白背飞虱抗药性监测及有效药剂的筛选
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以水稻上的主要害虫白背飞虱Sogatella furcifera(Horvath)为研究对象,以田间常用的有机磷类、氨基甲酸酯类、拟除虫菊酯类、新烟碱类、苯基吡唑类等杀虫剂为主要的研究药剂,监测了白背飞虱的田间抗药性情况,利用室内饲养品系建立了白背飞虱对多种药剂的敏感基线,同时在测定各种单剂对白背飞虱毒力的基础上,进行了大量的药剂混配试验,筛选出了一些具有显著增效作用的混配组合。为进一步实施白背飞虱的抗药性监测和治理奠定了基础。
     一、白背飞虱敏感品系的建立
     本文利用2007年7月采自南京江浦农场的白背飞虱,在室内不接触任何药剂的情况下连续饲养,进行敏感品系的培育。饲养13代后,测定其敏感性发现,白背飞虱对吡虫啉、呋虫胺、吡蚜酮和啶虫脒等新型杀虫剂均表现出较高的敏感性,但对乙酰甲胺磷和毒死蜱等有机磷杀虫剂的敏感性则不高。通过与已报道的杀虫剂敏感资料进行对比分析,发现本研究培育的白背飞虱室内饲养品系已经达到敏感品系水平,在研究白背飞虱对新型杀虫剂抗药性时,可以作为相对敏感品系使用,所测定的吡虫啉(0.05ng/头)、溴氰菊酯(1.90 ng/头)、丁硫克百威(1.32 ng/头)和氟虫腈(0.13 ng/头)等杀虫剂的LD50值可以作为敏感基线资料使用。
     二、白背飞虱田间种群抗药性的监测
     本文采用点滴法监测了我国3个地区的田间白背飞虱种群对有机磷类、氨基甲酸酯类、吡啶甲亚胺杂环类、苯基吡唑类、昆虫生长调节剂类和新烟碱类6类9种主要杀虫剂的抗性水平。结果表明,不同地区的白背飞虱对氟虫腈均已产生了中等水平的抗性(RR:10.31-20.54倍),南京种群对丁硫克百威(23.26倍)也表现出一定的抗性,但其他药剂均没有产生明显的抗性,仅在不同地区种群表现为丧失敏感性或低水平抗性。进一步比较不同地区白背飞虱种群对不同杀虫剂的抗性差异发现,只有南京地区的白背飞虱对丁硫克百威的抗性偏高、对毒死蜱偏敏感,其他监测的药剂在不同地区间不存在抗性水平的显著差异,表现出迁飞害虫的抗性特征。
     三、吡虫啉与常规杀虫剂混配对白背飞虱的联合作用
     吡虫啉是目前防治白背飞虱最好的药剂之一,为了延长其使用寿命,本文研究了吡虫啉与常规杀虫剂的联合毒力作用,结果发现吡虫啉和常规杀虫剂混用没有发现拮抗作用,调整混合比例,均可以筛选出增效明显的混用组合。如吡虫啉+丁硫克百威(1:10)、吡虫啉+毒死蜱(1:200)、吡虫啉+溴氰菊酯(1:10)和吡虫啉+噻嗪酮(1:5),它们的共毒系数分别达到278.28、225.09、224.26和230.18,增效显著。进一步研究剂型,部分混配组合可以开发成具有市场潜力的复配制剂。
     四、噻嗪酮和毒死蜱与其他常规杀虫剂混配对白背飞虱的联合作用
     噻嗪酮为昆虫生长调节剂类杀虫剂,对白背飞虱的速效性较差,但是毒力较高。毒死蜱为传统的有机磷类杀虫剂,毒力较差,但田间抗性水平不高。本节研究噻嗪酮与其他杀虫剂之间的混配,同时开展毒死蜱与对白背飞虱具有较高毒力的杀虫剂阿维菌素和氟虫腈的混配,结果发现噻嗪酮与乙酰胆碱酯酶抑制剂类杀虫剂的混配具有一定的增效作用,同时提高了噻嗪酮的速效性,毒死蜱与氟虫腈的组合也具有显著地增效作用。通过研究不同配比的杀虫剂两两混配,发现“噻嗪酮+毒死蜱(1:10)”、“噻嗪酮+乙酰甲胺磷(1:10)”、“噻嗪酮+丁硫克百威(1:3)”、“噻嗪酮+丁硫克百威(1:5)”、“氟虫腈+毒死蜱(1:5)”和“氟虫腈+毒死蜱(1:10)”这6个混配组合都表现出明显的增效作用,它们的共毒系数分别达到了200.33、250.32、211.57、274.77、251.51和248.05。
In this paper, the white backed planthopper (WBPH), Sogatella furcifera (Horvath), was studied for its resistance to different insecticides. A susceptible strain was cultured and baseline data for several insecticides were tested. Then, the resistance of WBPH was monitored with three field populations, efficient insecticides and synergistic mixtures were screened. Some interesting results were obtained and founded the bases for further researches of the resistance in WBPH.
