三维边界层流动失稳与Bypass转捩模式研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
边界层流动转捩预测与控制一直是流体力学中的热点问题,而三维边界层与二维边界层转捩机制完全不同。本文从流动失稳的角度研究了三维边界层流动的二次失稳以及转捩控制相关问题;同时对于二维边界层流动bypass转捩,发展了一种完全适用于现代CFD软件的四方程湍流转捩模式。
     横流失稳是三维边界层流动层流转捩的主要因素。三维边界层横流失稳产生饱和横流涡,被饱和横流涡强烈扭曲的三维边界层背景流动对高频的扰动非常敏感,而这也是三维边界层流动转捩发生的先兆。本文首先采用非线性抛物化扰动方程,求解了不可压后掠机翼流动横流非线性失稳;然后采用Floquet理论研究了机翼表面曲率、弦长雷诺数和后掠角对饱和定常横流涡二次失稳的影响。计算结果表明机翼表面曲率对三维边界层横流失稳起着稳定作用,而对横流涡二次失稳影响不大。但是弦长雷诺数增加,则会激发二次失稳‘y’模态而抑制‘z’模态。当机翼后掠角由35o、45o增加到55o时,三维边界层流动转捩提前:当后掠角依次增加时,横流涡涡间间距会减小并且同时激发二次失稳‘y’模态和‘z’模态。其次,本文采用非线性抛物化扰动方程求解了亚音速后掠圆柱边界层横流非线性失稳,利用Floquet理论分析了壁面定常吹、吸气对其二次失稳的影响。计算结果表明壁面定常吸气使得三维边界层横流速度减小,并且流向速度剖面更加饱和,因此可以有效地抑制横流失稳和二次失稳,而壁面定常吹气的效果与此相反。
     在中、高来流湍流度条件下,二维边界层逾越自然转捩而发生bypass转捩。bypass转捩预测在工程有着重要的运用,比如叶轮机械、后掠机翼增升装置和高超声速飞行器进气道等。本文基于二方程SST湍流模式,针对二维边界层bypass转捩建立了一个新的四方程湍流转捩模式。其中一方程为非湍流扰动粘性系数输运方程,描述了转捩前非湍流扰动的发展;而另一方程为间歇因子输运方程,捕捉转捩发生过程。通过与T3AM、T3A和T3B经典平板转捩实验结果对比,表明该模式可以非常好的反应低、中和高来流湍流度对转捩的影响。同时本文模式完全基于当地变量构造,因此可以方便的运用于现代CFD软件。
Boundary layer transition prediction and control is one of the mostambitions topics of research activities in aerodynamics. There are differenttransition physics between three-dimensional boundary layer andtwo-dimensional boundary layer flow. Based on the flow instability theory, thesecondary instability and control of three-dimensional boundary layer isinvestigated. And a new four-equation transition mode is developed by usinglocal variables for modern CFD soft.
     The crossflow instability of a three-dimensional boundary layer is a mainfactor affecting the laminar transition. The three-dimensional boundary layerflow distorted by the saturated crossflow vortex is very sensitive to the highfrequency disturbances, which foreshadows that the laminar transition willhappen. In this thesis, the crossflow instability of the incompressible flow over aswept wing is investigated by solving nonlinear parabolized stability equations(NPSE), and then the Floquet theory is applied to study the dependence of thesecondary and high-frequency instabilities of saturated steady crossflow vortexon curvature, chord Reynolds number and angle of swept (AOS). Thecomputational results show that the curvature in the present case has nosignificant effect on the secondary instabilities. The effect of the angle of sweptat35o,45oand55odegrees, respectively, is also studied in the framework of thesecondary instability theory. Larger angles of swept tend to decrease thespanwise spacing of the crossflow vortices, which correspondingly helps thestimulation of ‘z’ mode and the ‘y’ mode. The secondary instability of thesubsonic flow over a swept column is investigated with nonlinear parabolizedstability equations (NPSE) too. The Floquet theory is then applied to analyze theinfluence of localized steady wall suction and blowing on the secondaryinstability of crossflow vortex. The results show that suction can significantlysuppress the growth of the crossflow mode as well as the secondary instabilitymodes but blowing is in opposition with suction.
