咪唑啉表面活性剂修饰纳米材料的制备及相关材料的摩擦学应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
咪唑啉型表面活性剂具有良好的去污、起泡和乳化性能,极低的毒性和良好的生物降解性,在日用化工、纺织、印染、缓蚀以及工业表面清洗等领域已经得到了广泛的应用。然而长期以来,人们忽略了拓展这类表面活性剂在其它领域的应用。咪唑啉型表面活性剂分子结构特殊,其中含有长链烷基构成了细长的疏水链段,而咪唑啉环及与其相连的侧链上含有多个S、N、O等杂原子,构成了体积较大的亲水链段,特殊的双亲性能使它们的分子结构类似于嵌段共聚物,在选择性溶剂中具有特殊的表面/界面性能,因此咪唑啉型表面活性剂在纳米材料制备及应用领域的修饰作用值得期待。而目前国内外未见这方面的研究报道。
     纳米材料由于其特殊的光学、电学、光化学、电化学、力学及催化性能,因此它们的制备及应用已经受到人们的广泛关注。然而在许多领域如纳米摩擦学和生物电化学分析领域,纳米材料自身较差的油溶性和分散稳定性限制了它们的应用,其优良性能也难以充分发挥,而利用有机表面活性剂对其进行表面改性是提高其应用效果的一种有效途径。咪唑啉型表面活性剂由于其特殊的两亲性能,非常适合应用于纳米材料的表面改性,它们在纳米材料的制备中充当表面修饰剂和分散稳定剂,对于拓展纳米材料的应用领域具有重要的意义。
     纳米材料的制备工艺路线对于它们的应用也非常重要,如何探索一种简便、方便、能耗低且环境友好的制备工艺仍面临巨大挑战。本文以咪唑啉型表面活性剂为表面修饰剂,采用多种方法制备了表面修饰的纳米材料,特别是常温制备具有特殊形貌纳米材料的工艺路线,对于纳米材料的规模化生产及其应用具有一定的意义,所制备的表面修饰的MoS_2微米实心球和纳米空心球以及表面修饰的ZnS空心球产品在液体石蜡、基础油500SN和中负荷齿轮油(GL-4)等润滑油体系中具有良好的摩擦学性能。
     本论文研究的目的在于首先合成具有特殊分子结构的咪唑啉型表面活性剂,在分析表征的基础上,系统研究它们的界面性能;然后将这种表面活性剂应用于纳米材料的制备中,对纳米材料进行表面改性;最后将所制备的表面修饰的MoS_2和ZnS产品作为润滑油添加剂应用于摩擦学领域,探讨这种咪唑啉型表面活性剂修饰的纳米材料在摩擦过程中的作用机理,从而为制备适用高效的工业润滑油添加剂提供了一种全新的思路,对于拓展表面修饰的纳米材料在工业润滑油领域的应用具有非常积极的意义。
     本论文的主要研究内容如下:
     (1)合成了2-十一(十七)烷基-1-二硫脲乙基咪唑啉季铵盐(SUDEI、SHDEI)和二(2-十一(十七)烷基-1-甲酰胺乙基咪唑啉)己二胺季铵盐(SUAEIHDI、SHAEIHDI)等四种咪唑啉型和咪唑啉双子表面活性剂,对它们进行了FT-IR、GC-MS和NMR表征,并系统研究了它们的界面性能,得到了临界胶束浓度CMC和胶团化热力学参数,探讨了烷基链长度、温度及溶剂极性对界面性能的影响,并用Langmuir单分子层吸附模型对界面性能进行了解释。
     (2)以7g/L SUDEI为表面活性剂,Na_2MoO_4·2H_2O为铝源,硫代氨基脲为硫源,水合肼为还原剂,在醇-水(1:1,v/v)介质中190℃溶剂热反应24 h得到粒径为0.5~2μm的实心球形2H-MoS_2。采用XRD、TEM、SEM、HRTEM和XPS等手段对MoS_2产品进行了表征,同时讨论了表面活性剂种类和浓度、反应时间及溶剂对MoS_2形貌的影响,并对MoS_2实心球的形成机理进行了探讨。
     (3)以酸性萃取剂Cyanex 301作为硫源和表面修饰剂,Na_2MoO_4·2H_2O为钼源,在醇-水混合溶剂(3:1,v/v)中190℃溶剂热反应24 h制备了粒径约200-300 nm的2H-MoS_2空心球,与文献比较此方法具有反应温度低、能耗小、条件温和易控制等优点;在DMF溶剂中采用上述类似的溶剂热法,制备了粒径约20 nm的花瓣状MoS_2。采用XRD、TEM、SEM和EDXA等手段对MoS_2产品进行了表征,讨论了萃取剂浓度、反应时间、反应温度等条件对MoS_2空心球及花瓣状MoS_2产品形貌的影响,并对空心球形及花瓣状结构的形成机理进行了探讨。
     (4)以0.05 mol/L SUDEI为表面活性剂,Pb(Ac)_2·3H_2O为铅源,Na_2SeSO_3为硒源,在醇-水混合溶剂(3:1,v/v)中150℃溶剂热反应12 h制备了分散均匀的四方形PbSe纳米晶;以4g·L~(-1)SUDEI为表面修饰剂,(K(SbO)C_4H_4O_6.1/2H_2O)为锑源,硒粉为硒源,150℃水热反应24 h制备了棒状Sb_2Se_3纳米晶。采用XRD、TEM和XPS等手段对PbSe和Sb_2Se_3产品进行表征,讨论了表面活性剂种类和浓度、反应温度及介质对产品形貌的影响,并对纳米晶形貌的形成机理进行了探讨。
     (5)以4g·L~(-1)SUAEIHDI为表面修饰剂,Zn(Ac)_2·2H_2O为锌源,硒粉为硒源,水合肼为还原剂,在水中150℃水热反应24 h,制得粒径约为100-300 nm的球形ZnSe纳米材料。采用XRD、TEM、SEM、FTolR和UV-vis等手段对ZnSe产品进行了表征,讨论了表面活性剂的浓度、种类、溶剂及温度等反应条件对ZnSe产品形貌的影响,并对球形ZnSe的形成机理进行了探讨。
     (6)以6g L~(-1)SUDEI为表面活性剂,CdCl_2·2.5H_2O为镉源,Na_2SeSO_3为硒源,在水中90℃恒温反应6 h制得粒径为0.5-1μm且分散均匀的CdSe实心球。采用XRD、EDXA、TEM、SEM、FT-IR和UV-vis等手段对CdSe产品进行了表征,讨论了表面活性剂浓度和种类、反应时间及溶剂对CdSe产品形貌的影响,并对球形CdSe的形成机理进行了探讨。初步的电化学性能测试表明,DNA分子很容易标记在CdSe纳米粒子上,DNA的检测限可达到pmol/L。
     (7)以6g L~(-1)SUDEI为表面活性剂,Zn(Ac)_2·2H_2O为锌源,硫代乙酰胺(TAA)为硫源,在无水乙醇中常温反应24h得到粒径为0.5~1μm的ZnS空心球,采用XRD、EDXA、TEM、SEM、FT-IR和UV-vis等手段对ZnS产品进行了表征,讨论了表面活性剂浓度和种类、反应时间及溶剂对ZnS产品形貌的影响,并对ZnS空心球形结构的形成机理进行了探讨。
     (8)以6gL~(-1)SUDEI为表面活性剂,Bi(NO_3)_3·5H_2O为铋源,硫代乙酰胺(TAA)为硫源,在DMF中常温反应24h得到粒径为200~400 nm的刺球形Bi_2S_3产品。采用XRD、EDXA、TEM、SEM、FT-IR和UV-vis等手段对Bi_2S_3产品进行了表征,讨论了表面活性剂浓度和种类、反应时间及溶剂对Bi_2S_3产品形貌的影响,并对Bi_2S_3刺球形结构的形成机理进行了探讨。
     (9)研究了本文制备的SUDEI表面修饰的MoS_2微米实心球(SU-MoS_2)、萃取剂Cyanex 301表面修饰的MoS_2纳米空心球(301-MoS_2)和Cyanex 302表面修饰的MoS2实心球(302-MOS_2)在液体石蜡、基础油500 SN和成品中负荷齿轮油GL-4中的摩擦学性能,并与商业级胶体MoS_2(CC-MoS_2)进行了对比,结果表明:三种自制的表面修饰的MoS_2产品在三种油品中具有良好的分散稳定性能、极压性能和抗磨减摩性能,与商业级胶体MoS_2(CC-MoS_2)相比是更好的润滑材料。另外研究了SUDEI表面修饰的ZnS空心球(SU-ZnS)在液体石蜡和基础油500 SN中的摩擦学性能,结果表明:表面修饰的ZnS空心球在两种油品中具有良好的分散稳定性能和抗磨减摩性能。利用SEM和XPS对磨斑表面进行观察分析,从而对摩擦过程中的润滑机理进行了初步探讨,结果表明,上述MoS_2及ZnS添加剂产品的摩擦机理可归因于由边界润滑条件下的化学吸附膜、化学反应膜和沉积膜组成的有效的表面复合膜以及滚动摩擦的存在。
Due to the excellent decontaminating, bubbling and emulsifying properties, verylow toxicity and good biological degradation, imidazoline-type surfactants have beenwidely used in industrial fields, such as domestic chemical engineering, textile, dying,corrosion inhibition and industrial surface washing, etc. However, people have ignoredto extend their application in other fields so far. Imidazoline-type surfactants are ofspecial molecular structure, in which the long slim hydrophobic chain segment iscomposed of long chain alkyl, while the hydrophilic chain segment with larger volumeis made up of imidazoline ring and the heteroatoms S, N and O located at the sidechain. The special amphiphilic properties make the molecular structure ofimidazoline-type surfactants similar to that of block copolymer, which are of specialsurface/interface properties in selective solvents. Thus, the excellent surface-modifyingeffects of this kind of surfactants in the preparation of nanomaterials are worthexpecting. However, no researches on this aspect have been reported home and abroad.
