脑缺血及再灌注过程中的一氧化氮扩散反应动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
NO是一种由NOS催化L-精氨酸合成的生物信息分子,生物体内多种细胞可以合成NO。随着对一氧化氮(nitric oxide,NO)研究的深入,人们发现一氧化氮与多种疾病有关,如脑缺血、高血压、动脉粥样硬化、冠心病心绞痛等。进一步了解NO的变化规律和作用机制对这些疾病的进一步预防和治疗将起到积极的指导作用。
     本文以脑缺血过程中NO的扩散—反应动力学为研究内容,以神经细胞为研究对象,以离体培养的神经细胞缺氧实验为基础,通过数学建模来探讨NO及相关物质的变化规律。在NO的扩散动力学研究中,在分析NO生化特性的基础上,模拟缺氧情况下神经细胞实验的NO生成,构建了脑缺血情况下海马区NO扩散动力学模型。在NO的反应动力学研究中,以脑缺血和脑缺血再灌注为特定生理环境,分析研究了神经细胞内NO及相关物质的生化反应,结合缺氧情况下离体神经细胞的NO、O_2~-检测实验,构建了脑缺血—脑缺血再灌注情况下神经细胞胞内的NO反应动力学模型。通过对仿真结果的分析,我们对NO的作用机制做了探讨。这些模型的建立为今后NO建模研究的进一步开展奠定了基础。
Nitric Oxide(NO) is a biological messenger molecule formed via the oxidation of L-arginine to citrulline by various forms of NO synthase. The synthesis of NO is observed in a wide variety of mammalian cells. With the development of NO research , it has been found that NO is associated with many diseases, such as brain ischemia, hypertension, arteriosclerosis, miocardial infarction, coronary heart disease. More knowledges of NO transformation regular rule and NO action mechanism will help us defend and treat these diseases.
    Based on hypoxia experiments of cultured neurons in vitro, a NO diffusion kinetic mathematical model and a NO reaction kinetic mathematical model has been developed to study the transformation of NO and other relational molecules. With the analysis of NO chemical and physical character and simulation of NO generation in the hypoxia experiment of cultured neuron, a diffusion kinetic model was established to simulate NO diffusion from hippocampus in brain ischemia. With the analysis of chemical reactions about NO in brain ischemia and ischemia-reprefusion, based on hypoxia experiment of culturd neuron in vitro, a reaction kinetic model of neuron was established to simulate complex chemistry of NO, 02, ONOO" in brain ischemia and ischemia-reprefusion. Preliminary discussions about the simulation results were gived.
引文
Adriana Cassina, Rafael Radi et al., Differential inhibitory action of nitric oxide and peroxynitrite on mitochondrial electron transport, Archives of biochemistry and biophysics, 1996,328.(2):309-316
    Adruab J. Hobbs et al., formation of free nitric oxide from L-arginine by nitric oxide synthase: Direct enhancement of generation by superoxide dismutase, Proc Natl Acad Sci. USA, 1995, 91:10992-10996
    Allen M. Miles et al., Modulation of superoxide-dependent oxidation and hydroxylation reaction by nitric oxide, the journal of biochemical chemisty, 1996, 271(1):40-47
    Alonso MJ et al. Pharmacol Exp Ther, 1992:261:12-20
    Andrew Philliphe et al. four-dimensional neuronal signaling by nitric oxide: acomputational analysis, J. Neuroscience, 2000,20(3):1199-1207
    Artz JD et al, In vitro activation of soluble guanylyl cyclase and nitric oxide release: acomparison of NO donors and NO mimetics., Biochemistry. 2001, 40(31):9256-64
    Beckman JS, Oxidative Chemistry of peroxynitrite, Meth Enzymo, 1994(223):229-240
    Beckman iS, Koppenol WH, Nitric Oxide, superoxide, and peroxynitrite: the good, the bad, and the ugly, Am J Physiol, 1996, 271: cl 424-437
    Beckman Joseph S. et al., peroxynitrite and jury to the vasculature and central nervous system in stroke and neurodegeneration
    Bo Chen et al. Diffusion and reaction of nitric oxide in suspension cell cultures, Biophysical Journal 1998,75:745-754
    Bolotina VM., Najibi S. et al. Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle. Nature, 1994:368(6474):850
    Chang-il Lee, Katsushi Miura et al. biphasic regulation of leukocyte superoxide generation by nitric oxide and peroxynitrite, the journal of Biological Chemistry, 2000,275(50):38985-38972
    Celia Ouijano et al., Reaction of peroxynitrite with Mn-superoxide dismutase, the journal of biochemical chemistry, 2001,275(15):11631-11638