     The nature transition will be bypassed and a rapid transition process occurswhen free-stream turbulence intensity exceeds1%of the free-stream velocity.Prediction of bypass transition is of fundamental importance to the whole fluidmechanics community, for example, past turbine blades, flap configuration andhypersonic forebody. This paper presents a four-equation eddy-viscosityturbulence transition model for bypass transition prediction of two-dimensionalboundary layer based on the two-equation SST turbulence model and on thelaminar kinetic energy concept. A transport equation for the non-turbulentviscosity is designed to predict the development of the laminar kinetic energy inthe boundary layer flow that has been observed in experiments. The turbulencebreakdown process is then captured with an intermittency transport equation inthe transitional region. The performance of this new transition model isvalidated in the experimental cases of T3AM, T3A and T3B. Results show thatthis new transition model can reach good agreement in predicting bypasstransition, and is compatible with modern CFD software by using localvariables.
引文
[1] Bippes H, Muller B, Wagner M. Measurements and stability calculations of the disturbancegrowth in an unstable three-dimensional boundary layer. Physics of fluids,1991,3(10):2371-2377.
    [2] Gray W. The effects of wing sweep on laminar flow.1952, RAE TM255.
    [3] Poll D. I. A. Some observations of the transition process on the windward face of a longyawed cylinder. J. Fluid Mech.1985,150,329-356.
    [4] Arnal D, Coustols E, Juillen J. Experimental and theoretical study of transition phenomena onan infinite swept wing. Recherché Aerospatiale,1984,4:39-54.
    [5] Arnal D, Juillen J. Three-dimensional transition studies at ONERA/CERT. AIAA Paper,87-1335,1987.
    [6] Arnal D, Gasparian G, Salinas H. Recent advances in theoretical methods for laminarturbulent transition prediction. AIAA Paper,98-0223,1998.
    [7] Bippes H, Nitschke-Kowsky P. Experimental study of instability modes in athree-dimensional boundary layer. AIAA Paper,87-1336,1987.
    [8] Muller B, Bippes H. Experimental study of instability modes in a three-dimensional boundarylayer.1988, Proceedings AGARD Symposium on Fluid Dynamics of3D-turbulent shearflows and transition, Cesme, Turkey, AGARD CP-438.
    [9] Fischer T, Dallmann U. Theoretical investigation of secondary instability of three-dimensionalboundary layer flows with application to the DFVLR-F5model wing. DLR-FB87-44,1987.
    [10] Deyhle H, Hoehler G, Bippes H. Experimental investigation of instability wave propagation ina three-dimensional boundary layer flow. AIAA J,1993,31:637-645.
    [11] Takagi S, Itoh N. Observation of traveling waves in a three-dimensional boundary layer alonga yawed cylinder. Fluid Dynamics Research,1994,14:167-189.
    [12] Kohama Y, Onodera T, Egami Y. Design and control of crossflow instability field. IUTAMSymposium on nonlinear instability and transition in3D boundary layers, Kluwer AcademicPublishers,1996:147-156.
    [13] Saric W, Yeates L. Experiments on the stability of crossflow vortices in swept wing flows.AIAA Paper,85-0493,1985.
    [14] Reed H. Wave interactions in swept wing flows. Physics of Fluids,1987,30(11):3419-3426.
    [15] Radeztsky R, Reibert M, Saric W. Development of stationary crossflow vortices on a sweptwing. AIAA Paper84-2373,1994.
    [16] Kohama Y. Study on boundary layer transition of a rotating disk. Acta Mechanica,1984,50:193–199.
    [17] Kohama Y. Turbulent transition process of the spiral vortices appearing in the laminarboundary layer of a rotating cone. Physico Chemical Hydrodyn.1985,6:659–669.
    [18] Kohama Y, Saric W S. Hoos J A. A high frequency secondary instability of crossflow vorticesthat leads to transition. Proc. R. Aeronaut. Soc. Conf. on Boundary-Layer Transition andControl, Cambridge, UK,1991:4.1-4.13.
    [19] Kawakami M, Kohama Y, OKUTSU M. Stability characteristics of stationary crossflowvortices in three-dimensional boundary layer. AIAA Paper,99-0811,1999.
    [20] Dagenhart J, Saric W, Mousseux M, Stack J. Crossflow vortex instability and transition on a45degree swept wing. AIAA Paper,89-1892,1989.
    [21] Reibert M S, Saric W S, Carrillo R B. Experiments in nonlinear saturation of stationarycrossflow vortices in a swept-wing boundary layer. AIAA Paper96-0184,1996.
    [22] White E B, Saric W S. Secondary instability of crossflow vortices. J. Fluid Mech.2005,525:275-308.