     Much more attention has been paid to the preparation and application ofnanomaterials due to their special optic, electrical, photochemical, electrochemical,mechanical and catalytic properties. However, in many fields such as nanotribologyand bioelectrochemical analysis, the poor oil-solubility, dispersion and stability ofnanomaterials in organic media limit their application, and their excellent propertiescan't be exerted completely. Surface-modification with organic surfactants is aneffective way to improve the application effects of nanomaterials. Because of thespecial amphiphilic properties, the imidazoline-type surfactants are very suitable forthe surface-modification of nanomaterials, acting as the surface-modifying agent, dispersing and stabilizing agent and morphology-controlling agent, which is ofsignificant sense in expanding the application of nanomaterials.
     The synthesis processes of nanomaterials are very important for their application,and it still remains a great challenge to develop a facile, convenient, low-energy andenvironment-friendly route. In this paper, with imidazoline-type surfactants assurface-modifying agents, several methods are exploited to synthesize nanomaterials,especially the room temperature route to the fabrication of nanomaterials with specialmorphologies, which is significant to the manufacture production of nanomaterials in alarge scale. The as-prepared surface-modified MoS_2 micro-sized solid spheres andnano-sized hollow spheres, as well as the surface-modified ZnS hollow spheres are ofexcellent tribological properties in liquid paraffin, base oil 500 SN and medium-loadgear oil GL-4.
     The purpose of this paper is, the imidazoline-type surfactants with specialmolecular structure are firstly synthesized and characterized, and their interracialproperties are studied systematically; then the as-synthesized imidazoline surfactantsare applied into the preparation of nanomaterials to modify their surface; finally, thetribological properties of the as-prepared surface-modified MoS_2 and ZnS products arestudied as oil additives in lubricating oils, and the action mechanism of the imidazolinesurfactants-modified nanomateirals during the friction process are also investigated soas to provide a new route to the fabrication of practical and effective lubrication oiladditives, which is of active sense to expand the application of surface-modifiednanomaterials in industrial lubrication field.
     The main contents of this paper are as follows:
     (1) Four imidazoline-type surfactants quaternary ammonium salts of 2-undecyl(heptadecyl)-1-dithioureido-ethyl-imidazoline (SUDEI/SHDEI) and di (2-undecyl(heptadecyl)-1-formyl aminoethyl imidazoline) hexanediamine (SUAEIHDI/SHAEIHDI) were synthesized and characterized by the measurements of FT-IR,GC-MS and NMR, and their interracial properties were also studied systematically.The critical micelle concentration (CMC) values were obtained and the micellizationthermodynamic functions were calculated as well. The effects of the hydrophobicchain length, temperature and polarity of solvents on the surface properties were alsodiscussed. The Langmuir Monolayer Adsorption Model was employed to explain theinterfacial properties of the four obtained imidazoline-type surfactants.
     (2) With 7 g/L SUDEI as surface-modifying agent, Na_2MoO_4·2H_2O as Mo source, aminothiourea as S source and N_2H_4·H_2O as reducing agent, MoS_2 solid spheres withsize of 0.5~2μm were synthesized via a solvothermal route at 190℃for 24 h in themixed medium of ethanol-water (1:1, v/v). XRD, TEM, SEM, HRTEM and XPSmeasurements were used to characterize the MoS_2 products, and the effects of varioussurfactants type and concentration, reaction time and solvent on the morphologies ofMoS_2 products were discussed. The formation mechanism of MoS_2 solid sphericalstructure was investigated as well.
     (3) With acidic extractant Cyanex 301 as S source and surface-modifying agentand Na_2MoO_4·2H_2O as Mo source, 2H-MoS_2 hollow spheres with size of 200~300 nmwere synthesized via a solvothermal route at 190℃for 24 h in the mixed medium ofethanol-water (3:1, v/v). Compared with the literature, this approach has theadvantages of low reaction temperature, low cost, mild and easy control of the reactionprocess. Petal-like MoS_2 particles with size of about 20 nm were also obtained via thesimilar way mentioned above in DMF. XRD, TEM, SEM and EDXA measurementswere used to characterize the MoS_2 products, and the effects of extractantconcentration, reaction time and temperature on the morphologies of MoS_2 werediscussed. The formation mechanisms of MoS_2 hollow and petal-like structure wereinvestigated as well.
     (4) With 0.05 mol/L SUDEI as surface-modifying agent, Pb(Ac)_2·3H_2O as Pbsource and Na_2SeSO_3 as Se source, well-dispersed rectangular PbSe nanocrystal wasprepared via a solvothermal route at 150℃for 12 h. in the mixed medium ofethanol-water (3:1, v/v); with 4 g·L~(-1) SUDEI as surface-modifying agent,(K(SbO)C_4H_4O_6.1/2H_2O) as Sb source and Se powder as Se source, rod-like Sb_2Se_3nanocrystal was prepared via a hydrothermal route at 150℃for 24 h. XRD, TEM andXPS measurements were used to characterize the PbSe and Sb_2Se_3 products, and theeffects of various surfactants type and concentration, reaction temperature and mediumon their morphologies were discussed. The formation mechanisms of PbSe and Sb_2Se_3nanocrystals were investigated as well.
     (5) With 4 g/L SUAEIHDI as surface-modifying agent, Zn(Ac)_2·2H_2O as. Znsource, Se powder as Se source and N_2H_4·H_2O as reducing agent, ZnSe nanosphereswith size of 100-300 nm were synthesized via a hydrothermal route at 150℃for 24 h.XRD, TEM, SEM, FT-IR and UV-vis measurements were used to characterize theZnSe products, and the effects of various surfactants type and concentration, reactiontemperature and solvent on the morphologies of ZnSe were discussed. The formation mechanism of ZnSe spherical structure was investigated as well.
     (6) With 6 g/L SUDEI as surface-modifying agent, CdCl_2·2.5H_2O as Cd sourceand Na_2SeSO_3 as Se source, well-dispersed CdSe solid spheres with size of 0.5-1μmwere synthesized in water at 90℃for 6 h in air without stirring. XRD, EDXA, TEM,SEM, FT-IR and UV-vis measurements were used to characterize the CdSe products,and the effects of various surfactants type and concentration, reaction time and solventon the morphologies of CdSe were discussed. The formation mechanism of CdSespherical structure was investigated as well. The preliminary electrochemicalproperties indicate that the DNA molecules can be labeled easily on the CdSenanoparticles, and the detection limit of DNA is up to pmol/L.
     (7) With 6 g/L SUDEI as surface-modifying agent, Zn(Ac)_2·2H_2O as Zn sourceand TAA as S source, well-dispersed ZnS hollow spheres with size of 0.5-1μm weresynthesized in absolute ethanol at room temperature for 24 h in air. XRD, EDXA,TEM, SEM, FT-IR and UV-vis measurements were used to characterize the ZnSproducts, and the effects of various surfactants type and concentration, reaction timeand solvent on the morphologies of ZnS were discussed. The formation mechanism ofZnS hollow spherical structure was investigated as well.
     (8) With 6 g/L SUDEI as surface-modifying agent, Bi(NO_3)_3·5H_2O as Bi sourceand TAA as S source, well-dispersed urchin-like Bi_2S_3 products with size of 200~400nm were synthesized in DMF at room temperature for 24 h in air. XRD, EDXA, TEM,SEM, FT-IR and UV-vis measurements were used to characterize the Bi_2S_3 products,and the effects of various surfactants type and concentration, reaction time and solventon the morphologies of Bi_2S_3 were discussed. The formation mechanism of Bi_2S_3urchin-like structure was investigated as well.