    Chris E. Cooper et al., Nitric oxide and peroxynitrite cause irreversible increases in the Km for oxygen of mitochondrial cytochrome oxidase: in vitro and invivo studies, Biochimica er Biophysica Acta, 2003, 1607:27-34
    Csaba Szabo multiple pathways of peroxynitrite cytotoxicity, Toxicology letters, 2003 (140-141):105-112
    Cynthia M. Otto and James E. Baumgardner, Effect of culture PO_2 on macrophage (RAW 264.7) nitric oxide production, Am J Physiol Cell Physiol 2001, 280(2): C280-C287
    David Jourd'heuil et al., Reaction of superoxide and nitric oxide with peroxynitrite, the journal of biochemical chemisty, 2001,
    
    276(31):28799-28805
    De Caterin R, Libby P et al., Nitric oxide ecreases cytokine-induced endothelial activation, J Clin Invest, 1995,96(1):60
    Donald G. Buerk, Can we model nitric oxide biotransport? A survey of mathematical models for a simple diatomic molecule with surprisingly complex biological activities, Annu Rev. Biomed. Eng 2001.3:109-143
    Douglas D. Thomas et al., The biological lifetime of nitric oxide: implications for the perivascular dynamics of NO and 02, Proc Natl. icad Sci. USA, 1998,98(1):355-360
    Ellman G, A pracise method for the determination of whole blood and plasma, solfhydryl groups 179(93):98-102
    Faraci FM et al. Pharmacol Ther, 1992:36:1-22
    Fagzn J.M, Quantitation of oxidative damage to tissue protein, The international journal of biochemistry and cell biology, 1999, 31(7):751-759
    Ferriero DM, Sheldon RA et al., Selective destruction of nitric oxide synthase neurons with quisqualate reduces damage after hypoxia-ischemia in the neonatal rat, Pediatr Res, 1995,38:912-918
    FordP. C., WinkD. A. et al., iutoxidation kinetics of aqueous nitric oxide FEBS Lett. 1993 (326): 1-3
    Francois Torreilles et al., Neurodegenerative disorders: the role of peroxynitrite, Brain Research Review ,1999,30:153-163
    Garthwaite J., Charles SL, Chese-Williams R. Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intracellular messenger in the brain, Nature, 1988, 336:385-388
    Giuseppe L. Squadrito et al., Oxidative chemistry of nitric oxide: the roles of superoxide, peroxynitrite, and carbon dioxide, free radical biology & medicinde, 1998,25:392-403
    Gediminas Cepinskas et al., Interaction between reactive oxygen metabolites and nitric oxide in oxidant tolerance, Free radical biology & medicine, 2002,33(4):433-440
    Giuseppe L. Squadrito, William A. Pryor, The formation of peroxynitrite in vivo from nitirc oxde and superoxide, Chemico-biological interactions, 1995,96:203-206
    Grifiths C. et al, Dynamics of nitric oxide during simulated ischaemia-reperfusion in rat striatal slices measured using an intrinsic biosensor, solule guanylyl cyclase, Eur. J. Neurosci. 2002(15), 962-968
    Guo Wei et al, Role of neuronal and endothelial nitric oxide synthase in nitric oxide generation in the brain following cerebral ischemia, biochimica er Biophysica Acta, 1999,1455:23-34
    Hibbs JB et al., Nitric oxide from L_arginine: A cellular bioregulatory system. 1st ed, Amsterdam: Elsevier Sci, 1990:189-223
    Homero Rubbo et al., Nitric oxide regulation of superoxide and peroxynitrite-dependent lipid peroxidation, the journal of biochemical
    
    chemisty, 1994, 269(42):26066-26075
    Huang ZH, Huang PL et al., Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthse, Science,1994,265:1883-1885
    Iadecola C, Zheng F, Casey R et al., Inducible nitric oxide synthase gene expression in vascular cells after transient focal cerebral ischemia, Stroke, 1996:27(8):1373
    J.E. Brain, J.E. Faraci et al., Recent insights into the regulation of cerebral circulation, Clin. Exp. Pharmacol. Physiol. 1996 Vol(23):449-457.