    [23] Chernoray V G, Dovgal A V, Kozlov V V, Lofdahl, L. Experiments on secondary instabilityof streamwise vortices in a swept-wing boundary layer. J. Fluid Mech.2005,534:295–325.
    [24] Gregory N, Love E. Laminar flow on a swept leading edge. National Physical Lab, FinalProgress Report, NPL Aero. Memo,1965,26.
    [25] Mack L. Boundary layer stability theory. JPL Report,1969,900-277.
    [26] Mack L. Three-dimensional effects in boundary layer stability. Twelfth symposium on navalhydrodynamics.1978,1-31.
    [27] Choudhari M, Ng L, Streett C. A general approach for the prediction of localized instabilitygeneration in boundary layer flows. Proceedings R.Ae.S. Boundary layer transition andcontrol, Cambridge U.K,1991.
    [28] Balakumar P, Malik M. Discrete modes and continuous spectra in supersonic boundary layer.J. Fluid Mech,1992,239:631-656.
    [29] Balakumar P, Malik M. Waves produced from a harmonic point source in a supersonicboundary layer flow. J. Fluid Mech.1992,245:229-247.
    [30] Reed H, Saric W, Arnal D. Linear stability theory applied to boundary layers. Annual reviewof fluid Mechanics,1996,28:389-428.
    [31] Herbert T, Bertolotti F. Stability analysis of non-parallel boundary layers. Bulletin of theAmerican Physical Socity,1987,32(10),2079.
    [32] Bertolotti F P, Herbert T, Spalart P. Linear and nonlinear stability of the Blasius boundary. J.Fluid Mech,1992,242:441-474.
    [33] Herbert T. Parabolized stability equations. Annual Review of Fluid Mechanics,1997,29:245-283.
    [34] Wang M, Herbert T. Crossflow-Induced Transition in Compressible Swept-wing Flow. AIAAPaper94-2374,1994.
    [35] Malik M R, Li F, Chang C L. Crossflow disturbances in three-dimensional boundary layers:nonlinear development, wave interaction and secondary instability. J. Fluid Mech,1994,268:1–36.
    [36] Malik M R, Li F, Choudhari M M, Chang C L. Secondary instability of crossflow vortices andswept-wing boundary layer transition. J. Fluid Mech,1999,399:85–115.
    [37] Haynes T, Reed H. Simulation of swept-wing vortices using nonlinear parabolized stabilityequations. J. Fluid Mech.2000,405:325-349.
    [38] Koch W, Bertolotti F P, Stolte A, Hein S. Nonlinear equilibrium solutions in athree-dimensional boundary layer and their secondary stability. J. Fluid Mech.2000,406:131–174.
    [39] Hogberg M, Henningson D. Secondary instability of cross-flow vortices inFalkner–Skan–Cooke boundary layers. J. Fluid Mech,1998,368:339–357.
    [40] Koch W. On the spatio-temporal stability of primary and secondary crossflow vortices in athree-dimensional boundary layer. J. Fluid Mech,2002,456:85–111.
    [41] Wassermann P, Kloker M. Mechanisms and passive control of crossflow-vortex-inducedtransition in a three-dimensional boundary layer. J. Fluid Mech,2002,456:49–84.
    [42] Wassermann P, Kloker M. Transition mechanisms induced by travelling crossflow vortices ina three-dimensional boundary layer. J Fluid Mech,2003,483:67-89.
    [43] Wassermann P, Kloker M. Transition mechanisms in a three-dimensional boundary-layer flowwith preesure-gradient changeover. J Fluid Mech,2005,503:265-293.
    [44] Bonfigli G, Kloker M. Secondary instability of crossflow vortices: validation of the stabilitytheory by direct numerical simulation. J. Fluid Mech,2007,583:229–272.
    [45] Reed H L, Saric W S. Stability of three-dimensional boundary layers. Annu. Rev. Fluid Mech,1989,21:235-84.
    [46] Dryden H L. Air flow in the boundary layer near a plate. NACA Rep.1936,562.
    [47] Taylor G. Some recent developments in the study of turbulence. Fifth intl. congr. For appl.Mech1933:294-310.
    [48] Klebanoff P. Effect of free-stream turbulence on a laminar boundary layer. Bull. Am. Phys.Soc.16,1971.
    [49] Kendall J. Experimental study of disturbances produced in a pre-transitional boundary layer.AIAA Paper1985,85-1695.
    [50] Kendall J. Boundary layer receptivity to free steam turbulence. AIAA Paper,1990,90-1504.