     (9) The tribological properties of SUDEI-modified MoS_2 micro-sized solidspheres (SU-MoS_2), Cyanex 301-modified MoS_2 nano-sized hollow spheres(301-MoS_2) and Cyanex 302-modified MoS_2 micro-sized solid spheres (302-MoS_2) inliquid paraffin (LP), base oil 500 SN and medium-load gear oil GL-4 were studied andcompared with those of commercial colloidal MoS_2 (CC-MoS_2). The results show thatthe three self-prepared surface-modified MoS_2 additives are of excellent dispersion andstability, extreme-pressure characteristics and anti-wear and friction-reducingproperties in the three base stocks mention above, which are much better lubricatingmaterials compared with commercial colloidal MoS_2 (CC-MoS_2). Furthermore, thetribological properties of the as-prepared SUDEI-modified ZnS hollow spheres (SU-ZnS) in LP and base oil 500 SN were also studied, indicating that thesurface-modified ZnS hollow spheres are of excellent dispersion and stability,anti-wear and friction-reducing properties in the two base stocks. SEM and XPSmeasurements were used to observe the surfaces of the wear scars and the lubricationmechanisms of the systems lubricated with self-prepared surface-modified MoS_2 andZnS products in the friction process were investigated as well, which could be deducedas the effective surface composite film composed of chemical adsorption film,chemical reaction film and deposition film under boundary lubrication conditions, aswell as the existence of rolling friction.
引文
[1] 钟振声,杨兆禧,匡科.阳离子咪唑啉表面活性剂的合成.精细化工,2000,17(12):690-692.
    [2] 吴赞敏,吕彤,郭晓红,等.新型咪唑啉柔软剂的制备及应用.印染,1999,7:14-16.
    [3] 黄光团,甄库,陆柱.新型咪唑啉衍生物油田注水缓蚀剂的研究.腐蚀与防护,2004,25 (2):50-52.
    [4] 罗喆媛,俞敦义,屈人伟.改性咪唑啉缓蚀剂在H_2S-3%NaCl-H_2O体系中的缓蚀性能的研究.腐蚀与防护,2000,21(8):345-346.
    [5] Yoshinori K., Hiroko H., Imidazolines. JP Pat., 79 63077 (昭 54-63077) (1977).
    [6] 史真,杨卫国.二羟乙基咪唑啉阳离子表面活性剂的合成.化学世界,1994,1:14-15.
    [7] 马晓梅,殷树梅,李长态,等.高级脂肪胺基烷基咪唑啉的合成.精细石油化工,1996,5:25-27.
    [8] 刘永山,程悦生,徐长勋.2.十一烷剂-N-羧甲基-N-羟乙基咪唑啉的合成与应用.辽宁化工,1994,2:49-50.
    [9] 史真,王民亭.新型长链烷基季铵盐阳离子表面活性剂的合成.石油化工,1998,27:430-432.
    [10] Toshichika K., Akio K., Imidazoline derivative, JP Pat., 75 11917 (昭50-11917) (1975).
    [11] Kawase J., Tsuji K., Analysis of amphoteric surfactants by liquid chromatography with post-column detection Ⅱ imidazoline-type amphoteric surfactants derived from sodium chloroacetate, J. Chromatography, 1983, 267: 133-148.
    [12] 岳可芬,王小芳,史真.阳离子表面活性剂的合成及性能测定.西北大学学报(自然科学版),1999,29(6):531-534.
    [13] 马广存,魏丰华,黄向东,等.烷基咪唑啉阳离子表面活性剂的催化合成研究.山东科学,1997,10(3):34-38.
    [14] 孙立成,张壮余.咪唑啉型两性表面活性剂的研究Ⅰ.烷基咪唑啉的合成及其环在水介质中的稳定性.大连工学院学报,1988,27(增刊):95-102.
    [15] Kawase T., Tsuji K., Analysis of amphoteric surfactants by liquid chromatography with post-column detection Ⅲ. Salt-free-type imidazoline amphoteric surfactants, J. Chromatography, 1983, 267: 149-166.
    [16] 史真,樊燕.铵基乙酸盐型两性表面活性剂的合成.应用化学,1994,11(3):101-103.
    [17] 李树安,黄超.咪唑啉型磷酸盐两性表面活性剂的合成.精细石油化工,1996,5:13-15.
    [18] 李树安,张铸勇.咪唑啉磺酸盐两性表面活性剂的合成.精细化工,1990,(4-5):75-78.
    [19] 史真,李娜.烷基咪唑啉二羧酸盐的合成.西北大学学报(自然科学版),1994,24(3):219-221.
    [20] Bunton C. A., Robinson L., Catalysis of nucleophilic substitutions by micelles of dicationic detergent, F. J. Org. Chem., 1971, 36: 2346-2352.
    [21] Zhu Y. P., Masuyama A., Preparation and properties of double-ortriple-chain surfactants with two sulfonate groups derived from Na-cyldiethanolamines, J. Am. Oil Chem. Soc., 1991, 68: 539-543.
    [22] Zana R., Benrraou M., Alkanediyl-a, w-bis (dimethylalkyl ammonium bromide) surfactants 1. Effect of the spacer chain sength on the critical micelle concentration and micelle imization degree, Langmuir, 1991, 7: 1072-1075.
    [23] Huo Q. S., Rosa L., Mesostructure design with gemini surfactants: super formation in a three dimensional hexagonal array, Science, 1995, 268:1324-1327.
    [24] Huo Q. S., Generalized synthesis of periodic surfactant/inorganic composite materials, Nature, 1994, 368: 317-321.
    [25] 沈永芳,崔永芳,马春生,等.烷基双咪唑啉表面活性剂的研制与应用.天津纺织工学院学报,1995,14(4):39-42.
    [26] 徐长卿.两性表面活性剂——咪唑啉衍生物.日用化学工业,1984,77(1):26-29.
    [27] 傅献彩,沈文霞,姚天扬.物理化学(第四版),南京大学物理化学教研室编.北京:高等教育出版社,2000:918-920.
    [28] 秦保罗,李平.2.十一烷基-1-羧甲基-羧乙基咪唑啉的表面活性的研究.天津大学学报,1998.18:73-75.
    [29] 张莉,傅洵,张志强.十八烷基二甲基甜菜碱界面化学的研究.青岛科技大学学报,2004,125(3):192-201.
    [30] 李广仁,冯柏成,李高宁,等.咪唑啉型表面活性剂的合成和应用.山东师大学报(自然科学版),1996,11(2):47-50.
    [31] 梁梦兰,安碧城.两性咪唑啉表面活性剂的合成和应用.精细石油化工,1986,5:14-27.
    [32] 岳可芬,李涛,周春生,等.新型阳离子柔软剂的合成.西北大学学报(自然科学版),2000,30(3):225-226.
    [33] Kawase J., Takao Y., Homologous distribution analysis of imidazoline type cationic surfactants by high-performance liquid chromatography, J. Chromatography, 1983, 262: 408-410.
    [34] 雷良才,肖恺,沈愚.咪唑啉缓蚀剂的合成与缓蚀性能研究.腐蚀与防护,2001,22(10): 420-423.
    [35] 朱镭,于萍,罗运柏.咪唑啉缓蚀剂的研究与应用进展.材料保护,2003,36(12):4-6.
    [36] 陈卓元,王凤平,杜元龙.咪唑啉缓蚀剂缓蚀性能的研究.材料保护,1999,32(5):37-39.
    [37] 徐宝军,滕洪丽,王金波,等.咪唑啉衍生物缓蚀剂的研究.腐蚀与防护,2003,24(8):340-344.
    [38] 杨怀玉,陈家坚,曹楚南,等.H_2S水溶液中的腐蚀与缓蚀作用机理的研究Ⅵ.H_2S溶液中咪唑啉衍生物分子结构与其缓蚀性能的关系.中国腐蚀与防护学报,2002,22(3):147-152.
    [39] 杨怀玉,陈家坚,曹楚南,等.H_2S水溶液中的腐蚀与缓蚀作用机理的研究Ⅰ.酸性H_2S溶液中碳钢的腐蚀行为及硫化物膜的生长.中国腐蚀与防护学报,2000,20(1):1-7.
    [40] 杨怀玉,陈家坚,曹楚南,等.H_2S水溶液中的腐蚀与缓蚀作用机理的研究Ⅴ.咪唑啉衍生物在H_2S水溶液中的缓蚀作用特征.中国腐蚀与防护学报,2001,21(6):321-327.