    Jack. r Lancaster. JR, Simulation of the diffusion and reaction of endogenously produced nitric oxide, Proc Natl. Acad Sci. USA, 1994:91:8137-8141
    J.R. Lancaster Jr, A tutorial on the diffusibility and reactivity of free nitric oxide, Nitric Oxide: biology and chemistry, 1997,1(1):18-30
    J.R. Lancaster Jr, Diffusion of free nitric oxide, Method Enzymol 1996, 268:31-50
    J.R. Lancaster Jr. et al., The nitric oxide/superoxide assay, the journal of biochemical chemisty, 1997, 272(15):9922-9932
    J. Wood J. Garthwaite, Models of the diffusional spread of nitric oxide: implications for neural nitric oxide signaling and its pharmacological properties, Neuropharmacology, 1994,33(11):1235-1244
    Jpee Pasquert et al., Peroxynitrite inhibition of nitric oxide synthases Biochimie,1996,78:785-791
    Kathleen A. Lamkin-kennard, Mathematical modeling of nitric oxide transport methanisms(thesis on line)
    Luca Brunellli et al., the comparative toxicity of nitric oxide and peroxynitrite to escherichia coli, archives of biochemistry and biophysics, 1995,316(1):327-334
    Mark W. Vaughn et al., Estimation of nitric oxide production and reaction rates in tissue by use of a mathematical model, Am. J. Physiol Heart Circ Physiol, 1998,274:H2163-H2176
    Mahendra Kavdia et al., Model of nitric oxide diffusion in an arteriole impacet of hemoglobin-based blood substitutes, Am. J. Physiol Heart Circ Physiol, 2002,282:H2245-H2253
    Malinsky T., Taha Z. et al., Diffusion of nitric oxide in the aorta wal monitored n situ by porphyrinic microsensors, Biochem. Biophys. Res,, Commun. 1993(193):1076-1082
    Michel Laurent et al., Kinetic modeling of the nitric oxide gradient generated in vitro by adherent cells expressing inducible nitric oxide synthase, Biochem J. 1996,314:109-113
    Mcdonald LJ, Moss J., Stimulation by nitric oxide of an NAD linkagetoglyceraldehyde-3-phosphate dehydrogenase, Proc Natl Acad Sci, 1993(90):6238-6241
    Moncada S. et al., Biosynthesis of nitric oxide from L-arginine. A Pathway
    
    for the regulation of cell function, communication Biochem. Pharmac. 1989. (38):1709-1715
    Mo J., Free Radical Biology for medicine, Beijing: the press of People' s Public health, 1989:70-75
    Morikawa E et al, Am. J. Physiol, 1992:263:H1632-H1675
    Gross SS, Wolin MS et al. Nitric oxide: pathophysiological mechanisms. Annu Rev. Physiol, 1995:57:737