     1 Setup on susceptible strain of S. furcifera
     S. furcifera collected from a paddy field in Nanjing city in China in 2007 was reared in the laboratory condition without contacting any insecticide for 13 generations. Then the susceptibility of S. furcifera to different insecticides was tested. The results showed that S. furcifera was very sensitive to the newly introduced insecticides, such as imidacloprid, dinotefuran, pymetrozine and acetamiprid, while less sensitive to the organophosphates, such as acephate and chlopyrifos. Comparison with the susceptible strains previously reported, it was found that the laboratory strain had recovered its susceptibility to different insecticides and could be used as relatively susceptible strain in resistance researches. The obtained LD50 value of imidacloprid (0.05ng/pest), deltamethrin (1.90 ng/pest), carbosulfan (1.32 ng/pest) and fipronil (0.13 ng/pest) could be used as baseline data.
     2 Resistance in field populations of S. furcifera
     Resistance to 9 insecticides in 3 field populations of S.furcifera was evaluated. The results determind by topical application showed that all the populations exhibited moderate level of resistance to fipronil (RR ranged from 10.31 to 20.54). Otherwise, no obvious resistance was found among the populations and the insecticides tested, except that the hoppers collected from Nanjing city showed moderate resistance to carbosulfan (RR:23.26 folds). Further comparison of the resistance of different populations to various insecticides found that different geographic populations did not show obvious difference in resistance to various insecticides, except for Nanjing population exhibited a little higher resistance to carbosulfan and susceptibility to chlorpyrifos. These could be well explained by the migration characteristics of the pest.
     3 Synergistic effect of imidacloprid mixed with other insecticides
     Imidacloprid was one of the most effective inseciticides for control of S. furcifera at present. In order to delay the resistance and extend the use life of imidacloprid with mixtures, synergistic effect of imidacloprid mixed with other insecticides were studied. The results showed that no antagonism effects existed in the mixtures of imidacloprid and other insecticides tested. And synergistic couples could be selected through changing the ratio of the ingredients. Imidacloprid and carbosulfan with the ratio of 1:10, ihlopyrifos with the ratio of 1:200, deltamethrin with the ratio of 1:10 and buprofezin with the ratio of 1:5 all showed highly synergism with 278.28,225.09,224.26 and 230.18 of co-toxicity coeffeciency, respectively. After more studies of the formulations, these synergistic mixtures should be developed to the mixture insecticides with good market potential.
     4 Synergistic effect of buprofezin or chlopyrifos mixed with other insecticides
     Buprofezin was an insect growth regulator with high toxicity to S. furcifera, but lower acute toxicity. Chlopyrifos was an organophosphorus insecticide with low toxicity to S. furcifera and low resistance in field populations. For enhancement of their efficiency, buprofezin mixed with other insecticides and chlopyrifos mixed with abamectin or fipronil were studied in this work. The resulted showed that the mixtures of buprofezin and AChE inhibitors not only showed good synergistic effect, but also enhanced acute toxicity. The mixture of chlopyrifos and fipronil also showed synergistic effect. The co-toxicity coeffeciency of the mixture couples of buprofezin with chlopyrifos (1:10), with acephate (1:10), with carbosulfan (1:3 and 1:5) was 200.33,250.32,211.57and 274.77 respectively. The mixture of fipronil and chlopyrifos with the ratio of 1:5 and 1:10 showed also higher synergistic effect (251.51 and 248.05, respectively).
引文
[1]薄仙萍,高聪芬,李淑勇等.防治白背飞虱的高毒农药替代药剂的室内筛选及其对噻嗪酮的抗性风险评估[J].江苏农业科学.2008,(5):91-95.
    [2]曹昌日,首章北,廖茂华.白背飞虱和褐飞虱抗药性监测[J].南京农业大学学报,1987,4(增刊):133-138.
