结核分枝杆菌H37Rv感染期表面蛋白筛选及宿主相关免疫应答研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,结核病仍是致死率最高的疾病之一,全球几乎1/3人口为潜在结核患者,该人群中10%有发展为活动性结核的可能。MTB致病机理复杂,疫苗研制及诊断研究已成为研究的热点。筛选候选疫苗及检测抗原,有助于深入了解其致病机制。表面蛋白(分泌蛋白、跨膜蛋白等)介导细菌与宿主的相互作用,与宿主最初接触过程中能破坏宿主组织,引起一系列级联反应,在MTB致病过程中起重要作用,并影响宿主免疫防御。MTB表面蛋白具有靶向免疫细胞并在其内部潜伏增殖能力,了解MTB表面蛋白和宿主细胞的相互作用有利于了解MTB的致病机制。
     本文构建MTB H37Rv全基因组表面蛋白噬菌体展示文库,直接完成了表面蛋白筛选、鉴别、表达纯化及功能分析过程,MTB H37Rv全基因组噬菌体展示文库库容量为105,经过表面蛋白筛选后共得到840个阳性克隆。随机挑选其中200个克隆测序分析,共得到47个包含信号肽序列的表面蛋白,因此预知840个阳性克隆将有188个表面蛋白,与目前软件预测MTB所含表面蛋白总数(179个)相近,显示出该展示系统的高效性。
     利用MTB表面蛋白噬菌体展示文库进行差减筛选,得到6个能与结核患者血清特异性结合的表面蛋白(Ag85B, ESAT-6, MPT-64, LpqA, cpsA和PapA2)。这些抗原在MTB毒力菌株中具有高表达性,从而导致其对于结核患者血清和BCG免疫血清显示出不同的反应性。在活动性结核和治疗后痰培养转阴性结核患者之间cpsA和PapA2噬菌体融合蛋白的血清学反应敏感性分别从80.1%降到13.3%和从79.3%降到14.0%。揭示在抗结核治疗后抗原特异性血清学反应的动态变化,为筛选感染早期和潜伏期重要抗原提供了有效方法。
     利用生物信息软件将筛选的6个MTB表面蛋白进行B细胞表位预测,并合成17个B细胞表位多肽,ELISA方法检测17个表位多肽与结核患者血清以及BCG免疫血清免疫学反应。结果显示8条多肽对结核患者血清显示特异性反应。同时表位多肽A1、C3和P3对痰培养阳性血清反应敏感性明显高于对治疗后痰培养阴性血清。利用ELISPOT和流式细胞检测方法来评价在活动性结核患者以及治疗后痰培养转阴性结核患者之间cpsA, PapA2和PaPA2噬菌体融合蛋白和表位多肽A1、C3、P3抗原特异性IFN-γ反应差别。结果显示,接受治疗后cpsA和PapA2噬菌体融合蛋白和表位多肽C3和A1抗原特异性IFN-γ反应性明显降低。验证了从感染期到恢复期抗原特异性血清学和T细胞免疫反应动态变化过程。证明PapA2、CspA表面蛋白是结核感染期的毒力因子,为进一步筛选结核疫苗候选抗原提供理论基础。
     将cpsA, PapA2噬菌体融合蛋白联合Ag85B+ESAT-6噬菌体融合蛋白构建多价疫苗,并对其免疫原性进行分析。应用多色流式细胞分析方法将不同免疫组的抗原特异性多功能T细胞亚群进行评价归类,从而评价出抗结核免疫有效的宿T细胞亚群组成。结果显示,新联合蛋白组诱导高质量体液免疫和细胞免疫反应,明显优于单抗原免疫,而表位多肽激发的免疫反应相对较弱。cpsA和PapA2噬菌体融合蛋白联合免疫组能激发Ag85B抗原特异性白细胞介素-2(IL-2),肿瘤坏死因子-α(TNF-α)和γ-干扰素(IFN-γ)三种细胞因子、IL-2和TNF-α两种细胞因子以及TNF-α单细胞因子的高表达,从而证明了cpsA和PapA2噬菌体融合蛋白可引起记忆性免疫应答。
     本研究成功构建MTB表面蛋白噬菌体展示文库,并利用该文库进行差减筛选,从而筛选到6个能与结核患者血清特异性结合的表面蛋白,对筛选表面蛋白进行B细胞表位预测并合成相应表位多肽。利用ELISA和流式细胞检测方法来评价在活动性结核患者以及治疗后痰培养转阴性结核患者之间噬菌体融合蛋白和表位多肽抗原特异性血清学反应及IFN-γ反应差别,揭示抗结核治疗后抗原特异性血清学及IFN-γ反应性变化趋势,为筛选结核感染期相关毒力因子提供平台,亦为筛选疫苗候选基因提供理论基础。同时将cpsA, PapA2噬菌体融合蛋白联合Ag85B+ESAT-6噬菌体融合蛋白构建多价疫苗,从体液免疫反应水平、细胞因子表达水平、多功能细胞因子表达数量、T细胞亚群比例等多个指标对各组合疫苗所诱导免疫反应进行综合评价,亦对抗结核免疫有效的宿主T细胞亚群组成进行系统诠释,为结核疫苗提供新的评测标准。
To this day, TB remains one of the leading causes of mortality. Additionally, about one thirdof the world population has latent TB and10%of them develop the disease during their lifetime.Owing to the complex pathogenic mechanism of MTB, vaccine development and diagnosticstudies have become a hot topic. Surface proteins consisting of secreted and transmembraneproteins play a central role in MTB pathogenesis, as they are used by the bacteria for nutrientuptake, adherence to host proteins and modulation of the host immune response. Surface proteinsalso allow MTB to target and proliferate inside immune cells. Understanding the interactionbetween surface proteins of MTB and the host cell is therefore likely to help us better understandthe pathogenesis of MTB.
     In this study, we constructed a MTB surface proteins phage display library with840positiveclones, which can be used for direct selection, identification, expression, purification andfunctional research on surface proteins of MTB. After sequence analysis of a randomly selected200clones, there were140clones with a signal sequence, and47distinct ORFs predicted toencode secretome proteins. When extrapolated to the840clones, there are about188surfaceproteins, which is similar to the number of secreted proteins with signal peptide predicted bysoftware(179),which showed the efficiency of our display system.
     We also made an innovative iterative screening with the phage display MTB surface proteinlibrary to identify antigens with specific reactivity against antibodies in the sera of TB patients. Asa result, we identified six antigens(MPT64, Ag85B, ESAT-6, PapA2, LpqA and CpsA),and theAg85B, PapA2, LpqA and CspA proteins sharing>99%identity with BCG are still to be identified.These antigens may be expressed differently in virulent stains of MTB and the BCG strains, whichmay contribute to higher specific reactivity with sera from active TB compared to the reactivitywith the serum from BCG vaccinations.
     The sensitivity of cpsA and PapA2phage display proteins in active TB patients and sputum-negative TB patients after anti-TB treatment ranged from80.1%to13.3%and79.3%to14.0%respectively. Our research revealed the dynamic changes of the antigen-specific serologicalreaction after anti-TB treatment, and provided an effective method for the screening of importantantigens on the earlier infection and incubation stage.