    Michael P. Murphy et al., Peroxynitrite: A biologically significant oxidant, Gen Pharmac, 1998,31(2):179-186
    Oyama Ji, Shimokawa H, Role of nitric oxide and peroxynitrite in the cytokine-induced sustained myocardial dysfunction in dogs invivo, J. Clin Invest, 1998,101(2):207-214
    Rafael Radi, Adriana Cassina et al., peroxynitrite reactions and formation in mitochondria, Free radical biology & medicine, 2002,33(11):1451-1464
    Rafael Radi et al., peroxynitrite oxidation of sulfhydryls: the cytotoxic potential of superoxide and nitric oxide, the journal of biological chemistry,1991,266(7):4244-4250
    Rainer Schulz et al., Nitric oxide in myocardial ischemia/reperfusion injury, Cardivascular research, 2004,61:402-413
    Richard B.R Muijsers et al., Peroxynitrite:a two-faced metabolite of nitric oxide, life sciences, 1997,60(21):1833-1845
    Rengasamy A., Johns RA., Determination of Km for oxygen of nitric oxide synathaseisoforms, J. Pharmacol. Exp. Ther, 1996,276:30-33
    R.F. Furchgott and D. Jothianandan, Endothelium-dependent and-independent vasodilation involving cyclic GMP: relaxation induces by nitric oxide, carbon monoxide and light Blood vessels. 1991 Vol 28:52-61
    Russwurm M, et al., Guanylyl cyclase/PSD-95 interaction: targeting of the nitric oxide-sensitive α_2β_1, guanylyl cyclase to synaptic membranes, Biol. Chem. 2001, 276:44647-44652
    Tominage T, Sato S et al. potentation of nitvic oxide formation follaving bilateral carotid occlusion and focal cerebral ischemia in the rat: in vivo detection of the nitric oxide radical by electron. Brain Res, 1993:18:614
    Tomas C. Bellamy, John Garthwaite, Sub-second of the Nitric Oxide Receptor, Soluble Guanylyl Cyclase, in Intact Cerebellar Cells, Biological Chemistry 2001, 276 (6): 4287-4292
    Tomas C. Bellamy et al., Differential sensitivity of guanylyl cyclase and mitochondrial respiration to nitric oxide measured using clamped concentrations, Biol. Chem, 10. 1074/jbc. M205936200 June 21, 2002
    V.L. Dawson, T.M. Dawson, E.D. London et al, nitric oxide mediates glutamate neurotoxicity in primary brain culture, Proc. Natl. Acad. Sci. USA. 1991 Vol(88): 6368-6371.
    Vladimir G. Kharitonov et al., Kinetics of nitric oxide autoxidation in
    
    aqueous solution, the journal of biochemical chemisty, 1994, 269(8):5881-5883
    W.D. Lust, Y. Yasumoto et al Ischemia encephalopathy, in: D.W. McCandless (Ed.), Cerebral Energy Metabolism and Metabolic Encephalopathy, New York, 1985, 79-112.