    [51] Westin K, Boiko A, Klingmann B, Kozlov V. Alfredsson P. Experiments in a boundary layersubjected to free stream turbulence. Part1. Boundary layer structure and receptivity. J. FluidMech,1994,281:193–218.
    [52] Andersson P, Berggren M, Henningson D S. Optimal disturbances and bypass transition inboundary layers. Phys. Fluids,1999,11(1):134–150.
    [53] Matsubara M, Alfredsson P H. Disturbance growth in boundary layers subjected tofree-stream turbulence. J. Fluid Mech,2001,430:149–168.
    [54] Andersson P, Brandt L, Bottaro A, Henningson D S. On the breakdown of boundary layerstreaks. J. Fluid Mech.,2001,428:29–60.
    [55] Wu X, Choudhari M. Linear and non-linear instabilities of a Blasius boundary layer perturbedby streamwise vortices. Part2. Intermittent instability induced by long-wavelength Klebanoffmodes. J. Fluid Mech,2003,483:249–286.
    [56] Jacobs R, Durbin P. Simulation of bypass transition. J. Fluid Mech,2001,428:185–212.
    [57] Zaki T, Durbin P A. Mode interaction and the bypass route to transition. J. Fluid Mech,2005,531:85–111.
    [58] Brandt L, Schlatter P, Henningson D. Transition in boundary layers subject to free-streamturbulence. J. Fluid Mech,2004,517:167–198.
    [59] Fransson J, Brandt L, Talamelli A, Cossu C. Experimental study of the stabilization ofTollmien-Schlichting waves by finite amplitude streaks. Phys. Fluids17,2005a,5.
    [60] Fransson J, Matsubara M, Alfredsson P H. Transition induced by free-stream turbulence. J.Fluid Mech,2005b,527:1–25.
    [61] Nolan P, Walsh E J, Mceligot D M. Quadrant analysis of a transitional boundary layer subjectto freestream turbulence. J. Fluid Mech,2010,658:310-335.
    [62] Baldwin B S, Lomax H. Thin-Layer approximation and algebraic model for separatedturbulent flows. AIAA Paper78-257,1978.
    [63] McDonald H, Fish R. Practical calculations of transitional boundary layers. Int J Heat MassTransfer,1973,16:1729-1744.
    [64] Arad E, Berger M, Israeli M, Wolfshtein M. Numerical calculation of transitional boundarylayers. Int J Numer Methods Fluids,1982,2:1-23.
    [65] Wilcox D. Turbulence modeling for CFD. La Canada. CA: DCW Industries,1992.
    [66] Wilcox D. Turbulence and transition modeling for high-speed flows. NASA CR191473, Apr.1993.
    [67] Wilcox D. Reassessment of the scale-determining equation for advanced turbulence models.AIAA J,1988,26:1299-1310.
    [68] Wilcox D. Dilatation-dissipation corrections for advanced turbulence models. AIAA J,1992,30:2639-2646.
    [69] Wilcox D C. Turbulence model transition prediction. AIAA J,1975,13(2):241-243.
    [70] Westin K J A, Henkes RAWM. Application of turbulence models to bypass transition. J.Fluids Engineering,1997,119(4):859-866.
    [71] Craft T J, Launder B E, Suga K. Prediction of turbulent transitional phenomena with anonlinear eddy-viscosity model. Int J Heat Fluid Flow,1997,18:15-28.
    [72] Hadzic I. Second-moment closure modeling of transition and unsteady turbulent flows. PhDthesis, University of Delft,1996.
    [73] Savill A M. One-point closures applied to transition. In: Turbulence and Transition Modeling,Kluwer,1996:233-268.
    [74] Medic G, Durbin P A. Toward improved prediction of heat transfer on turbine blades. J.Turbomachinery,2002,124(2):187-192.
    [75] Mayle R. The role of laminar-turbulent transition in gas turbine engines. J. Turbomachinery,1991,113:123-148.
    [76] Abu-Ghannam B, Shaw R. Natural transition of boundary layers-the effects of turbulence,pressure gradient, and flow history. J Fluids Eng,1980,22(5):213-228.
    [77] Suzen Y B, Xiong G, Huang P G. Prediction of transitional flows in low-pressure turbinesusing an intermittency transport equation. AIAA J,2000,40(2):254-266.
    [78] Roberts W B. Calculation of laminar separation bubbles and their effect on airfoilperformance. AIAA J,1980,18(1):25-31.