     The B-cell epitope of these six MTB surface proteins were predicted with the biologicalinformation software, then synthesised17B-cell epitope peptides. The serum reaction of these17epitope peptides between the TB patient serum and BCG immune serum were detected usingELISA method. As a result,6peptides showed a specific reaction to the sera of TB patients. Onthe other hand, the reaction sensitivity of epitope peptide A1, C3and P3to the sputum culturepositive serum were significantly higher than that of sputum culture-negative serum after anti-TBtreatment.
     The differences of antigen-specific IFN-γ responses of the cpsA, LpqA, PaPA2phage fusionproteins and the epitope peptides A1, C3and P3between active TB patients and sputumsmear-negative TB after anti-TB treatment were determined using flow cytometry and ELISPOT.As a result, after the treatment, the antigen specific IFN-γ response of cpsA and PapA2and theepitope peptide C3and A1decreased greatly. Our research have verified a antigen specificserological and IFN-γ response dynamic changes between the active stage and the infectionconvalescent stage, the cpsA and PaPA2should be the virulent factors of the MTB exhibits greatersecretory activity in the active stage, which would have great impact on diagnosis, monitoring oftreatment and vaccination strategies.
     New subunit vaccines of MTB were obtained by combining Ag85B+ESAT-6with cpsA andPapA2phage display protein, the antigen-specific multifunctional T cell proliferation in thedifferent vaccination groups were analysised using multicolor flow cytometry, then made ajudgment on the valuable CD4+T cell marker for vaccine-take in TB vaccine trials. Aftervaccination, the combination vaccination groups induced qualitatively and quantitatively differenthumoral and cellular immune responses compared to and single component. The cpsA and PapA2phage display proteins can stimulate highly expression of IFN-γ, interleukin-12(IL-2), and tumornecrosis factor-α (TNF-α)three cytokines, IL-2and TNF-α two cytokines, and TNF-α CD4+Tcell populations, which proved that these two phage display proteins can stimulate a memoryimmune response.
     In this study, we successfully constructed a MTB surface proteins phage display library, which can be used for direct selection, identification, expression, purification and functionalresearch on surface proteins of MTB, and made a new iterative screening with this library toidentify antigens with specific reactivity against antibodies in the sera of TB patients. As a resultwe identified six antigens, the B-cell epitope of these six MTB surface proteins were predictedwith the biological information software, and synthesised17B-cell epitope peptides. Thedifferences of antigen-specific serological reaction and IFN-γ responses of these six phage fuseproteins and the B cell epitope peptides between active TB patients and sputum smear-negativeTB after anti-TB treatment were determined using flow cytometry and ELISPOT, hoping to revealthe change trend of the antigen-specific serological and IFN-γ reaction after anti-TB treatment,which provided a platform for the screening of the virulent factor in the TB active stage, andprovide theoretical basis for the selecting of TB vaccine relative antigens, At last, we constructedsubunit vaccine by combining Ag85B+ESAT-6with cpsA and PapA2phage display proteins.Then a comprehensive analysis of the immune response from each combination group were madefrom the humoral immune response, cytokine expression levels, the number of multifunctionalcytokine expression and the proportion of multiple T cell subsets, which helped to make asystematic interpretation of the useful anti-TB host T cell subsets and also helped to provide aneffective platform and evaluation standards for the TB vaccine development.
引文
[1] ORGANIZATION. W H. WHO REPORT2008Global Tuberculosis Control-Surveillance, Planning,Planning, Financing [N].[J].2008. World Health Organization Geneva.
    [2] KAUFMANN S H. The contribution of immunology to the rational design of novel antibacterialvaccines[J]. Nat Rev Microbiol,2007.5(7):491-504.
    [3] JANKOVIC D, COLLETT M A, LUBBERS M W, et al. Direct selection and phage display of aGram-positive secretome[J]. Genome Biology,2007.8(12).
    [4] YOUNG D DYE C. The development and impact of tuberculosis vaccines[J]. Cell,2006.124(4):683-687.
    [5] KAUFMANN S H E. Recent findings in immunology give tuberculosis vaccines a new boost[J]. Trendsin Immunology,2005.26(12):660-667.
    [6] KAUFMANN S H E MCMICHAEL A J. Annulling a dangerous liaison: vaccination strategies againstAIDS and tuberculosis (vol11, pg S33,2005)[J]. Nature Medicine,2005.11(5):578-578.
    [7] DORHOI A KAUFMANN S H E. Fine-tuning of T cell responses during infection[J]. Current Opinionin Immunology,2009.21(4):367-377.
    [8] KAUFMANN S H E. Essay-Envisioning future strategies for vaccination against tuberculosis[J].Nature Reviews Immunology,2006.6(9):699-704.
    [9] NEWPORT M J, HUXLEY C M, HUSTON S, et al. A mutation in the interferon-gamma-receptor geneand susceptibility to mycobacterial infection[J]. N Engl J Med,1996.335(26):1941-9.
    [10] FLYNN J L, GOLDSTEIN M M, CHAN J, et al. Tumor necrosis factor-alpha is required in theprotective immune response against Mycobacterium tuberculosis in mice[J]. Immunity,1995.2(6):561-72.
    [11] KAUFMANN SH, HUSSEY G, LAMBERT PH. New vaccines for tuberculosis[J].The lancet,2010.375(5):2110-19.
    [12] FOULDS K E, WU C Y, SEDER R A. Th1memory: implications for vaccine development[J].Immunological Reviews,2006.211:58-66.
    [13] RUSSELL D G. Who puts the tubercle in tuberculosis?[J]. Nat Rev Microbiol,2007.5(1):39-47.
    [14] DE VALLIERE S, ABATE G, BLAZEVIC A, et al. Enhancement of innate and cell-mediated immunityby antimycobacterial antibodies[J]. INFECTION AND IMMUNITY,2005.73(10):6711-6720.
    [15] GOONETILLEKE N P, MCSHANE H, HANNAN C M, et al. Enhanced immunogenicity and protectiveefficacy against Mycobacterium tuberculosis of bacille Calmette-Guerin vaccine using mucosaladministration and boosting with a recombinant modified vaccinia virus Ankara[J]. Journal ofImmunology,2003.171(3):1602-1609.
    [16] TEITELBAUM R, GLATMAN-FREEDMAN A, CHEN B, et al. A mAb recognizing a surface antigenof Mycobacterium tuberculosis enhances host survival[J]. Proc Natl Acad Sci U S A,1998.95(26):15688-93.
    [17] VOSKUIL M I, SCHNAPPINGER D, VISCONTI K C, et al. Inhibition of respiration by nitric oxideinduces a Mycobacterium tuberculosis dormancy program[J]. Journal of Experimental Medicine,2003.198(5):705-713.
    [18] BETTS J C, LUKEY P T, ROBB L C, et al. Evaluation of a nutrient starvation model of Mycobacteriumtuberculosis persistence by gene and protein expression profiling[J]. Molecular Microbiology,2002.43(3):717-731.