    [41] 章荣玲,刘云延.1-硫脲乙基-2-芳基-2-咪唑啉的前线轨道能量与在金属表面上的化学吸附.化学通报,1994,(12):48-51.
    [42] 傅洵,胡正水,王德宝,等.萃取体系第三相的生成、微观结构与应用研究:三相萃取体系研究进展.化学通报,2000,63(4):13-17.
    [43] Pattero E., Eronla P., et al., Formation of microemulsion in solvent extraction systems containing Cyanex272, ISEC'88, 1988: 124-126.
    [44] Pattero E., Lantto Y., Ernola P. The effect of trioctylphosphine oxide on phase and extraction equilibria in systems containing his (2,4,4-trimethylpentyl)phosphinic acid, Solv. Extr. Ion Exch., 1990, 8 (3): 371-388
    [45] 胡正水,辛惠蓁,潘莹,等.二烷基磷(膦)酸钠盐萃取剂体系的相行为.应用化学,1995,12(5):10-14.
    [46] Hu Z. S., Pan Y., Ma W. W. et al., Purification of organo-phosphorus acid extractants, Solv. Extr. Ion Exch., 1995, 13 (5): 965-976.
    [47] Fu X., Xiong Y. H., Xue S. Y., et al., Study on the thiophosphinic extractants Ⅰ. The basic properties of the extractants and the phase behavior in their saponified systems, Solv. Extr. Ion Exch., 2002, 20 (3): 331-344.
    [48] Fu X., Hu X. P., Zhang Z. H., et al., Three-phase extraction study Ⅰ. Tri-butylphosphatekerosene/H_2SO_4-H_2O extraction system, J. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 152: 335-343.
    [49] Hu, Z. S., Hu, X. P., Cui W., et al., Three phase extraction study Ⅱ. TBP-Kerosene/H_2SO_4-TiOSO_4 system and the preparation of ultrafine powder of TiO_2, Colloids and Surfaces, 1999, 155: 383-393.
    [50] Gu, G. H., Wu, Y. S., Fu X., et al., Comparison between three-phase extraction system of TBP-Kerosene/HClO_4-H_2O and two-phase extraction system of TBP/HClO_4-H_2O, Solv. Extr, Ion Exch., 2000, 18 (5): 841-851.
    [51] Fu X., Hu Z. S., Wang D. B., et al., Progress in the study of three-phase extraction system-the formation, microstructure and application of the third phase, Chem. J. On Internet, 2000, 2 (3): 18-24.
    [52] 傅洵,刘欢,薛美玲,等.三正辛胺/无机酸萃取体系的界面性质.化工冶金,1999,20(1):5-10.
    [53] Fu X., Liu H., Chen H., et al., Three-phase extraction study of TOA-alkane/HCl (Zn~(2+) or Fe~(3+)) systems, Solv. Extr. Ion Exch., 1999, 17(5): 1281-1293.
    [54] 张立德,牟季美.纳米材料和纳米结构.北京:高等教育出版社,2001,112.
    [55] 周震,阎杰.纳米材料的特性及其在电催化中的应用.化学通报,1998,(4):23-26.
    [56] 苏宜,谢毅,陈乾旺,等.纳米ZnS、CdS水热合成及其表征.应用化学学报,1996,13(5):5657-5658.
    [57] Qian Y. T., Su Y., Xie Y., et al., Hydrothermal preparation and characterization of nanocrystalline powder of sphalerite, Mater. Res. Bull., 1995, 30(5): 601-605.
    [58] Li J., Chen Z., Wang R.J. Low temperature route towards new materials: solvothermal synthesis of metal chalcogenide in ethylenediamine, Coord. Chem. Rev., 1999, 190-192: 707-735.
    [59] Yang J., Zeng J. H., Yu S. H., et al., Pressure-controlled fabrication of stibnite nanorods by the solvothermal decomposition of a simple single-source precursor, Chem. Mater, 2002, 12: 2924-2929.
    [60] Hu H. M., Liu Z. P., Yu B. J., et al., Solvthermal growth of Sb2S3 microcrystallites with novel morphologies, J. Cryst. Grow., 2004, 262: 375-382.
    [61] Boutonnet M., Kizhig J., Stenius P. The preparation of monodisperse colloidal metal, particles from microemulsions, Colloids and Surfaces, 1982, 5: 209-225.
    [62] Simmons B. A., Li S., John V. T., et al., Morphology of CdS nanocrystals synthesized in a mixed surfactant system, Nano Lett., 2002, 2: 263-268.
    [63] Li M., Mann S., Emergence of morphological complexity in BaSO_4 fibers synthesized in AOT microemulsions, Langmuir, 2000, 16: 7088-7094.
    [64] Kim F., Kwan S., Akana J., et al., Langmuir-blodgett nanorod assembly, J. Am. Chem. Soc., 2001, 123: 4360-4361.
    [65] Dinsmore A. D., Hsu M. F., Nikolaides M. G., et al., Colloidosomes: Selectively permeable capsules composed of colloidal particles, Science, 2002, 298: 1006-1009.
    [66] Zhang D. B, Qi L. M, Ma J. M, et al., Formation of crystalline nanosized titania in reverse miceles at room temperature, J. Mater. Chem., 2002,12: 3677-3680.
    [67] Hirai T., Sato H., Komasawa I., Mechanism of formation of titanium dioxide ultrafine particles in reverse micelles by hydrolysis of titanium tetrabutoxide, Ind. Eng. Chem. Res., 1993, 32: 3014-3019.
    [68] Li G. L., Wang G. H., Synthesis of nanometer-sized TiO_2 particles by a microemulsion method, Nanostruct. Mater., 1999, 11: 663-668
    [69] Rees G. D., Evans-Gowing, Hammond R, S, et al., Formation and morphology of calcium sulfate nanoparticles and nanowires in water-in-oil microemulsions, Langmuir, 1999, 15: 1993-2002
    [70] Pileni M. P., Mesostructured fluids in oil-rich regions: structural and templating approaches, Langmuir, 2001,17: 7476-7486.
    [71] Liu Z. P., Hu Z. K., Liang J. B., et al., Size-controlled synthesis and growth mechanism of monodisperse tellurium nanorods by a surfactant-assisted method, Langmuir, 2004, 20: 214-218.
    [72] Lisiecki I., Pileni M. P., Synthesis of copper metallic clusters using reverse micelles as microreactors, J. Am. Chem. Soc, 1993,115, 3887-3896.
    [73] Jana N. R., Gearheart L., Murphy, C. J., Wet chemical synthesis of high aspect ratio cylindrical gold nanorods, J. Phys. Chem. B, 2001, 105: 4065-4067.
    [74] Qiu S. Q., Dong J. X., Preparation of Cu nanoparticles from water-in-oil Micro emulsions, J. Colloid Interface Sci., 1999, 216: 230-234.
    [75] Xiong Y. J., Xie Y., Wu C. Z., et al., Formation of silver nanowires through a sand wiched reduction process, Adv. Mater., 2003,15(5): 405-408.
    [76] Li M., Schnablegger H., Mann S., et al., Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization, Nature, 1999, 402: 393-395.
    [77] Kwan S., Kim F., Akana J., et al., Synthesis and assembly of BaWO_4 nano-rods, Chem. Commun., 2001,447-448.
    [78] Xu S. J., Chua S. J., Liu B., et al., Luminescence characteristics of impurities-activated ZnS nanocrystals prepared in microemulsion with hydrothermal treatment, Appl. Phys. Lett., 1998, 73: 478-480.
    [79] Cao M. H., Hu C. W., Peng G, et al., Selected-control synthesis of PbO_2 and Pb_3O_4 single-crystalline nanorods, J. Am. Chem. Soc, 2003,125: 4982-4983.
    [80] Cao M. H., Hu C. W., Wang E. B., The first fluoride one-dimensional nanostructures: microemulsion-ediated hydrothermal synthesis of BaF_2 whiskers, J. Am. Chem. Soc., 2003, 125: 11196-11197.
    [81] Liu Z. P., Li S., Yang Y., et al., Complex-surfactant-assisted hydrothermal route to ferromagnetic nanobelts, Adv. Mater., 2003, 15:1946-1948.
    [82] Huang L. M., Wang H. T., Wang Z. B., et al., Nanowire arrays electrodeposited from liquid crystalline phases, Adv. Mater., 2002, 14: 61-64.
    [83] Braun P. V., Senar P. S., Stupp I., Semiconducting superlattices templated by molecular assemblies, Nature, 1996, 380: 325-328.