    [79] Davis R L, Carter J E, Reshotko E. Analysis of transitional separation bubbles on infiniteswept wing. AIAA J,1987,25(3):421-428.
    [80] Suzen Y B, Huang P G, Hultgren L S, Ashpis D E. Predicitons of separated and transitionalboundary layers under low pressure turbine airfoil conditions using an intermittency transportequation. ASME J. Fluids Eng,1997,119:859-866.
    [81] Lardeau S, Li N, Leschziner M A. LES of transitional boundary layer at high free-streamturbulence intensity and implications for RANS modeling. J. Turbomachineary,2007,129:311-317.
    [82] Emmons H W. Shear flow turbulence. Proceedings of the second U.S. congress of applidmechanics, ASME,1954.
    [83] Dhawan S, Narasimha R. Some properties of boundary-layer flow during transition fromlaminar to turbulent motion. J Fluid Mech,1958,3(4):414-436.
    [84] Narasimha R. The laminar-turbulent transition zone in the boundary layer. Prog Aerosp Sci,1985,22:29-80.
    [85] Libby P A. On the prediction of intermittent turbulent flows. J Fluid Mech,1975,68:273-295.
    [86] Dopazo C. On conditioned averages for intermittent turbulent flows. J Fluid Mech,1977,81:433-438.
    [87] Cho J R, Chung M K. A k-ε-γ equation turbulence model. J Fluid Mech,1992,237:301-322.
    [88] Steelant J, Dick E. Modeling of laminar-turbulent transition for high freestream turbulence. JFluids Eng,2001,123:22-30.
    [89] Suzen Y B, Huang P G. An intermittency transport equation for modelling flow transition.AIAA Paper2000-0287,2000.
    [90] Menter F R, Esch T, Kubacki S. Transition modeling based on local variables. In:5thinternational symposium on turbulence modeling and measurements. Spain: Mallorca,2002.
    [91] Menter F R, Langtry R B, Likki S R, Suzen Y B, Huang P G, V lker S. A correlation basedtransition model using local variables part1-Model formulation. ASME-GT2004-53452,ASME TURBO EXPO. Austria, Vienna,2004a.
    [92] Langtry R B, Menter F R. Transition modeling for general CFD applications in aeronautics.AIAA Paper2005-0522,2005.
    [93] Langtry R B, Menter F R. Correlation-based transition modeling for unstructured parallelizedcomputational fluid dynamics codes. AIAA J,2009,47(12):2894-2907.
    [94] Menter F R. Two-equation eddy-viscosity turbulence models for engineering applications.AIAA J,1994,32(8):1598-1605.
    [95] Lin C C. Motion in the boundary layer with a rapidly oscillating external flow. Proc,9th int.congress appl. Mech. Brussels,1957,4:156-167.
    [96] Dullenkopf K. Mayle R E. An account of free-stream turbulence length scale on laminarheat transfer. Asme J. Turbomach,1995,117:401-406.
    [97] Mayle R, Schulz A. The path to predicting bypass transition. J. Turbomach,1997,119:405-411.
    [98] Lardeau S, Leschziner M, Li N. Modeling bypass transition with low-Reynolds-numbernonlinear eddy-viscosity closure. Flow. Turbulence and Combustion,2004,73:49-76.
    [99] Lardeau S, Leschziner M. Modelling of wake-induced transition in linear low-pressureturbine cascades. AIAA J,2006,44(8):1845-1865.
    [100] Bradshaw P. Turbulence: The chief outstanding difficulty of our subject. Exp Fluids,1994,16:203-216.
    [101] Walters D K, Leylek J H. A new model for boundary layer transition using a single-pointRANS approach. J Turbomach,2004,126:193-2002.
    [102] Savill A M. Some recent progress in the turbulence modeling of bypass transition. Near wallturbulent flows, New York,1993,829-830.
    [103] Wie Y S. BLSTA-A boundary layer code for stability analysis. NASA CR4481,1992.
    [104] Pruett D C, Streett C L. A spectral collocation method for compressible, non-similar boundarylayers. In Intl J. Numer. Meth. Fluids,1991,13:713-737.
    [105] Balakumar P, King R A. Receptivity and transition of supersonic boundary layers over sweptwings. AIAA Paper,2010-1454,2010.
    [106] Zhang Yong-ming, Zhou Heng. Verification of the parboiled stability equations for itsapplication to compressible boundary layers. Applied Mathematics and Mechanics,2007,28(8):987-998.
    [107] Bertolotti F P. Linear and nonlinear stability of boundary layers with streamwise varyingproperties. PhD thesis, The Ohio State University,1990.