    [19] TORCHINSKY M B, GARAUDE J, MARTIN A P, et al. Innate immune recognition of infectedapoptotic cells directs T(H)17cell differentiation[J]. Nature,2009.458(7234):78-82.
    [20] WINAU F, WEBER S, SAD S, et al. Apoptotic vesicles crossprime CD8T cells and protect againsttuberculosis[J]. Immunity,2006.24(1):105-117.
    [21] MARTIN C, WILLIAMS A, HERNANDEZ-PANDO R, et al. The live Mycobacterium tuberculosisphoP mutant strain is more attenuated than BCG and confers protective immunity against tuberculosis inmice and guinea pigs[J]. Vaccine,2006.24(17):3408-3419.
    [22] PAL P G HORWITZ M A. Immunization with extracellular proteins of Mycobacterium tuberculosisinduces cell-mediated immune responses and substantial protective immunity in a guinea pig model ofpulmonary tuberculosis[J]. Infect Immun,1992.60(11):4781-92.
    [23] C A-Z, I S, JM G, et al. The secreted antigens of Mycobacterium tuberculosis and their relationship tothose recognized by the available antibodies.[J]. J Gen Microbiol,1988.134(2):531–8.
    [24] COVERT B A, SPENCER J S, ORME I M, et al. The application of proteomics in defining the T cellantigens of Mycobacterium tuberculosis[J]. Proteomics,2001.1(4):574-86.
    [25] VERRECK F A W, VERVENNE R A W, KONDOVA I, et al. MVA.85A Boosting of BCG and anAttenuated, phoP Deficient M. tuberculosis Vaccine Both Show Protective Efficacy AgainstTuberculosis in Rhesus Macaques[J]. PLoS One,2009.4(4).
    [26] VON ESCHEN K, MORRISON R, BRAUN M, et al. The candidate tuberculosis vaccineMtb72F/AS02A Tolerability and immunogenicity in humans[J]. Human Vaccines,2009.5(7):475-482.
    [27] LINGNAU K, RIEDL K, VON GABAIN A. IC31(R) and IC30, novel types of vaccine adjuvant basedon peptide delivery systems[J]. Expert Review of Vaccines,2007.6(5):741-746.
    [28] DIETRICH J, AAGAARD C, LEAH R, et al. Exchanging ESAT6with TB10.4in an Ag85B fusionmolecule-based tuberculosis subunit vaccine: Efficient protection and ESAT6-based sensitivemonitoring of vaccine efficacy[J]. Journal of Immunology,2005.174(10):6332-6339.
    [29] MCSHANE H, PATHAN A A, SANDER C R, et al. Recombinant modified vaccinia virus Ankaraexpressing antigen85A boosts BCG-primed and naturally acquired antimycobacterial immunity inhumans (vol10, pg1240,2004)[J]. Nature Medicine,2004.10(12):1397-1397.
    [30] KIRMAN J R SEDER R A. DNA vaccination: the answer to stable, protective T-cell memory?[J]. CurrentOpinion in Immunology,2003.15(4):471-476.
    [31] HUYGEN K. On the use of DNA vaccines for the prophylaxis of mycobacterial diseases[J].INFECTION AND IMMUNITY,2003.71(4):1613-1621.
    [32] ULMER J B. Tuberculosis DNA vaccines[J]. Scandinavian Journal of Infectious Diseases,2001.33(4):246-248.
    [33] LI Z M, HOWARD A, KELLEY C, et al. Immunogenicity of DNA vaccines expressing tuberculosisproteins fused to tissue plasminogen activator signal sequences[J]. INFECTION AND IMMUNITY,1999.67(9):4780-4786.
    [34] BALDWIN S L, D'SOUZA C D, ORME I M, et al. Immunogenicity and protective efficacy of DNAvaccines encoding secreted and non-secreted forms of Mycobacterium tuberculosis Ag85A[J]. TuberLung Dis,1999.79(4):251-9.
    [35] FENG C G, PALENDIRA U, DEMANGEL C, et al. Priming by DNA immunization augmentsprotective efficacy of Mycobacterium bovis bacille Calmette-Guerin against tuberculosis[J].INFECTION AND IMMUNITY,2001.69(6):4174-4176.
    [36] KAMATH A T, HANKE T, BRISCOE H, et al. Co-immunization with DNA vaccines expressinggranulocyte-macrophage colony-stimulating factor and mycobacterial secreted proteins enhances T-cellimmunity, but not protective efficacy against Mycobacterium tuberculosis[J]. Immunology,1999.96(4):511-516.
    [37] DLUGOVITZKY D, FIORENZA G, FARRONI M, et al. Immunological consequences of three doses ofheat-killed Mycobacterium vaccae in the immunotherapy of tuberculosis[J]. Respiratory Medicine,2006.100(6):1079-1087.
    [38] LINDBLAD E B, ELHAY M J, SILVA R, et al. Adjuvant modulation of immune responses totuberculosis subunit vaccines[J]. Infect Immun,1997.65(2):623-9.
    [39] DANIEL FH. Tuberculosis vaccine development: goals, immunological design, and evaluation [J].Thelancet,2008.372(5):164-75.
    [40] Draft strategic plan of the stop partnership working group on TB vaccine development[J].2nd gilbalplan to stop TB,2006-2015: GPII status.
    [41] YOUNG D B, PERKINS M D, DUNCAN K, et al. Confronting the scientific obstacles to global controlof tuberculosis[J]. Journal of Clinical Investigation,2008.118(4):1255-1265.
    [42] NGUYEN L, JEAN P. Mycobacterial Subversion of Chemotherapeutic Reagents and Host DefenseTactics:Challenges in Tuberculosis Drug Development [J].Pharmacol Toxicol,2009.49:427-53.
    [43] ARMSTRONG J A HART P D. Response of cultured macrophages to Mycobacterium tuberculosis, withobservations on fusion of lysosomes with phagosomes[J]. J Exp Med,1971.134(3Pt1):713-40.
    [44] ERNST J D. Macrophage receptors for Mycobacterium tuberculosis[J]. Infect Immun,1998.66(4):1277-81.
    [45] VELASCO-VELAZQUEZ M A, BARRERA D, GONZALEZ-ARENAS A, et al. Macrophage-Mycobacterium tuberculosis interactions: role of complement receptor3[J]. Microbial Pathogenesis,2003.35(3):125-131.
    [46] GATFIELD J PIETERS J. Essential role for cholesterol in entry of mycobacteria into macrophages[J].Science,2000.288(5471):1647-1650.
    [47] VASANJI A, GHOSH P K, GRAHAM L M, et al. Polarization of plasma membrane microviscosityduring endothelial cell migration[J]. Dev Cell,2004.6(1):29-41.
    [48] DE CHASTELLIER C THILO L. Cholesterol depletion in Mycobacterium avium-infected macrophagesovercomes the block in phagosome maturation and leads to the reversible sequestration of viablemycobacteria in phagolysosome-derived autophagic vacuoles[J]. Cellular Microbiology,2006.8(2):242-256.
    [49] JAYACHANDRAN R, SUNDARAMURTHY V, COMBALUZIER B, et al. Survival of mycobacteria inmacrophages is mediated by coronin1-dependent activation of calcineurin[J]. Cell,2007.130(1):37-50.