    William D. Stanbro et al., Modeling the interaction of peroxynitrite with low-density lipoproteins Ⅱ: Reaction/diffusion model of peroxynitrite in low-density lipoprotein particles, J. theor, biol, 2000.205:465-471
    Wink DA, Hanbauer I et al., Nitric oixde protects against cellular damage and cytotoxicity from reactive oxygen species, Proe Natl Acad Sci USA, 1993,90(21):9813
    Xiaoping Liu et al., diffusion-limited reaction of free nitric oxide with erythrocytes, the journal of biochemical chemisty, 1998, 273(30):18709-18713
    Z. Mu, N. Gang-min et al., The Influence of Oxygen-Glucose Deprivation on Nitric Oxide and Intracelluar Ca~(2+) in cultured hippocampal neurons, ACTA BIOCHIMICAL et BIOPHYSICA SINICA. 2003 vol. 35:561-566
    Zhang J, Dawson VL et al., Nitric oxide activation of poly(ADP-Ribose) synthetase in neurotoxicity. Science, 1994,263(5147):687
    Zingareli B, Protection against myocardial ischemia and reperfusion injury by 2-aminobenzamide an inhibitor of poly(ADP-ribose) synathase Cardiobasc Res, 1997(36):205-215
    B.K.齐兹耶(瑞典),脑的能量代谢 科学出版社 1983
    陈建良 (节译) 脑缺血后神经元延迟死亡的机制 深圳医学 1998,11(3):43-45
    陈康宁 等 大鼠脑缺血再灌流中钙与神经元凋亡关系的研究 中国老年学杂志 2000.20:293-295
    陈群 脑缺血后延迟性神经元死亡的线粒体假说《国外医学》麻醉学与复苏分册 1998,19(6):350-353
    陈士明 等 超氧阴离子自由基的产生及其与天然药物的作用 复旦学报 1991,30(1):31-36
    陈健 等 缺氧缺血时新生大鼠脑中谷氨酸含量的变化及其与脑损伤的关系 河北医科大学学报,2003,24(5):287-288
    陈念航 脑内—氧化氮与脑缺血损伤 国外医学生理、病理科学与临床分册 1995,15(4):244-247
    陈晓霞 新生大鼠缺氧缺血后脑细胞线粒体呼吸功能动态观察.贵阳医学院学报 1999,24(4):356-358
    楚冰 脑缺血后迟发性神经元死亡及分子机制 国外医学脑血管疾病分册 1999,7(6):330-332
    崔景斌 等 大鼠脑缺血再灌注损伤后兴奋性氨基酸、NOS和NO的含量变化 郑州大学学报 2002,37(2):169-171
    丁军 科学与工程数值算法 清华大学出版社 2003
    冯东福 等 脑组织氧分压监测技术的研究与应用进展 国外医学生物医学工程分册 2001,24(1):32-35
    G.Milazzo & Martin Blank生物电化学—生物氧化还原反应 天津科学技术出版
    
    社 1985
    高翠香 线粒体和细胞凋亡 教学参考 2002,5:94-94
    高文祥 等 急、慢性缺氧对大鼠脑线粒体能量代谢的影响 中国病理生理杂志,2000,16(10):879-882
    郭家松 尹保国 周运富 等,缺血损伤对大鼠海马神经元形态及密度的影响,解放军医学高等专科学院学报 1998,26(2):17-19
    韩伟 等 大鼠全脑缺血再灌注后脑组织一氧化氮合酶的变化 哈尔滨医科大学学报 2003,37(2):117-119
    黄志农,杨茹,程介士 等,电针和7-硝基吲唑对癫痫的效应及其与脑内一氧化氮的关系 生理学报 1999,5:508-514
    胡靖华 等 一氧化氮-一氧化氮合酶-过氧亚硝酸盐离子系统与心血管疾病 中华心血管病杂志 2000,28(6):482-482
    蒋雨平等 急性脑缺血的病理生理及其损伤机制 医师讲修杂志 1999,22(7):3-5
    姜招峰 超氧阴离子自由基对大鼠脑皮层神经细胞的损伤左右,ACTA Biochemica er biophysica sinica,2001,33(5):552-558
    江德华 等大鼠不可逆局灶性脑缺血神经元损伤的机制 中华医学杂志 1992,72(8):487-490
    康建华 等 人动脉血管平滑肌细胞 NOS-NO 系统变化特点及其意义 航空医学 2003,14(4):222-224