    [84] Liu S. H., Qian X. F., Yin J., et al. Room temperature synthesis of PbS nanocrystals with different morphologies in PEO-PPO-PEO triblock copolymers, Mater. Sci. Engine. B, 2003, 100: 314-317.
    [85] Gao X. L., Gu G. H., Hu Z. H., et al., A simple method for preparition of silver dendrites. Colliods and Surface A: Physicochem. Eng. Aspects, 2005, 254: 57-61.
    [86] 张冬柏,齐利民,马季铭,等.双亲水嵌段共聚物存在下特殊形貌的晶体合成.高等学校化学学报,2004,25(1):159-161.
    [87] Liu T., Xie Y., Chu B., Use of block copolymer micelles on formation of hollow MoO_3, Langmuir, 2002, 16:9015-9022.
    [88] Huang J., Xie Y., Li B., et al., In-situ source-template-interface reaction route to semiconductor CdS submicrometer hollow spheres, Adv. Mater., 2000, 12(11): 808-811.
    [89] Jiang X., Xie Y., Lu X., et al., Low temperature interface-mineralizing route to hollow CuS, CdS, and NiS spheres, Can. J. Chem., 2002, 80: 263-268.
    [90] Lu Q., Gao F., Zhao D., A template-free method for hollow Ag_2S semiconductor with a novel quasi-network microstructure, Chem. Phys. Lett., 2002, 360: 355-360.
    [91] Antonietti M., Breulmann M., Golter C. G., et al., Inorganic/organic mesostructures with complex architectures: precipitation of calcium phosphate in the presence of double-hydrophilic block copolymers, Chem. Eur. J., 1998, 4(12): 2493-2500.
    [92] Sedlak M., Antonietti M., Colfen H., Synthesis of a new class of double-hydrophilic block copolymers with calcium binding capacity as builders and for biomimetic structure control of minerals, Macromol Chem. Phys., 1998, 199: 247-254.
    [93] Colfen H., Antonietti M., Crystal design of calcium carbonate microparticles using double-hydrophilic block copolymers, Langmuir, 1998, 14:582-589.
    [94] Qi L. M., Li J., Ma J. M., Biomimetic morphogenesis of calcium carbonate in mixed solution of surfactants and double-hydrophilic block copolymers, Adv. Mater., 2002, 14: 300-303.
    [95] Qi L. M., Colfen H., Antonietti M., Control of bartie morphology by double hydrophilic block copolymers, Chem. Mater., 2000, 12: 2392-2403.
    [96] Qi L. M, Colfen H., Antonietti M., Formation of BaSO_4 fibers with morphological complexity in aqueous polymer solutions, Chem. Eur. J., 2001, 7: 3526-3532.
    [97] Shi H. T., Qi L. M., Ma J. M., et al., Polymer-directed synthesis of penniform BaWO_4 nanostructures in reverse micelles, J. Am. Chem. Soc., 2003, 125:3450-3451.
    [98] Qi L. M., Colfen H., Antonietti M., et al., Synthesis and characterization of CdS nanoparticles stabilized by double-hydrophilic block copolymers, Nano. Lett., 2001, 1:61-65.
    [99] Ma Y. R., Qi L. M., Ma J. M., et al., Synthesis of submicrometer sized CdS hollow spheres in aqueous solutions of a triblock copolymer, Langmuir, 2003, 19: 9079-9085.
    [100] Ma Y., Qi L., Ma J., et al., Facile synthesis of hollow ZnS nanospheres in block copolymer solution, Langmuir, 2003, 19: 4040-4042.
    [101] Zhang D. B., Qi L. M., Ma J. M., et al., Synthesis of submicrometer-sized hollow silver spheres in mixed polymer-surfactant solutions, Adv. Mater., 2002, 14: 1499-1502.
    [102] Zhang D. B., Qi L. M., Yang J. H., et al., Wet chemical synthesis of silver nanowire thin films at ambient temperature, Chem. Mater., 2004; 16: 872-876.
    [103] Oner M., Control of ZnO crystallinzation by a PEO-b-PMAA diblock copolymer, Chem. Mater., 1998, 10: 460-463.
    [104] 戴雄杰.摩擦学基础.上海:上海科学技术出版社,1984.
    [105] 李生华,周春红,张瑞军,等.摩擦化学进展——化学的地位与作用.摩擦学学报,2002,22(1):75-80.
    [106] 王汝霖.润滑剂摩擦化学.北京:中国石化出版社,1992.
    [107] Jost H. P., Lubrication (tribology) education and research—A report on the present position an industry's needs. London: Her Majesty's Stationery Office, 1966.
    [108] 金锡志.机器磨损及其对策.北京:机械工业出版社,1997.
    [109] 董浚修.润滑原理及润滑油.北京:中国石化出版社,1992.
    [110] 温诗铸.纳米摩擦学(Nanotribology)研究现状和展望.仪器仪表学报,1995,16(1):32-37.
    [111] 薛群基,徐康.纳米化学.化学进展,2000,12(4):431-444.
    [112] 夏延秋,金寿日,孙维明,等.纳米级金属粉对润滑油摩擦磨损性能的影响.润滑与密封,1999,(3):33-34.
    [113] Xu T., Zhao J. Z., Xu K., et al., Study on tribological properties of ultra-dispersed diamond containing soot as an oil additive, STLE Tribology Transaction, 1997, 40(3): 178-189.
    [114] Dong J. X., Hu Z. S., A study of the anti-wear and friction-reducing properties of the lubricant additive, nanometer zinc borate, Tribology International, 1998, 31 (5): 219-223.
    [115] Hu Z. S., Dong, J. X., Study on anti-wear an reducing friction additive of nanometer of titanium oxide, Wear, 1998, 216: 87-91.
    [116] 胡泽善,王立光,黄令,等.纳米硼酸铜颗粒的制备及其用作润滑油添加剂的摩擦学性能.摩擦学学报,2000,20(4):292-295.
    [117] Hu Z. S., Dong J. X., Chen G. X., et al., Preparation and tribological properties of nanopartical lanthanum borate, Wear, 2000, 243: 43-47.
    [118] Chen S., Liu W. M., Yu L. G., Preparation of DDP-coated nanoparticles and investigation of the anti-wear ability of the prepared nanoparticles as additive in liquid paraffin, Wear, 1998, 218: 153-158.
    [119] 陈爽,李楠,刘维民.油酸修饰PbS纳米粒子的摩擦学性能剖析.润滑与密封,2003,(2):23-24.
    [120] 周静芳,张治军,王晓波,等.油溶性铜纳米微粒作为液体石蜡添加剂的摩擦学性能研究.摩擦学学报,2000,20(2):123-126.
    [121] Xue, Q. J., Liu, W. M., Zhang, Z. J., Friction and wear properties of a surface-modified TiO_2 nanoparticle as an additive in liquid paraffin, Wear, 1997, 213: 29-32.
    [122] Liu, W. M., Chen S., Study on the tribological behaviour of the surface-modified ZnS nanoparticles in liquid paraffin, Wear, 2000, 238: 120-124.
    [123] Chen S., Liu W. M., Preparation and characterization of surface-coated ZnS nanoparticles, Langmuir, 1999, 15: 8100-8104.
    [124] 张泽抚,刘维民,薛群基,等.钼化合物润滑材料的摩擦学应用与研究发展现状.摩擦学学报,1998,18(4):377-382.
    [125] Chhowalla M., Amaratunga G. A. J., Thin films of fullerence-like MoS_2 nanoparticles with ultra-low friction and wear, Nature, 2000, 407: 164-167.
    [126] 吕晋军,梁宏勋,薛群基.Y-TZP/MoS_2自润滑材料的摩擦学性能研究.摩擦学学报,2003,23(6):490-494.
    [127] 张治军,马同森,张天莉,等.表面修饰MoS_2纳米微粒的XPS研究.河南大学学报(自然科学版),1995,25(4):41-45.
    [128] 张文钲.面向21世纪的钼润滑技术.中国钼业,1998,22(5):10-13.
    [129] 宁世光,石明理,刘奉岭,等.咪唑啉衍生物对钢在酸中的缓蚀作用于电子密度和前线轨道能量的关系.中国腐蚀与防护学报,1990,10(4):383-391.
    [130] 章荣玲,杜爱玲,李延芳.2-十一烷基-1-(双硫脲)乙基-咪唑啉在铜表面的成膜作用.山东示范大学学报,1994,9(4):36-39.
    [131] Sekine M., Campbell R. A., Valkovska D. S., et al., Adsorption kinetics of ammonium perfluorononanoate at the air-water interface, Phys. Chem. Chem. Phys., 2004, 6: 5061-5065.