    [50] DEGHMANE A E, SOUALHINE H, BACH H, et al. Lipoamide dehydrogenase mediates retention ofcoronin-1on BCG vacuoles, leading to arrest in phagosome maturation (vol120, pg2796,2007)[J].Journal of Cell Science,2007.120(19):3489-3489.
    [51] MACMICKING J D. Immune control of phagosomal bacteria by p47GTPases[J]. Current Opinion inMicrobiology,2005.8(1):74-82.
    [52] SCHOENBORN J R WILSON C B. Regulation of interferon-gamma during innate and adaptiveimmune responses[J]. Advances in Immunology, Vol96,2007.96:41-101.
    [53] TAYLOR G A, FENG C G, SHER A. p47GTPases: regulators of immunity to intracellular pathogens[J].Nat Rev Immunol,2004.4(2):100-9.
    [54] FENG C G, COLLAZO-CUSTODIO C M, ECKHAUS M, et al. Mice deficient in LRG-47displayincreased susceptibility to mycobacterial infection associated with the induction of lymphopenia[J].Journal of Immunology,2004.172(2):1163-1168.
    [55] KUIJL C, SAVAGE N D L, MARSMAN M, et al. Intracellular bacterial growth is controlled by a kinasenetwork around PKB/AKT1[J]. Nature,2007.450(7170):725-U10.
    [56] WALBURGER A, KOUL A, FERRARI G, et al. Protein kinase G from pathogenic mycobacteriapromotes survival within macrophages[J]. Science,2004.304(5678):1800-1804.
    [57] STAMM L M, MORISAKI J H, GAO L Y, et al. Mycobacterium marinum escapes from phagosomesand is propelled by actin-based motility[J]. Journal of Experimental Medicine,2003.198(9):1361-1368.
    [58] LIU J NIKAIDO H. A mutant of Mycobacterium smegmatis defective in the biosynthesis of mycolicacids accumulates meromycolates[J]. Proceedings of the National Academy of Sciences of the UnitedStates of America,1999.96(7):4011-4016.
    [59] CHAMBERS H F, TURNER J, SCHECTCR G F, et al. Imipenem for treatment of tuberculosis in miceand humans[J]. Antimicrobial Agents and Chemotherapy,2005.49(7):2816-2821.
    [60] BURIANKOVA K, DOUCET-POPULAIRE F, DORSON O, et al. Molecular basis of intrinsicmacrolide resistance in the Mycobacterium tuberculosis complex[J]. Antimicrobial Agents andChemotherapy,2004.48(1):143-150.
    [61] HEGDE S S, VETTING M W, RODERICK S L, et al. A fluoroquinolone resistance protein frommycobacterium tuberculosis that mimics DNA[J]. Abstracts of Papers of the American Chemical Society,2005.230: U538-U539.
    [62] BUCHMEIER N A, NEWTON G L, KOLEDIN T, et al. Association of mycothiol with protection ofMycobacterium tuberculosis from toxic oxidants and antibiotics[J]. Molecular Microbiology,2003.47(6):1723-1732.
    [63] RAWAT M, NEWTON G L, KO M, et al. Mycothiol-deficient Mycobacterium smegmatis mutants arehypersensitive to alkylating agents, free radicals, and antibiotics[J]. Antimicrob Agents Chemother,2002.46(11):3348-55.
    [64] FRENKIEL-KRISPIN D, LEVIN-ZAIDMAN S, SHIMONI E, et al. Regulated phase transitions ofbacterial chromatin: a non-enzymatic pathway for generic DNA protection[J]. Embo Journal,2001.20(5):1184-1191.
    [65] CHEN J M, REN H, SHAW J E, et al. Lsr2of Mycobacterium tuberculosis is a DNA-bridgingprotein[J]. Nucleic Acids Research,2008.36(7):2123-2135.
    [66] COLANGELI R, HELB D, VILCHEZE C, et al. Transcriptional regulation of multi-drug tolerance andantibiotic-induced responses by the histone-like protein Lsr2in M-tuberculosis[J]. Plos Pathogens,2007.3(6):780-793.
    [67] AINSA J A, BLOKPOEL M C, OTAL I, et al. Molecular cloning and characterization of Tap, a putativemultidrug efflux pump present in Mycobacterium fortuitum and Mycobacterium tuberculosis[J]. JBacteriol,1998.180(22):5836-43.
    [68] ROHDE K, YATES R M, PURDY G E, et al. Mycobacterium tuberculosis and the environment withinthe phagosome[J]. Immunological Reviews,2007.219:37-54.
    [69] SAMUEL L P, SONG C H, WEI J, et al. Expression, production and release of the Eis protein byMycobacterium tuberculosis during infection of macrophages and its effect on cytokine secretion[J].Microbiology-Sgm,2007.153:529-540.
    [70] LANGE C, MORI T. Advances in the diagnosis of tuberculosis [J].Respirology,2010.15(2):220-240.
    [71] LEE K S IM J G. CT in adults with tuberculosis of the chest: characteristic findings and role inmanagement[J]. AJR Am J Roentgenol,1995.164(6):1361-7.
    [72] PASTORES S M, NAIDICH D P, ARANDA C P, et al. Intrathoracic adenopathy associated withpulmonary tuberculosis in patients with human immunodeficiency virus infection[J]. Chest,1993.103(5):1433-7.
    [73] IM J G, ITOH H, SHIM Y S, et al. Pulmonary tuberculosis: CT findings--early active disease andsequential change with antituberculous therapy[J]. Radiology,1993.186(3):653-60.
    [74] MCGUINNESS G, NAIDICH D P, JAGIRDAR J, et al. High resolution CT findings in miliary lungdisease[J]. J Comput Assist Tomogr,1992.16(3):384-90.
    [75] DEMURA Y, TSUCHIDA T, UESAKA D, et al. Usefulness of18F-fluorodeoxyglucose positronemission tomography for diagnosing disease activity and monitoring therapeutic response in patientswith pulmonary mycobacteriosis[J]. Eur J Nucl Med Mol Imaging,2009.36(4):632-9.
    [76] STEINGART K R, HENRY M, NG V. Fluorescence versus conventional sputum smear microscopy fortuberculosis: a systematic review (vol6, pg570,2006)[J]. Lancet Infectious Diseases,2006.6(10):628-628.
    [77] CRUCIANI M, SCARPARO C, MALENA M, et al. Meta-analysis of BACTEC MGIT960andBACTEC460TB, with or without solid media, for detection of mycobacteria[J]. J Clin Microbiol,2004.42(5):2321-5.
    [78] PAI M, KALANTRI S, PASCOPELLA L, et al. Bacteriophage-based assays for the rapid detection ofrifampicin resistance in Mycobacterium tuberculosis: a meta-analysis[J]. Journal of Infection,2005.51(3):175-187.
    [79] STEINGART K R, HENRY M, LAAL S, et al. Commercial serological antibody detection tests for thediagnosis of pulmonary tuberculosis: A systematic review (vol4, art no e202,2007)[J]. Plos Medicine,2007.4(8):1417-1417.