    [108] Haj-Hariri H. Characteristics analysis of the parabolized stability equations. Studies ofApplied Mathematics,1994,92:41-53.
    [109] Li F, Malik M R. On the nature of the PSE approximation. Theoretical and ComputationalFluid Dynamics,1996,8:253-273.
    [110] Andersson P, Henningson D S, Hanifi A. On a stabilization procedure for the parabolicstability equations. Journal of Engineering Math,1998,33:311-332.
    [111] Malik M R, Chang C L. PSE applied to supersonic jet instability. AIAA Paper97-0758,1997.
    [112] Day M D, Mansour N N, Reynolds W C. Nonlinear stability and structure of compressiblereacting mixing layers. J. Fluid Mech,2001,446:375-408.
    [113] Herbert T. Secondary instability of plane channel flow to subharmonic three-dimensionaldisturbances. Physics of fluid,1983,26(4):871-874.
    [114] Herbert T. Secondary instability of boundary layers. Annual Review of Fluid Mechanics,1988,20:487-526.
    [115] Fischer T, Hein S, Dallmann U. A theoretical approach for describing secondary instabilityfeatures in three-dimensional boundary layer flows. AIAA Paper,93-0080,1993.
    [116] Arnoldi W. The principle of minimized iterations in the solution of the matrix eigenvalueproblem. Quarterly of Applied Mathematics,1951,9(1):17-29.
    [117] Sorensen D. Implicit application of polynomial filters in a k-step Arnoldi method. SIAMJournal on Matrix Analyisi and Applications,1992,13:357-385.
    [118] Robinet J C. Bifurcations in shock-wave/laminar-boundary-layer interaction: global instabilityapproach. J. Fluid Mech,2007,579:85-112.
    [119] Mack C J, Schmid P, Sesterhenn J L. Global stability of swept flow around a parabolic body:connecting attachment-line and crossflow modes. J. Fluid Mech,2008,611:205-214.
    [120] Lehoucq R, Sorensen D, Yang C. Arpack users guide.ftp://ftp.caam.rice.edu/pub/software/ARPACK,1997.
    [121] Malik M R, Orszag S A. Efficient computation of the stability of three-dimensionalcompressible boundary layer. AIAA Paper,81-1277,1981.
    [122] Huang J B, Xiao Z X, Fu S, Zhang Miao. Study of control effects of vortex generators on asupercritical wing. Science in China Series G-Physics Mechanics&Astronomy,2010,53(8):2038-2043.
    [123] Joslin R D. Overview of laminar flow control. NASA Langley Research Center, Hampton, VA,TP-1998-208705,1998a.
    [124] Joslin R D. Aircraft laminar flow control. Annu. Rev. Fluid Mech.1998b,30:1–29.
    [125] Pralits J O, Hanifi A. Optimization of steady suction for disturbance control on infinite sweptwings. Phys. Fluids,2003,15(9):2756–2772.
    [126] Erich Schuelein. Experimental investigation of laminar flow control on a supersonic sweptwing by suction. AIAA Paper,2008-4208,2008.
    [127] Kloker M J. Advanced laminar flow control on a swept wing: useful crossflow vortices andsuction. AIAA Paper,2008-3835,2008.
    [128] Messing R, Kloker M J. Investigation of suction for laminar flow control of three-dimensionalboundary layers. J. Fluid Mech,2010,658:117–147.
    [129] Warren E S, Hassan H A. Journal of Aircraft,1998,35(5):769–775.
    [130] Wang L, Fu S. Modeling flow transition in a hypersonic boundary layer withreynolds-averaged navier-stokes approach. Science in China Series G-Physics Mechanics&Astronomy,2009,52(5):768-774.
    [131] Wang L, Fu S. A new transition/turbulence model for the flow transition in supersonicboundary layer. Chinese Journal of Theoretical and Applied Mechanics,2009,42(2):162-168.
    [132] Chien K. Predictions of channel and boundary-layer flows with a low-Reynolds-numberturbulence model. AIAA J,1982,20:33-38.
    [133] Xiao Z X, Chen H X, Zhang Y F. Study of delayed-detached eddy simulation with weaklynonlinear turbulence model. J. Aircraft,2006,43:1377-1385.
    [134] Fu S, Xiao Z X, Chen H X. Simulation of wing body junction flows with hybrid RANS/LESmethods. Int J Heat Fluid Flow,2007,28:1379-1390.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700