    [132] Drach M., Rudzinski W., Warszynski P., et al., Adsorption of surfactants at air/solution interfaces: theoretical description of adsorption equilibrium based on a model of clustering of the surfactant molecules at the air/solution interface, Phys. Chem. Chem. Phys., 2001, 3: 5035-5042.
    [133] Penfold J., Staples E., Tucker I., et al., Adsorption of di-chain cationic and non-ionic surfactant mixtrues at the air/water interface, Phys. Chem. Chem. Phys., 2000, 2: 5230-5234.
    [134] Gilanyi T., Varga I., Meszaros R., Specific counterion effect on the adsorption of alkali decyl sulfate surfactants at air/solution interface, Phys. Chem. Chem. Phys., 2004, 6: 4338-4346.
    [135] Warszynski P., Barzyk W., Lunkenheimer K., et al., Surface tension and surface potential of Na n-dodecyl sulfate at the air-solution interface: model and experiment, J. Phys. Chem. B 1998,102:10948-10957.
    [136] Lunkenheimer K., Hirte R., Another approach to a surface equation of state, J. Phys. Chem., 1992, 96: 8683-8686.
    [137] Lunkenheimer K., Haage K., Hirte R., Novel results on the adsorption properties of n-alkyldimethylphosphine oxides at the air/water interface, Langmuir, 1999,15: 1052-1058.
    [138] Fainerman V. B., Miller R., Surface tension isotherms for surfactant adsorption layers including surface aggregation, Langmuir, 1996,12: 6011-6014.
    [139] Aksenenko E. V, Fainerman V. B., Miller R., Dynamics of surfactant adsorption from solution considering aggregation within the adsorption layer, J. Phys. Chem. B, 1998, 102: 6025-6028.
    [140] ainermanV. B. F, Vollhardt D., Melzer V., Equation of state for insoluble monolayers of aggregating amphiphilic molecules, J. Phys. Chem., 1996, 100: 15478-15482.
    [141] Israelachvili J., Self-assembly in two dimensions: surface micelles and domain formation in monolayers, Langmuir, 1994,10: 3774-3781.
    [142] Ruckenstein E., Li B., A simple surface equation of state for the phase transition in phospholipid monolayers, Langmuir, 1996, 12: 2308-2315.
    [143] Putlitz B., Hentze H.P., Landfester K., et al., New cationic surfactants with sulfonium headgroups, Langmuir, 2000,16: 3214-3220.
    [144] Matthias B. T., Marezio M., Corenzwit E., et al., High temperature superconductors: The first ternary system, Science. 1972, 175: 1465-1466.
    [145] Burlet P., Flouquet J., Genicon J. L., et al., Magnetism and superconductivity in the Chevrel phase HoMo_6S_8, Physica B 1995, 215: 127-133.
    [146] Zheng D. N., Ramsbottom H. D., Hampshire D. P., Reversible and irreversible magnetization of the Chevrel-phase superconductor PbMo_6S_8, Phys. Rev.. B, 1995, 52:12931-12938.
    [147] Ruiz-Hitzky E., Jimenez R., Casal B., et al., PEO intercalation in layered chalcogenides, Adv. Mater. 1993, 5: 738-741.
    [148] Danet M., Mansot J. L., Golub A. S., et al., Iron-intercalated molybdenum disulfide obtained from single-layer dispersion, Mater. Res. Bull. 1994, 29: 833-841.
    [149] Jenne R., Honyonfer M., Feldman Y., Nanoparticles of layered compounds with hollow cage structures (inorganic fullerene-like structures), Chem. Mater. 1998, 10: 3225-3238.
    [150] 马江虹,翟玉春,田彦文.热分解法制备二硫化钼纳米粉末的研究.稀有金属与硬质合金,2004,32(3):1-4.
    [151] 田野,何俣,朱永法,等.MoS_2的水热合成及其润滑性能,物理化学学报,2003,19(1):1044-1048.
    [152] Peng Y. Y., Meng Z. Y., Zhong C., et al., Tube- and ball-like amorphous MoS_2 prepared by a solvothermal method, Mater. Chem. And Phy. 2002, 73: 327-329.
    [153] Chen X. Y., Wang X., Wang Z. H., et al., Direct sulfidization synthesis of high-quality binary sulfides (WS_2, MoS_2, and V_5S_8) from the respective oxides, Mater. Chem. And Phy. 2004, 87: 327-331.
    [154] Tene R., Fullerene-like materials and nanotubes from inorganic compounds with a layered (2-D) structure, Coll. & Surf. A., 2002, 208: 83-92.
    [155] Xu X. Y., Li X. G., Preparation of nanocrystalline MoS2 hollow spheres, Chinese Chemical Letters, 2003, 14(7): 759-762.
    [156] Muijsers J. C., Weber Th., van Hardeveld R. M., et al., Niemantsverdriet, sulfidation study of molybdenum oxide using MoO_3/SiO_2/Si (100) model catalysts and Mo-Ⅳ_3-sulfur cluster compounds, J. Catal., 1995, 157: 698-705.
    [157] Chin R. L., Hercules D. M., Surface spectroscopic characterization of cobalt-molybdenumalumina catalysts, J. Phys. Chem., 1982, 86: 3079-3089.
    [158] Joensen P., Frindt R. F., Morrison S. R., Single-layer MoS_2, Mater. Res. Bull., 1986, 21: 457-461.
    [159] A fanasiev P., Xia G. F., Berhault G., et al., Surfactant-assisted synthesis of highly dispersed molybdenum sulfide, Chem. Mater., 1999, 11: 3216-3219.
    [160] Helmut C., Antje V., Magrit B., et al., http://www.mpikggolm.mpg.de/kc/coelfen/#Concepts.
    [161] Hu Z. S., Li L. Y., Zhou X. D., et al., Solvothermal synthesis of hollow ZnS spheres, J. Coll. and Interf. Sci., 2006, 294: 328-335.
    [162] Jiang X., Xie Y., Lu X., et. al, Low temperature interface-mineralizing route to hollow CuS, CdS, and NiS spheres, Can. J. Chem., 2002, 80: 263-268.
    [163] Lu Q., Gao F., Zhao D., A template-free method for hollow Ag_2S semiconductor with a novel quasi-network microstructure, Chem. Phys. Lett., 2002, 360: 355-360.
    [164] Etzkorn J., Therese H. A., Rocker F., et al., Metal-organic chemical vapor deposition synthesis of hollow inorganic-fullerene-type MoS_2 and MoSe_2 nanoparticles, Adv. Mater., 2005, 17: 2372-2375.
    [165] Tenne R., Doped and heteroatom-containing fullerene-like structures and nanotubes, Adv. Mater., 1995, 7: 965-995.
    [166] Chen X. Y., Wang X., Wang Z. Ho, et al., Direct sulfidization synthesis of high-quality binary sulfides (WS_2, MoS_2, and V_5S_8) from the respective oxides, Mater. Chem. and Phys., 2004, 87: 327-331.
    [167] Li X. L., Li Y. D., MoS_2 nanostructures: synthesis and electrochemical Mg~(2+) intercalation, J. Phys. Chem. B., 2004, 108: 13893-13900.
    [168] Tait B. K., Cobalt-nickel separation: the extraction of cobalt (Ⅱ) and nickel (Ⅱ) by Cyanex 301, Cyanex 302 and Cyanex 272, Hydrometallurgy, 1993, 32: 365-372.
    [169] Shi H. Q., Fu X., Zhou X. D., et al., A low-temperature extraction -solvothermal route to the fabrication of micro-sized MoS_2 spheres modified by Cyanex 301, Journal of Solid State Chemistry, 2006, 179 (6): 1690-1697.
    [170] Agfedt A., Gratzel M., Light-induced redox reactions in nanocrystalline systems, Chem Rev., 1995, 95: 49-68.
    [171] Henglein A., Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles, Chem Rev., 1989, 89:1861-1873.
    [172] Zhao W. B., Zhun J. J., Chen H. Y., Photochemical preparation of rectangular PbSe and CdSe nanoparticles, J. Crystal Growth, 2003, 252: 587-592.
    [173] Rajapure K. Y., Lokhande C. D., Bhosele C. H., Effect of the substrate temperature on the properties of spray deposited Sb-Se thin films from non-aqueous medium, Thin Solid Films, 1997,311: 114-118.
    [174] 陈名海,高濂.多元醇法制备和表征Sb_2Se_3纳米线.无机材料学报,2005,20(6):1343-1348.
    [175] 姚凤仪,郭德威,桂明德.无机化学丛书,第五卷:氧硫硒分族.北京:科学出版社,1990,333.
    [176] Roof L. C., Kolis J. W., New developments in the coordination chemistry of inorganic selenide and telluride ligands, Chem. Rev., 1993, 93: 1037-1080.