    [80] TUBERCULOSIS. W L-B E O C A R D T F. UNDP/World Bank/WHO Special Programme forResearch and Training in Tropical Diseases[J]. Geneva: World Health Organization,2008.
    [81] ZHANG S L, ZHAO J W, SUN Z Q, et al. Development and evaluation of a novel multiple-antigenELISA for serodiagnosis of tuberculosis[J]. Tuberculosis,2009.89(4):278-284.
    [82] STEINGART K R, DENDUKURI N, HENRY M, et al. Performance of Purified Antigens forSerodiagnosis of Pulmonary Tuberculosis: a Meta-Analysis[J]. Clinical and Vaccine Immunology,2009.16(2):260-276.
    [83] STEINGART K R, HENRY M, LAAL S, et al. A systematic review of commercial serological antibodydetection tests for the diagnosis of extrapulmonary tuberculosis[J]. Postgraduate Medical Journal,2007.83(985):705-712.
    [84] ISEMAN M D, A clinician's guide to tuberculosis.2000, Philadelphia: Lippincott Williams&Wilkins.xv,460p.
    [85] CHAN E D, HEIFETS L, ISEMAN R D. Immunologic diagnosis of tuberculosis: a review[J]. Tubercleand Lung Disease,2000.80(3):131-140.
    [86] SAUKKONEN J. Rifampin and pyrazinamide for latent tuberculosis infection: Clinical trials andgeneral practice[J]. Clinical Infectious Diseases,2004.39(4):566-568.
    [87] MADHUKAR P, ZWERLING A, MENZIES D, et al. Systematic Review: T-Cell–based Assays for theDiagnosis of Latent Tuberculosis Infection: An Update [J].Annals of internal medicine,2008.149:177-184.
    [88] NAHID P, PAI M, HOPEWELL PC. Advances in the Diagnosis and Treatment of Tuberculosis [J].Procam thorac soc,2006.3:103-110.
    [89] LALVANI A. Spotting latent infection: the path to better tuberculosis control[J]. Thorax,2003.58(11):916-918.
    [90] DHEDA K, SMIT R V, BADRI M, et al. T-cell interferon-gamma release assays for the rapidimmunodiagnosis of tuberculosis: clinical utility in high-burden vs. low-burden settings[J]. CurrentOpinion in Pulmonary Medicine,2009.15(3):188-200.
    [91] PAI M. Alternatives to the tuberculin skin test: interferon-gamma assays in the diagnosis ofmycobacterium tuberculosis infection[J]. Indian J Med Microbiol,2005.23(3):151-8.
    [92] WHALEN C C. Diagnosis of latent tuberculosis infection-Measure for measure[J]. Jama-Journal of theAmerican Medical Association,2005.293(22):2785-2787.
    [93] MITTRUCKER H W, STEINHOFF U, KOHLER A, et al. Poor correlation between BCGvaccination-induced T cell responses and protection against tuberculosis[J]. Proceedings of the NationalAcademy of Sciences of the United States of America,2007.104(30):12434-12439.
    [94] MENZIES D, PAI M, COMSTOCK G. Meta-analysis: New tests for the diagnosis of latent tuberculosisinfection: Areas of uncertainty and recommendations for research[J]. Annals of Internal Medicine,2007.146(5):340-354.
    [95] PAI M. The accuracy and reliability of nucleic acid amplification tests in the diagnosis of tuberculosis[J].National Medical Journal of India,2004.17(5):233-236.
    [96] PAI M, FLORES L L, HUBBARD A, et al. Nucleic acid amplification tests in the diagnosis oftuberculous pleuritis: a systematic review and meta-analysis[J]. Bmc Infectious Diseases,2004.4.
    [97] SARMIENTO O L, WEIGLE K A, ALEXANDER J, et al. Assessment by meta-analysis of PCR fordiagnosis of smear-negative pulmonary tuberculosis[J]. J Clin Microbiol,2003.41(7):3233-40.
    [98] PIERSIMONI C SCARPARO C. Relevance of commercial amplification methods for direct detection ofMycobacterium tuberculosis complex in clinical samples[J]. Journal of Clinical Microbiology,2003.41(12):5355-5365.
    [99] PAI M, FLORES L L, PAI N, et al. Diagnostic accuracy of nucleic acid amplification tests fortuberculous meningitis: a systematic review and meta-analysis[J]. Lancet Infectious Diseases,2003.3(10):633-643.
    [100] DYE C. Global epidemiology of tuberculosis[J]. Lancet,2006.367(9514):938-940.
    [101] HORNEF M W, WICK M J, RHEN M, et al. Bacterial strategies for overcoming host innate andadaptive immune responses[J]. Nat Immunol,2002.3(11):1033-40.
    [102] DIAZ-SILVESTRE H, ESPINOSA-CUETO P, SANCHEZ-GONZALEZ A, et al. The19-kDa antigen ofMycobacterium tuberculosis is a major adhesin that binds the mannose receptor of THP-1monocyticcells and promotes phagocytosis of mycobacteria[J]. Microbial Pathogenesis,2005.39(3):97-107.
    [103] LEVERSEN N A, DE SOUZA G A, MALEN H, et al. Evaluation of signal peptide prediction algorithmsfor identification of mycobacterial signal peptides using sequence data from proteomic methods[J].Microbiology,2009.155(Pt7):2375-83.
    [104] MCDONOUGH J A, MCCANN J R, TEKIPPE E M, et al. Identification of functional Tat signalsequences in Mycobacterium tuberculosis proteins[J]. Journal of Bacteriology,2008.190(19):6428-6438.
    [105] MALEN H, SOFTELAND T, WIKER H G. Antigen analysis of Mycobacterium tuberculosis H37Rvculture filtrate proteins[J]. Scand J Immunol,2008.67(3):245-52.
    [106] SINHA S, KOSALAI K, ARORA S, et al. Immunogenic membrane-associated proteins ofMycobacterium tuberculosis revealed by proteomics[J]. Microbiology-Sgm,2005.151:2411-2419.
    [107] AHMED N, BARKER G, OLIVA K, et al. An approach to remove albumin for the proteomic analysis oflow abundance biomarkers in human serum[J]. Proteomics,2003.3(10):1980-1987.
    [108] ECONOMOU A. Bacterial secretome: the assembly manual and operating instructions (review)[J].Molecular Membrane Biology,2002.19(3):159-169.
    [109] ROOSILD T P, GREENWALD J, VEGA M, et al. NMR structure of Mistic, a membrane-integratingprotein for membrane protein expression[J]. Science,2005.307(5713):1317-21.
    [110] ROWLAND K, GUTHMANN R, JAMIESON B. How should we manage a patient with a positive PPDand prior BCG vaccination?[J]. Journal of Family Practice,2006.55(8):718-720.
    [111] PARISH T STOKER N G, Mycobacteria protocols. Methods in Molecular Biology.1998, Totowa, N.J.:Humana Press. xiv,472p.
    [112] RUSSEL M. Moving through the membrane with filamentous phages[J]. Trends Microbiol,1995.3(6):223-8.
