1999
    [109]李辉,沈莹,张安,程铮.交互式多模型目标跟踪的研究现状及发展趋势.火力与指挥控制. 2006, 31(11): 1-4页
    [110]肖乾.多模型估计理论.舰船科学技术. 2005, 27(2): 63-67页
    [111] Zang R C, CuiP Y. An Innovation Filtering Multiple Model Algorithm for Integrated Navigation System. Proceedings of the First International Conference on Innovative Computing, Information and Control, 2006
    [112] Ragel B A, Farooq M. IMM filter for GPS aided INS in the AUV Application. The 48th Midwest Symposium on Circuits and Systems, 2008
    [113]藏荣春,崔平远,崔祜涛,金艺.基于IMM-UKF的组合导航算法.控制理论与应用. 2007, 24(4): 634-638页
    [114] Seong Yun Cho, Byung Doo Kim. Adaptive IIR/FIR fusion filter and its application to the INS/GPS integrated system. Automatica. 2008, 44(8): 2040-2047P
    [115] Rafael T M, Miguel A Z, Benito U M, Antonio F. Gómez-Skarmeta. High-Integrity IMM-EKF-based road vehicle navigation with Low-Cost GPS/SBAS/INS. IEEE Transactions on intelligent transportation systems. 2007, 8(3): 491-511P
    [116] Crisan D. Particle Filters-A Theoretical Perspective. In Sequential Monte Carlo Methods in practice. Springer-Verlag. 2001:17-42P
    [117] Crisan D, Moral P D, and Lyons T. Discrete Filtering Using Braching and Interacting Particle Systems. Markov Processes and Related Fields. 1999, 5(3):293-318P
    [118] Moral P D and Jacod J. Interacting Particle Filtering with Observations. In Sequential Monte Carlo Methods in Practice. Springer-Verlag. 2001: 43-75P
    [119]张汉国,张洪钺.阻止自适应Kalman滤波发散的补救方法.控制与决策. 1991, 17(1): 53-57页
    [120]周东华,叶银忠.现代故障诊断与容错控制.北京:清华大学出版社, 2000
    [121]史玉柱.最优估计的计算方法.北京:科学出版社, 2001
    [122]付梦印,邓志红,张继伟, Kalman滤波理论及其在导航系统中的应用.北京:科学出版社
    [123]赵琳,王小旭,丁继成,曹伟.组合导航系统非线性滤波算法综述.中国惯性技术学报. 2009, 17(1): 46-52页
    [124] ZHAO Lin, WANG Xiao-xu. An adaptive UKF with noise statistic estimator. The 4th IEEE Conference on Industrial Electronics and Applications (ICIEA 2009), Xi’an, 2009
    [125]谢树艺.矢量分析与场论.北京:高等教育出版社, 1985
    [126] Wang W, Liu Z Y, Xie R R. Quadratic extended Kalman filter approach for GPS/INS integration. Aerospace Science and Technology. 2006, 10(6): 709-713P
    [127] Babak A S, Krishnaprasa P S. Approximate nonlinear filtering and its application in navigation. Automatica. 2005, 41(5): 945-956P
    [128] CRASSIDIS J L. Sigma-point kalman filtering for integrated GPS and inertial navigation. IEEE transactions on aerospace and electronic systems. 2006, 42(2): 750-756P
    [129] William F. L, Aaron D L. Unscented Kalman Filters for Multiple Target Tracking With Symmetric Measurement Equations. IEEE transactions on Automatic control. 2009, 54(2): 370-375P
    [130] N?rgarrd M, Poulsen N K, Ravn O. Advances in Derivative-Free State Estimation for Nonlinear Systems. Technical report IMM-REP-1998-15 (revised edition). Department of Mathematical Modelling, Technical University of Denmark, 2000
    [131] Wang Q, Li Y, Li S Y. Application of a sigma-point Kalman filter for alignment of MEMS-IMU. IEEE PLANS'08, 2008
    [132] Lefebvret T, Bruyninckx H, Schutter J D. Comment on a new method of the nonlinear transformation of means and covariances in filters and estimators. IEEE Transactions on Automatic Control. 2002, 47(8): 1406-1408P
    [133] Julier S J, Uhlmann J K. A new extension of the Kalman filter to nonlinear systems. The Proceedings of Aerosense: The 11th Int Symposium on Aerospace/Defense Sensing, Simulation and Controls. Orlando, 1997: 54-65P
    [134] Julier S J. A skewed approach to filtering. The Proceedings of Aerosense: The 12th Int Symposium on Aerospace/Defense Sensing, Simulation and Controls[C]. Orlando, 1998: 271-282P
    [135] Julier S J. The spherical simplex unscented transformation. American Control Conf. Denver, 2003: 2430-2434P
    [136] Julier S J. The scaled unscented transformation. Proc of American ControlConf . Jefferson City, 2002: 4555-4559P
    [137] Schei T S. A finite-difference method for linearization in nonlinear estimation algorithms. Automatic, 1997, 33(11): 2053-2058P
    [138] Froberg C E. Introduction to Numerical Analysis. Addison-Wesley, Reading, 1972. Second edition

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700