    [177] Chuprakov I. S., Dahmen K. H., CVD of metal chalcogenide films, J. Phys. Ⅳ, 1999, 9: 313-319.
    [178] Cheng Y., Emge T. J., Brennan J. G., Pyridineselenolate complexes of copper and indium: Precursors to CuSex and In_2Se_3, Inorg. Chem., 1996, 35: 7339-7344.
    [179] Murray C. B., Norris D. J., Bawendi M. G., Synthesis and characterization of nearly monodisperse CdE (E=S, Se, Te) semiconductor nanocrystallites, J. Am. Chem. Soc., 1993, 115: 8706-8715.
    [180] Grisaru H., Palchik O., Gedanken A., et al., Preparation of Cdl-xZnxSe using microwave-assisted polyol synthesis, Inorg. Chem., 2001, 40:4814-4815.
    [181] Chen M., Xie Y., Yao Z. Y., et al., A novel solvent-directed shape control technique for preparation of rod-shaped PbS crystals, Mater. Chem. Phys., 2002, 74:109-111.
    [182] Gautam U. K., Seshadri R., Preparation of PbS and PbSe nanocrystals by a new solvothermal route, Materials Research Bulletin, 2004, 39: 669-676.
    [183] Xie Y., Su H. N., Li B., et al., A direct solvothermal route to nanocrystalline selenides at low temperature, Materials Research Bulletin, 2000, 35: 459-464.
    [184] Wang C., Zhang G., Fan S., et al., Hydrothermal synthesis of PbSe, PbTe semiconductor nanocrystals, J. Phys. Chem. of Solids, 2001, 62:1957-1960.
    [185] 姜立萍,张剑荣,王骏,等.超声电化学制备PbSe纳米枝晶.无机化学学报,2002,18(11):1161-1164.
    [186] Zhu J. J., Liao X. H., Wang J., et al., Photochemical synthesis and characterization of PbSe nanocrystals, Mater. Res. Bull., 2001, 36:1169-1172.
    [187] Wang D. B., Yu D. B., Mo M. S., et al., Preparation and characterization of wire-like Sb_2Se_3 and flake-like Bi_2Se_3 nanocrystals, Journal of Crystal Growth, 2003, 253:445-451.
    [188] Zhang Y. X., Li G. H., Zhang B., et al., Synthesis and characterization of hollow Sb_2Se_3 nanospheres, Materials Letters, 2004, 58: 2279-2282.
    [189] Wang W. Z., Geng Y., Qian Y. T., A novel pathway to PbSe nanowires at room temperature, Adv. Mater., 1998, 10(17): 1479-1481.
    [190] Shen G. Z., Chen D., Tang K. B., et al., A rapid ethylenediamine-assisted polyol route to synthesize Sb_2E_3 (E=S, Se) nanowires, Journal of Crystal Growth, 2003, 252: 350-354.
    [191] 李兰英,郭峰,古国华,等.水热法制备均分散的硫化锌纳米晶聚集体.青岛科技大学学报,2005,26(3):211-214.
    [192] Wu D. M., Zhou X. D., Fu X., et al., Synthesis and characterization of micro-sized solid MoS_2 spheres, J. Mater. Sci., 2006, 41(17): 5682-5686.
    [193] Zhou X. D., Wu D. M., Shi H. Q., et al., Study on the tribological properties of surfactant-modified MoS_2 micrometer spheres as an additive in liquid paraffin, Tribology International, 2007, 40(5): 863-868.
    [194] 宫华,刘开平.ZnSe半导体发光材料进展.中国陶瓷,2003,(3):72-76.
    [195] Zhu J. J., Koltypin Y., Gedanken A., General sonochemical methods for the preparation of nanophasic selenides: synthesis ofZnSe nanoparticals, Chem. Mater., 2000, 12(1): 73-78.
    [196] Zhan J. H., Yang X. G., Qian Y. T., A solvothermal route to wurtzite ZnSe nanoparticles, Mater. Res., 2000, 15(3): 629-631.
    [197] 李焕勇,介万奇.一维半导体纳米材料制备与表征.半导体学报,2003,24(1):58-62.
    [198] Bruchez Jr. M., Moronne M., Gin P., et al., Semiconductor nanocrystals as fluorescent biological labels, Science, 1998, 281:2013-2016.
    [199] Mattoussi H., Mauro J. M., Goldman E. R., et al., Self-Assembly of CdSe-ZnS Quantum Dot Bioconjugates Using an Engineered Recombinant Protein, J. Am. Chem. Soc., 2000, 122: 12142-12150.
    [200] Huynh W. U., Dittmer J. J., Alivisatos A. P., Hybrid Nanorod-Polymer Solar Cells, Science, 2002, 295: 2425-2427.
    [201] Kazes M., Lewis D. Y., Ebenstein Y., et al., Lasing from semiconductor quantum rods in a cylindrical microcavity, Adv. Mater., 2002, 14:317-321.
    [202] Klimov V. L., Mikhailovsky A. A., Xu S., et al., Optical gain and stimulated emission in nanocrystal quantum dots, Science, 2000, 290:314-317.
    [203] Kim S. H., Markovich G., Rezvani S., et al., Tunnel diodes fabricated from CdSe nanocrystal monolayers, Appl. Phys. Lett., 1999, 74:317-319.
    [204] Xie Y., Wang W. Z., Qian Y. T., et al., Solvothermal route to nanocrystalline CdSe, J. Solid State Chem., 1999, 147: 82-84.
    [205] Zhu J. J., Liao X. H., Zhao X. N., et al., Photochemical synthesis and characterization of CdSe nanoparticles, Materials Letters, 2001, 47: 339-343.
    [206] Trindade T., O'Brie P., Zhang X., Synthesis of CdS and CdSe nanocrystallites using a novel single-molecule precursors approach, Chem. Mater., 1997 (9): 523-530.
    [207] Henshaw G., Parkin I. P., Shaw G. A., Convenient, room-temperature liquid ammonia routes to metal chalcogenides, J. Chem. Soc., Dalton Trans., 1997:231-236.
    [208] Wang Q., Pan D. C., Jiang S. C., et al., Luminescent CdSe and CdSe/CdS core-shell nanocrystals synthesized via a combination of solvothermal and two-phase thermal routes, J. Luminescence, 2006, 118: 91-98.
    [209] Dai Q. Q., Li D. M., Jiang S., et al., Synthesis of monodisperse CdSe nanocrystals directly open to air: Monomer reactivity tuned by the selenium ligand, J. Cryst. Grow., 2006, 292: 14-18.
    [210] Wang J., Survey and summary: From DNA biosensors to gene chips, Nucleic Acids Res., 2000,28:3011-3016.
    [211] Zhu N. N., Zhang A. P., Wang Q. J., et al., Lead sulfide nanoparticle as oligonucleotides labels for electrochemical stripping detection of DNA hybridization, Electroanalysis, 2004,16: 577-582.
    [212] Zhang B., Ye X. C, Hou W. Y., et al., Biomolecule-assisted synthesis and electrochemical hydrogen storage of Bi_2S_3 flowerlike patterns with well-aligned nanorods, J. Phys. Chem. B, 2006, 110:8978-8985.
    [213] Wang J., Liu G. D., Merkoci A., Electrochemical coding technology for simultaneous detection of multiple DNA targets, J. Am. Chem. Soc., 2003, 125: 3214-3215.
    [214] Jeong U., Xia Y., Yin Y.D., Large-scale synthesis of single-crystal CdSe nanowires through a cation-exchange route, Chem. Phys. Lett., 2005, 416: 246-250.
    [215] Zhou X.D., Shi H.Q., Fu X.., et al., Synthesis and interfacial properties of imidazoline surfactants, J. Disp. Sci. Tech., Accepted for publication in 2007.
    [216] Wang H. N., Guo Z. Y, Du F. L., Solvothermal synthesis of CdSe nanorods via DEA solution, Mate. Chem. Phys., 2006, 98: 422-424.
    [217] Rengarajan R., Jiang P., Colvin V., et al., Optical properties of a photonic crystal of hollow spherical shells, App. Phys. Lett., 2000, 77 (22): 3517-3519.
    [218] Zhong Z., Yin Y., Gates B., et al., Preparation of mesoscale hollow spheres of TiO_2 and SnO_2 by templating against crystalline arrays of polystyrene beads, Adv. Mater., 2000,12: 206-209.
    [219] Velikow K. P., van Blaaderen A., Synthesis and characterization of monodisperse core-shell colloidal spheres of zinc sulfide and silica, Langmuir, 2001, 17:4779-4786.
    [220] Song C. X., Gu G. H., Lin Y. S., et al., Preparation and characterization of CdS hollow spheres, J. Mater. Res. Bull., 2003, 38: 917-924.