    [113] TEUTSCHBEIN J, SCHUMANN G, MOLLMANN U, et al. A protein linkage map of the ESAT-6secretion system1(ESX-1) of Mycobacterium tuberculosis[J]. Microbiological Research,2009.164(3):253-259.
    [114] ZHANG H, WANG J, LEI J, et al. PPE protein (Rv3425) from DNA segment RD11of Mycobacteriumtuberculosis: a potential B-cell antigen used for serological diagnosis to distinguish vaccinated controlsfrom tuberculosis patients[J]. Clin Microbiol Infect,2007.13(2):139-45.
    [115] REZWAN M, GRAU T, TSCHUMI A, et al. Lipoprotein synthesis in mycobacteria[J]. Microbiology,2007.153(Pt3):652-8.
    [116] MULLEN L M, NAIR S P, WARD J M, et al. Phage display in the study of infectious diseases[J]. TrendsMicrobiol,2006.14(3):141-7.
    [117] J R JF C. Bacteriophages: self-assembly and applications.[J]. In: Rehm B, editor. Molecularbionanotechnology. Norwich, UK: Horizon Scientific Press;,2006:153-90.
    [118] M R. Model P: Filamentous phage. In The Bacteriophages2nd edition.[J]. Edited by: Calendar RC.New York: Oxford University Press, Inc.,2006:146-160.
    [119] SHUKLA G S, MURRAY C J, ESTABROOK M, et al. Towards a ligand targeted enzyme prodrugtherapy: Single round panning of a beta-lactamase scaffold library on human cancer cells[J].International Journal of Cancer,2007.120(10):2233-2242.
    [120] MINOWA K, YASUO Y, ABE Y, et al. Creation of TNF receptor1-selective mutant TNF using phagedisplay system[J]. Cytokine,2007.39(1):28-28.
    [121] FUJIMORI J, NAKASHIMA I, FUJIHARA K, et al. Epitope analysis of the cerebrospinal fluid IgG inHTLV-I associated myelopathy patients using phage display method[J]. Journal of Neuroimmunology,2004.152(1-2):140-146.
    [122] IRVING M B, PAN O, SCOTT J K. Random-peptide libraries and antigen-fragment libraries for epitopemapping and the development of vaccines and diagnostics[J]. Current Opinion in Chemical Biology,2001.5(3):314-324.
    [123] AVALL-JAASKELAINEN S, LINDHOLM A, PALVA A. Surface display of the receptor-binding regionof the Lactobacillus brevis S-layer protein in Lactococcus lactis provides nonadhesive lactococci withthe ability to adhere to intestinal epithelial cells[J]. Appl Environ Microbiol,2003.69(4):2230-6.
    [124] LAUTERBACH S B, LANZILLOTTI R, COETZER T L. Construction and use of Plasmodiumfalciparum phage display libraries to identify host parasite interactions[J]. Malaria Journal,2003.2:-.
    [125] LEE S Y, CHOI J H, XU Z H. Microbial cell-surface display[J]. Trends in Biotechnology,2003.21(1):45-52.
    [126] POQUET I, EHRLICH S D, GRUSS A. An export-specific reporter designed for gram-positive bacteria:application to Lactococcus lactis[J]. J Bacteriol,1998.180(7):1904-12.
    [127] GEORGIOU G, STATHOPOULOS C, DAUGHERTY P S, et al. Display of heterologous proteins on thesurface of microorganisms: from the screening of combinatorial libraries to live recombinant vaccines[J].Nat Biotechnol,1997.15(1):29-34.
    [128] MANOIL C, MEKALANOS J J, BECKWITH J. Alkaline phosphatase fusions: sensors of subcellularlocation[J]. J Bacteriol,1990.172(2):515-8.
    [129] JK B-S, M T, Y Z. Beta-lactamase as a probe of membrane protein assembly and protein export[J]. MolMicrobiol,1990.4:1637-1644.
    [130] RAKONJAC J, FENG J, MODEL P. Filamentous phage are released from the bacterial membrane by atwo-step mechanism involving a short C-terminal fragment of pIII[J]. J Mol Biol,1999.289(5):1253-65.
    [131] MALEN H, BERVEN F S, FLADMARK K E, et al. Comprehensive analysis of exported proteins fromMycobacterium tuberculosis H37Rv[J]. Proteomics,2007.7(10):1702-18.
    [132] BRAUNSTEIN M G T I, KRIAKOV JI, FRIEDMAN ST, GRINDLEY ND, JACOBS WR JR.Identification of Genes Encoding Exported Mycobacterium tuberculosis Proteins Using a Tn552'phoAIn Vitro Transposition System[J]. J. Bacteriol.,2000.182(10):2732-2740.
    [133] SIMEONE R, BOTTAI D, BROSCH R. ESX/type VII secretion systems and their role in host-pathogeninteraction[J]. Current Opinion in Microbiology,2009.12(1):4-10.
    [134] DINNES J, DEEKS J, KUNST H, et al. A systematic review of rapid diagnostic tests for the detection oftuberculosis infection[J]. Health Technology Assessment,2007.11(3):1-+.
    [135] ABRAMO C, MEIJGAARDEN K E, GARCIA D, et al. Monokine induced by interferon gamma andIFN-gamma response to a fusion protein of Mycobacterium tuberculosis ESAT-6and CFP-10inBrazilian tuberculosis patients[J]. Microbes Infect,2006.8(1):45-51.
    [136] KUNNATH-VELAYUDHAN S, SALAMON H, WANG H Y, et al. Dynamic antibody responses to theMycobacterium tuberculosis proteome[J]. Proc Natl Acad Sci U S A,2010.107(33):14703-8.
    [137] WH0O. Treatment of tuberculosis: Guidelines for national programmes.[J]. Second editionGeneva:WHO,1997.
    [138] GNANASEKAR M, RAO K V, HE Y X, et al. Novel phage display-based subtractive screening toidentify vaccine candidates of Brugia malayi[J]. Infect Immun,2004.72(8):4707-15.
    [139]轶支,吴玉章,万瑛.生物信息学方法在CTL表位预测中的应用[J].免疫学杂志,2005.21(2):155-158.
    [140]李晓恒,吴少庭,付小强.结核分枝杆菌Ag85B基因体外扩增、克隆及在耻垢分枝杆菌中的表达[J].中国病原生物学杂志,2009.4(2).
    [141] KUMAR P, SCHELLE M W, JAIN M, et al. PapA1and PapA2are acyltransferases essential for thebiosynthesis of the Mycobacterium tuberculosis virulence factor sulfolipid-1[J]. Proc Natl Acad Sci U SA,2007.104(27):11221-6.
    [142] ALZOHAIRY M GRAHAM J E. Mycobacterium tuberculosis cpsA is a master regulator in adaptation tothe macrophage phagosome[J]. Molecular bacteriology,2009(18):1230-1330.
    [143] CHU T P J YUANN J M P. Expression, purification, and characterization of protective MPT64antigenprotein and identification of its multimers isolated from nontoxic Mycobacterium tuberculosis H37Ra[J].Biotechnology and Applied Biochemistry,2011.58(3):185-189.