    兰希发等 脑缺血再灌注后神经细胞凋亡的机制 中国临床康复 2003,7(19):2726-2727
    刘俐 次黄嘌呤对评价新生儿缺氧的意义 国外医学妇幼保健分册 1994,5(2):58-61
    刘宪霜 等 脑缺血迟发性神经元死亡的分子机制研究进展 中华老年心脑血管病杂志 2002,4(6):426-428
    刘占卜 等 超氧阴离子自由基对生物体的作用机理研究 焦作教育学院学报 2002,18(4):48-51
    罗义 一氧化氮和过氧亚硝酸阴离子的心肌损害作用 Chin J Arterioscler,2001,9(2):172-174
    P.A.惠特克 线粒体—结构、功能和组装 科学出版社 1982
    潘树义 人参皂苷保护脊髓神经元与 NO 的关系 中国中药杂志 2003,28(9):851-853
    潘力雄 等 脑缺血选择性海马CA1区神经元损害的实验研究 中风与神经疾病杂志 1997,14(2):80-81
    朴春花 脑缺血再灌注损伤的机制和对策 中国康复理论与实践 2002,8(7):428-431
    千智斌 等过氧亚硝基阴离子在脑缺血再灌注损伤中的作用 新乡医学院学报 2003,20(2):94-95
    钱佳利 等 大鼠全脑缺血再灌注损伤过程中细胞凋亡研究 现代康复 2001,5(6):60-61
    祈新泉 计算机在化学中的应用 南京大学出版社 1986
    戚以政 汪叔雄,生化反应动力学与反应器,化学工业出版社,1999.8
    任丽 等 脑缺血再灌注后神经损伤的机制 国外医学脑血管疾病分册 2002,10(6):458-460
    
    
    邵勇 超氧阴离子 化学通报 2001,3:158-163
    石晶 缺氧缺血与线粒体DNA损伤 国外医学儿科分册 2002,29(1):26-28
    孙志忠 数值分析 东南大学出版社 2002
    孙玉生 等 大鼠前脑缺血再灌注不同时间神经元损伤情况 郑州大学学报 2002,37(5):610-612
    万选才 现代神经生物学 北京医科大学 中国协和医科大学联合出版社 1999
    王军民 物理化学 清华大学出版社 1992
    王运东 传递过程原理 清华大学出版社 2001
    王瑾雯 等 一氧化氮,超氧阴离子和过氧亚硝酸的作用和相互关系的研究进展 生命的化学 1998,18(1):3-6
    王兴祥等 超氧阴离子自由基对心肌细胞的损伤作用 J Clin Cardiol (China) 2003,19(7):410-412
    王晓梅 反应性星形胶质细胞对脑缺血神经元的保护 中风与神经疾病杂志 2001,18(1)63-64
    王晓英 等 神经元缺氧复氧损伤时氧自由基的毒性作用及其机制 生物物理学报 1999,15(2):374-380
    王永卫 NO、NOS与脑缺血再灌注损伤 镇江医学院学报 2000,10(1):179-181
    魏福堂 等 AD 模型海马结构中 iNOS 表达及作用 苏州医学院学报,2001,21(4):396-399
    魏佑震 等 大鼠一过性脑缺血后海马CA1区神经元动态变化 泰山医学院学报 1998,19(3):206-109
    席刚明 等 大鼠海马结构中兴奋性氨基酸神经元的发育 解剖学杂志 1999,22(4):343-348
    肖田元 系统仿真导论 清华大学出版社 2000
    肖卫兵 缺血缺氧性脑损伤和谷氨酸 生理科学进展 1994,25(4):323-326
    徐超 等 脑缺血继发性神经元损伤及其保护 医学研究通讯 2000,29(10):17-18
    许素菊 等 高效液相色谱法测定脑脊液中的次黄嘌呤,黄嘌呤和尿酸 临床检验杂志 1998,16(2):97-99
    杨志伟 等 超氧阴离子对心肌细胞Ca 2+平衡的影响及硒的保护作用 生物化学杂志 1994,10(2):196-201
    姚志彬 脑缺血后继发性神经元损伤机理及其保护 广东解剖学通报 1991,13(2):71-75
    英徐根 计算物理化学 科学出版社 2001
    易永 等超氧阴离子对脑片谷氨酸释放的增强及依布硒的抑制 中国药理学与毒理学杂志 1998,12(2):155-156
    俞海国 谷氨酸受体与缺氧缺血性脑损伤 实用儿科临床杂志 1999,14(4):236-237
    曾珍 等 脑缺氧缺血后谷氨酸的神经毒性机制及其对抗措施的研究 中国临床药学杂志,2001,10(5):340-342
    赵连友 等 高血压病患者动脉平滑肌细胞NO的变化和AVP对其合成的影响 第四军医大学学报 1998,19(4):467-468
    张峰 等 缺氧复氧诱导的心肌细胞凋亡及一氧化氮对此过程的作用 中国药理学通报 2002,18(3):288-290
    张宝琴 次黄嘌呤与自由基 国外医学妇幼保健分册 1995,6(2):70-72
    
    
    张宁 活性氧在脑缺血-再灌注过程中的损伤与保护作用 中国组织化学与细胞化学杂志 2002,11(4):495-500
    郑荣梁,生物学自由基 高等教育出版社 1992
    郑文权 等 局灶性脑缺血时脑组织中 nNOS 对神经元的作用研究 中风与神经疾病杂志 1999,16(1):15-17
    周玫 等 体内一氧化氮和过氧亚硝酸的生成及其生物学效应 中国动脉硬化杂志 1998,6(2):178-181
    钟慈声 孙安阳 一氧化氮的生物医学,上海医科大学出版社 1996.10

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700