    [221] Rhodes K. H., Davis S. A., Caruso F., et al., Hierarchical assembly of zeolite nanoparticles into ordered macroporous monoliths using core-shell building blocks, Chem. Mater., 2000,12: 2832-2834.
    [222] Jiang Z. Y, Xie Z. X., Zhang X. H., et al., Synthesis of single-crystalline ZnO polyhedral submicrometer-sized hollow beads using laser-assisted growth with ethanol droplets as soft templates, Adv. Mater., 2004, 16: 904-907.
    [223] Collins A. M., Spickermann C., Mann S., Synthesis of titania hollow microspheres using non-aqueous emulsions, J. Mater. Chem., 2003,13:1112-1114.
    [224] Bredol M., Merikhi J., ZnS precipitation: morphology control, J. Mater. Sci., 1998, 33: 471-476.
    [225] Calandra P., Goffredi M., Turco Liveri V., Study of the growth of ZnS nanoparticles in water/AOT/n-heptane microemulsions by UV-absorption spectroscopy, Coll. Surf. A, 1999, 160:9-13.
    [226] Prevenslik T. V., Acoustoluminescence and sonoluminescence, J. Luminescence, 2000, 87-89: 1210-1212.
    [227] Jayalakshmi M., Mohan R. M., Synthesis of zinc sulphide nanoparticles by thiourea hydrolysis and their characterization for electrochemical capacitor applications, J. Power Sources, 2006,157: 624-629.
    [228] Zhao Y. B., Chen T. T., Zou J. H., et al., Fabrication and characterization of monodisperse zinc sulfide hollow spheres by gamma-ray irradiation using PSMA spheres as templates, J. Cryst. Grow., 2005, 275: 521-527.
    [229] Xu T., Zhang Z. J., Zhao J. Z., et al., Study on the structure of surface-modified MoS2 nanoparticles, Mater. Res. Bull., 1996, 31: 345-349.
    [230] Chen S., Liu W. M., Characterization and antiwear ability of non-coated ZnS nanoparticles and DDP-coated ZnS nanoparticles, Mater. Res. Bull., 2001, 36: 137-143.
    [231] Wang D. X., Li S. Y., Ying Y., et al., Theoretical and experimental studies of structure and inhibition efficiency of imidazoline derivatives, Corro. Sci., 1999,41:1911-1919.
    [232] Morales A. M., Lieber C. M., A laser ablation method for the synthesis of crystalline semiconductor nanowires, Science, 1998, 279: 208-211.
    [233] Han W. Q., Fan S. S., Li Q. Q., et al., Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction, Science, 1997,277: 1287-1289.
    [234] Alivisatos A. P., Semiconductor clusters, nanocrystals, and quantum dots, Science, 1996, 271: 933-937.
    [235] Klein J. D., Herrick R. D., Palmer D., et al., Electrochemical fabrication of cadmium chalcogenide microdiode arrays, Chem. Mater., 1993, 5: 902-904.
    [236] Krishna Moorthy P. A., Formation of stoichiometric bismuth trisulphide compound films, J. Mater. Sci. Lett., 1984, 3: 837-839.
    [237] Mahapatra P. K., Roy C. B., Photoelectrochemical behaviour of electrodeposited and pressure-sintered Bi2S3, Bi_2S_3-PbS and Bi_2S_3-Ag_2S semiconductor electrodes, Solar Cells, 1982/83,7:225-232.
    [238] Boudjouk P., Remington M. P., Grier Jr. D. G., Tris(benzylthiolato)bismuth--efficient precursor to phase-pure polycrystalline Bi_2S_3, Inorg. Chem., 1998, 37: 3538-3541.
    [239] Wang H., Zhu J. J., Zhu J. M., et al., Sonochemical method for the preparation of bismuth sulfide nanorods, J. Phys. Chem. B, 2002,106: 3848-3854.
    [240] He R., Qian X. F., Yin J., et al., Preparation of Bi_2S_3 nanowhiskers and their morphologies, J. Cryst. Grow., 2003, 252: 505-510.
    [241] Zhao W. B., Zhu J. J., Zhao Y., et al., Photochemical synthesis and characterization of Bi_2S_3 nanofibers, Mater. Sci. Engin. B, 2004,110: 307-314.
    [242] Nomura R., Kanaya K., Matsuda H., Preparation of bismuth sulfide thin films by solution pyrolysis of bismuth dithiocarbamate complexes, Bull. Chem. Soc. Jpn., 1989, 62: 939-941.
    [243] Wang D. B., Shao M. W., Yu D. B., et al., Growth of Bi_2S_3 skeleton crystals with three-dimensional network morphologies, J. Cryst. Grow., 2003, 254: 487-491.
    [244] Xie G., Qiao Z. P., Zeng M. H., et al., A single-source approach to Bi_2S_3 and Sb_2S_3 nanorods via a hydrothermal treatment, J. Cryst. Grow. Desi., 2004,4: 513-516.
    [245] Yu S. H., Yang J., Wu Y. S.,et al., Hydrothermal preparation and characterization of rod-like ultrafine powders of bismuth sulfide, Mater. Res. Bull., 1998, 33:1661-1666.
    [246] Yu S. H., Qian Y. T., Shu L., et al., Solvent thermal synthesis and characterization of ultrafine powder of bismuth sulfide, Mater. Lett., 1998, 35:116-119.
    [247] Su H. L., Xie Y., Gao P., et al., Synthesis and formation mechanism of Bi(Se, S) nanowires via a solvothermal template process, Chem. Lett., 2000, 29: 790-793.
    [248] Xing G. J., Feng Z. J., Chen G. H., et al., Preparation of different morphologies of nanostructured bismuth sulfide with different methods, Mater. Lett., 2003, 57: 4555-4559.
    [249] Shen G. Z., Chen D., Tang K. B., et al., Large-scale synthesis of uniform urchin-like patterns of Bi_2S_3 nanorods through a rapid polyol process, Chem. Phys. Lett., 2003, 370: 334-337.
    [250] Wang Y, Herron H., Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties, J. Phys. Chem., 1991, 95, 525-532.
    [251] Motte L., Petit C, Boulanger L., et al., Synthesis of cadmium sulfide in situ in cadmium bis(2-ethylhexyl) sulfosuccinate reverse micelle: polydispersity and photochemical reaction, Langmuir, 1992, 8: 1049-1053
    [252] Kelly N. E., Lee S., Harris K. D. M., Fine-tuning the crystal morphology of tunnel inclusion compounds: a general strategy, J. Am. Chem. Soc, 2001,123:12682-12683
    [253] Manna L., Scher E. C, Alivisatos A. P., Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals, J. Am. Chem. Soc, 2000, 122: 12700-12706.
    [254] Zhang Z. J., Xue Q. J., Zhang J., Synthesis, structure and lubricating properties of dialkyldithiophosphate-modified Mo-S compound nanoclusters, Wear, 1997, 209: 8-12
    [255] Fu X., Wu D. M., Zhou X. D., et al., Solvothermal synthesis of molybdenum disulfide hollow spheres modified by Cyanex 301 in water-ethanol medium, Journal of Nano-particles Research, Accepted for publication.
    [256] 傅洵,胡正水,石华强,等.萃取溶剂热法制备二硫化钼减摩材料的方法.2005,中国发明专利,专利申请号:200510104306.2.
    [257] Zhou X. D., Shi H. Q., Fu X., et al., Facile fabrication of surfactant-modified ZnS hollow spheres at room temperature and its tribological properties in liquid paraffin, Journal of Dispersion Science and Technology, Accepted for publication.
    [258] http://srdata.nist.gov/xps/
    [259] 夏延秋,刘维民,薛群基.几种有机胺化合物在液体石蜡中对钢-钢和钢-铝合金体系摩擦磨损行为的影响.摩擦学学报,2002,1:40-45.
    [260] Liu W. M., Gong G. Y., He W. R., A study of the tribological behaviour and action mechanism of thiophosphates in rape seed oil, Journal of Synthetic Lubrication, 2004, 21: 67-78.
    [261] 周静芳.油溶性纳米微粒的制备及作为润滑油添加剂的摩擦学特性研究.中科院兰州化学物理研究所博士学位论文,2000.11
    [262] Cizaire L., Vacher B., Le Mogne T., et al. Mechanisms of ultra-low friction by hollow inorganic fullerene-like MoS_2 nanoparticles, Surf. Coat. Tech., 2002, 160: 282-287.
    [263] Zhang Z. J., Zhang J., Xue Q. J., Synthesis and characterization of a molybdenum disulfide nanocluster, J. Phys. Chem., 1994, 98: 12973-12977.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700