    [144] SKJOT R L V, OETTINGER T, ROSENKRANDS I, et al. Comparative evaluation oflow-molecular-mass proteins from Mycobacterium tuberculosis identifies members of the ESAT-6family as immunodominant T-cell antigens[J]. INFECTION AND IMMUNITY,2000.68(1):214-220.
    [145] LIGHTBODY K A, GIRVIN R M, POLLOCK D A, et al. Recognition of a common mycobacterialT-cell epitope in MPB59of Mycobacterium bovis[J]. Immunology,1998.93(3):314-22.
    [146] HARBOE M, MALIN A S, DOCKRELL H S, et al. B-cell epitopes and quantification of the ESAT-6protein of Mycobacterium tuberculosis[J]. Infect Immun,1998.66(2):717-23.
    [147] BRANDT L, OETTINGER T, HOLM A, et al. Key epitopes on the ESAT-6antigen recognized in miceduring the recall of protective immunity to Mycobacterium tuberculosis[J]. J Immunol,1996.157(8):3527-33.
    [148] OETTINGER T, HOLM A, MTONI I M, et al. Mapping of the delayed-type hypersensitivity-inducingepitope of secreted protein MPT64from Mycobacterium tuberculosis[J]. Infect Immun,1995.63(12):4613-8.
    [149] S. A. Agglutination du bacille de la tuberculose vraie[J]. Comptes Rend Acad Sci,1898.126:1398–400.
    [150] SCHMIDT F, DONAHOE S, HAGENS K, et al. Complementary analysis of the Mycobacteriumtuberculosis proteome by two-dimensional electrophoresis and isotope-coded affinity tag technology[J].Molecular&Cellular Proteomics,2004.3(1):24-42.
    [151] WELDINGH K, HANSEN A, JACOBSEN S, et al. High resolution electroelution of polyacrylamidegels for the purification of single proteins from Mycobacterium tuberculosis culture filtrate[J].Scandinavian Journal of Immunology,2000.51(1):79-86.
    [152] ROSENKRANDS I, KING A, WELDINGH K, et al. Towards the proteome of Mycobacteriumtuberculosis[J]. Electrophoresis,2000.21(17):3740-3756.
    [153] JUNGBLUT P R, SCHAIBLE U E, MOLLENKOPF H J, et al. Comparative proteome analysis ofMycobacterium tuberculosis and Mycobacterium bovis BCG strains: towards functional genomics ofmicrobial pathogens[J]. Molecular Microbiology,1999.33(6):1103-1117.
    [154] BEHR M A, WILSON M A, GILL W P, et al. Comparative genomics of BCG vaccines bywhole-genome DNA microarray[J]. Science,1999.284(5419):1520-1523.
    [155] WELDINGH K, ROSENKRANDS I, JACOBSEN S, et al. Two-dimensional electrophoresis for analysisof Mycobacterium tuberculosis culture filtrate and purification and characterization of six novelproteins[J]. Infect Immun,1998.66(8):3492-500.
    [156] ROSENKRANDS I, RASMUSSEN P B, CARNIO M, et al. Identification and characterization of a29-kilodalton protein from Mycobacterium tuberculosis culture filtrate recognized by mouse memoryeffector cells[J]. Infect Immun,1998.66(6):2728-35.
    [157] BERTHET F X, RASMUSSEN P B, ROSENKRANDS I, et al. A Mycobacterium tuberculosis operonencoding ESAT-6and a novel low-molecular-mass culture filtrate protein (CFP-10)[J]. Microbiology,1998.144(Pt11):3195-203.
    [158] L S A, NAGAI S,. HOUEN P, et al. Purification and characterization of a low-molecular-mass T-cellantigen secreted by Mycobacterium tuberculosis[J]. Infect. Immun.,1995.63:1710–1717.
    [159] NAGAI S, WIKER H G, HARBOE M, et al. Isolation and partial characterization of major proteinantigens in the culture fluid of Mycobacterium tuberculosis[J]. Infect Immun,1991.59(1):372-82.
    [160] ANDERSEN A B, WORSAAE A, CHAPARAS S D. Isolation and characterization of recombinantlambda gt11bacteriophages expressing eight different mycobacterial antigens of potentialimmunological relevance[J]. Infect Immun,1988.56(5):1344-51.
    [161] LYASHCHENKO K, COLANGELI R, HOUDE M, et al. Heterogeneous antibody responses intuberculosis[J]. Infect Immun,1998.66(8):3936-40.
    [162] HOUGHTON R L, LODES M J, DILLON D C, et al. Use of multiepitope polyproteins in serodiagnosisof active tuberculosis[J]. Clinical and Diagnostic Laboratory Immunology,2002.9(4):883-891.
    [163] GENNARO M L. Immunologic diagnosis of tuberculosis[J]. Clinical Infectious Diseases,2000.30:S243-S246.
    [164] MILLINGTON K A, FORTUNE S M, LOW J, et al. Rv3615c is a highly immunodominant RD1(Region of Difference1)-dependent secreted antigen specific for Mycobacterium tuberculosisinfection[J]. Proc Natl Acad Sci U S A,2011.108(14):5730-5.
    [165] LI Y, ZENG J, SHI J, et al. A Proteome-Scale Identification of Novel Antigenic Proteins inMycobacterium tuberculosis toward Diagnostic and Vaccine Development[J]. Journal of ProteomeResearch,2010.9(9):4812-4822.
    [166] LALVANI A. Counting antigen-specific T cells: A new approach for monitoring response to tuberculosistreatment?[J]. Clinical Infectious Diseases,2004.38(5):757-759.
    [167] ANDERSEN AB B P. Proteins and antigens of Mycobacterium tuberculosis. In BloomB,eds.Tuberculosis.Washington[J]. DC:ASMPress,1994:307–32.
    [168] ORGANIZATION W H. Treatment of tuberculosis: guidelines for national programmes.3rd ed[J].Geneva: World Health Organization,2003.
    [169] WALZL G, RONACHER K, SIAWAYA J F D, et al. Biomarkers for TB treatment response: Challengesand future strategies[J]. Journal of Infection,2008.57(2):103-109.
    [170] PERRIN F M R, LIPMAN M C I, MCHUGH T D, et al. Biomarkers of treatment response in clinicaltrials of novel antituberculosis agents[J]. Lancet Infectious Diseases,2007.7(7):481-490.
    [171] ABEBE F, HOLM-HANSEN C, WIKER H G, et al. Progress in serodiagnosis of Mycobacteriumtuberculosis infection[J]. Scandinavian Journal of Immunology,2007.66(2-3):176-191.
    [172] IMAZ M S, COMINI M A, ZERBINI E, et al. Evaluation of the diagnostic value of measuring IgG, IgMand IgA antibodies to the recombinant16-kilodalton antigen of Mycobacterium tuberculosis inchildhood tuberculosis[J]. International Journal of Tuberculosis and Lung Disease,2001.5(11):1036-1043.
    [173] AREND S M, ANDERSEN P, VAN MEIJGAARDEN K E, et al. Detection of active tuberculosisinfection by T cell responses to early-secreted antigenic target6-kDa protein and culture filtrate protein10[J]. Journal of Infectious Diseases,2000.181(5):1850-1854.
    [174] WANG B L, XU Y, LI Z M, et al. Antibody response to four secretory proteins from Mycobacteriumtuberculosis and their complex antigen in TB patients[J]. International Journal of Tuberculosis and LungDisease,2005.9(12):1327-1334.
    [175] CHIANG I H, SUO J, BAI K J, et al. Serodiagnosis of tuberculosis. A study comparing three specificmycobacterial antigens[J]. Am J Respir Crit Care Med,1997.156(3Pt1):906-11.
    [176] LALVANI A, NAGVENKAR P, UDWADIA Z, et al. Enumeration of T cells specific for RD1-encodedantigens suggests a high prevalence of latent Mycobacterium tuberculosis infection in healthy urbanIndians[J]. J Infect Dis,2001.183(3):469-77.
    [177] LALVANI A. Diagnosing tuberculosis infection in the21st century-New tools to tackle an old enemy[J].Chest,2007.131(6):1898-1906.
    [178] RICHELDI L. An update on the diagnosis of tuberculosis infection[J]. American Journal of Respiratoryand Critical Care Medicine,2006.174(7):736-742.
    [179] ANDERSEN P, ANDERSEN A B, SORENSEN A L, et al. Recall of long-lived immunity toMycobacterium tuberculosis infection in mice[J]. J Immunol,1995.154(7):3359-72.
    [180] MAHAIRAS G G, SABO P J, HICKEY M J, et al. Molecular analysis of genetic differences betweenMycobacterium bovis BCG and virulent M. bovis[J]. J Bacteriol,1996.178(5):1274-82.
    [181] FERRAND R A, BOTHAMLEY G H, WHELAN A, et al. Interferon-gamma responses to ESAT-6intuberculosis patients early into and after anti-tuberculosis treatment[J]. Int J Tuberc Lung Dis,2005.9(9):1034-9.
    [182] CARRARA S, VINCENTI D, PETROSILLO N, et al. Use of a T cell-based assay for monitoringefficacy of antituberculosis therapy[J]. Clinical Infectious Diseases,2004.38(5):754-756.
    [183] DHEDA K, POORAN A, PAI M, et al. Interpretation of Mycobacterium tuberculosis antigen-specificIFN-gamma release assays (T-SPOT.TB) and factors that may modulate test results[J]. J Infect,2007.55(2):169-73.
    [184] PAI M, JOSHI R, BANDYOPADHYAY M, et al. Sensitivity of a whole-blood interferon-gamma assayamong patients with pulmonary tuberculosis and variations in T-cell responses during anti-tuberculosistreatment[J]. Infection,2007.35(2):98-103.
    [185] PATHAN A A, WILKINSON K A, KLENERMAN P, et al. Direct ex vivo analysis of antigen-specificIFN-gamma-secreting CD4T cells in Mycobacterium tuberculosis-infected individuals: associationswith clinical disease state and effect of treatment[J]. J Immunol,2001.167(9):5217-25.
    [186] YIP Y L, SMITH G, WARD R L. Comparison of phage pIII, pVIII and GST as carrier proteins forpeptide immunisation in Balb/c mice[J]. Immunol Lett,2001.79(3):197-202.
    [187] SCHELLEKENS GA L E, FEILBRIEF M, KOEDIJK DG, DRIJFHOUT JW, SCHEFFER AJ.Identification of the core residues of the epitope of a monoclonal antibody raised against glycoprotein Dof herpes simplex virus type1by screening a random peptide library.[J]. Eur J Immunol,1994.24:3188–93.
    [188] DIETRICH J, BILLESKOV R, DOHERTY T M, et al. Synergistic effect of bacillus Calmette Guerin anda tuberculosis subunit vaccine in cationic liposomes: Increased immunogenicity and protection[J].Journal of Immunology,2007.178(6):3721-3730.
    [189] LANGERMANS J A M, DOHERTY T M, VERVENNE R A W, et al. Protection of macaques againstMycobacterium tuberculosis infection by a subunit vaccine based on a fusion protein of antigen85B andESAT-6[J]. Vaccine,2005.23(21):2740-2750.
    [190] OLSEN A W, WILLIAMS A, OKKELS L M, et al. Protective effect of a tuberculosis subunit vaccinebased on a fusion of antigen85B and ESAT-6in the aerosol guinea pig model[J]. INFECTION ANDIMMUNITY,2004.72(10):6148-6150.
    [191] OLSEN A W, VAN PINXTEREN L A H, OKKELS L M, et al. Protection of mice with a tuberculosissubunit vaccine based on a fusion protein of antigen85B and ESAT-6[J]. INFECTION ANDIMMUNITY,2001.69(5):2773-2778.
    [192] ANDERSEN P. Tuberculosis vaccines-an update[J]. Nat Rev Microbiol,2007.5(7):484-7.
    [193] MONACK D. M, MUELLER, A. Persistent bacterial infections: the interface of the pathogen and thehost immune system, Nat Rev Microbiol,2004,2(9):747-65.
    [194] SCANGA C A, MOHAN V P, YU K, et al. Depletion of CD4(+) T cells causes reactivation of murinepersistent tuberculosis despite continued expression of interferon gamma and nitric oxide synthase2[J].J Exp Med,2000.192(3):347-58.
    [195] HERTOGHE T, WAJJA A, NTAMBI L, et al. T cell activation, apoptosis and cytokine dysregulation inthe (co)pathogenesis of HIV and pulmonary tuberculosis (TB)[J]. Clinical and ExperimentalImmunology,2000.122(3):350-357.
    [196] RELJIC R, WILLIAMS A, IVANYI J. Mucosal immunotherapy of tuberculosis: Is there a value inpassive IgA?[J]. Tuberculosis,2006.86(3-4):179-190.
    [197] MUELLER H D A, SCHUCK SD, GUTSCHMIDT A, WAHN U,. Mycobacterium tuberculosis-specificCD4+, IFN gamma+, and TNF alpha multifunctional memory T cells coexpress GM-CSF.[J]. Cytokine2000.13:143–148.
    [198] BOGDAN C, ROLLINGHOFF M, DIEFENBACH A. Reactive oxygen and reactive nitrogenintermediates in innate and specific immunity[J]. Curr Opin Immunol,2000.12(1):64-76.
    [199] MAJLESSI L, SIMSOVA M, JARVIS Z, et al. An increase in antimycobacterial Th1-cell responses byprime-boost protocols of immunization does not enhance protection against tuberculosis[J]. InfectImmun,2006.74(4):2128-37.
    [200] BRASSARD P, KEZOUH A, SUISSA S. Antirheumatic drugs and the risk of tuberculosis[J]. Clin InfectDis,2006.43(6):717-22.
    [201] KATIYAR S K, SAMPATH A, BIHARI S, et al. Use of the QuantiFERON-TB Gold In-Tube test tomonitor treatment efficacy in active pulmonary tuberculosis[J]. Int J Tuberc Lung Dis,2008.12(10):1146-52.
    [202] SEDER R A, DARRAH P A, ROEDERER M. T-cell quality in memory and protection: implications forvaccine design[J]. Nat Rev Immunol,2008.8(4):247-58.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700