    [3]曹春霞,周荣华,陈伟等.阿维菌素与Bt复配防治松毛虫试验[J].湖北林业科技,2007,144:34-35.
    [4]曹明章,王阿国,孙玉梅.吡虫琳与氯氰菊酯混配的联合毒力及田间药效[J].现代农药,2002,(3):13-15.
    [5]程武俊.22%吡虫啉-毒死蜱乳油防治水稻稻飞虱田间药效试验[J].现代农业科技,2008,(13):137.
    [6]陈根强,张发亮,张泽民.丁硫克百威与吡虫啉不同配比对苹果黄蚜的室内毒力测定[J].河南农业科学,2004,6:66,67.
    [7]陈元洪,陈玉妹.稻飞虱综合防治研究概况[J].福建农业科技,1989,(3):30-32.
    [8]邓小强,徐心植,方荣等.复配杀螨剂胺沙乳油的筛选与药效[J].江西农业学报,1995,7(2):137-141.
    [9]付贵成,张艳民.13%吡虫啉-毒死蜱乳油对棉蚜的防效[J].河南农业科学,2007,11:64,65.
    [10]高希武,郑炳宗,梁国庭等.杀虫剂混用或加增效剂对瓜-棉蚜增效作用及机制的研究[J].植物保护学报,1989,16(4):273-278.
    [11]高希武,郑炳宗.几种农药对蚜虫羧酸酯酶的抑制和拟除虫菊酯的增效[J].北京农业大学学报,1991,17(4):89-94.
    [12]韩先国,姜辉,林荣华等.丙溴磷-高效氯氰菊酯混配制剂对小菜蛾幼虫室内毒力测定[J].2006,27(3):19-21.
    [13]胡本进,段劲生,刘小林等.氟虫腈-毒死蜱及其混剂对二化螟的室内毒力测定[J].安徽农业科学,2006,34(20):5291.
    [14]黄鸿,戴冠群.菜粉蝶颗粒体病毒与化学杀虫剂混用防治菜青虫及其增效作用[J].华南农业大学学报,1991,12(2):96-103.
    [15]姜红,左派欣,杨卫超等.阿维菌素混配农药的毒性分析[J].中国职业医学,2004,31(1):27-29.
    [16]兰亦全,赵士熙,刘新等.阿维菌素与氰戊菊酯复配对桃蚜的增效作用[J].江西农业大学学报(自然科学版),2002,24(3):383-385.
    [17]李冬梅,刘青云.澳氰菊酯与阿维菌素复配防治桃蚜增效作用的研究[J].山西农业大学学报,1997,17(2):135-136.
    [18]李淑勇,刘学,高聪芬等.防治水稻白背飞虱高毒农药替代药剂的室内筛选及对吡虫啉的抗性风险评估[J].中国水稻科学.2009,23(1):79-84.
    [19]梁革梅,谭维嘉.棉铃虫对拟除虫菊酯的抗性稳定性研究[J].植物保护,1997,23(6):6-8.
    [20]梁天锡,毛立新.水稻飞虱的抗药性监测研究[J].华东昆虫学报,1996,5(1):89-93.
    [21]林友伟.两种水稻飞虱对吡虫啉和噻嗪酮的抗性及治理研究[D]:南京农业大学硕士学位论文.南京农业大学,2004.
    [22]刘怀阿,陆玉荣,张春梅等.阿维菌素与毒死蜱的增效作用研究[J].湖北农业科学,2002,(2):49-51.
    [23]刘暮莲.防治稻飞虱药剂筛选试验[J].广西植保,2008,21(1):5-7.
    [24]刘新,兰亦全,洪国辉.三哇磷的杀蜗活性及其与水胺硫磷复配的增效作用[J].华东昆虫学报,1999,8(2):95-98.
    [25]刘泽文,董钊,王荫长等.安庆地区褐飞虱、白背飞虱抗药性监测[J].安徽农业科学,2002,30(4):488-489.
    [26]刘泽文,王荫长,韩召军等.两种稻飞虱对杀虫剂的敏感性比较[J].南京农业大学学报,2003,26(2):29-32.
    [27]吕京,崔涛,谢广云等.辛硫磷与灭多威混配对家兔的急性毒效应[J].中华劳动卫生职业病杂志,2001,19(4):278-280.
    [28]马承铸,顾真荣.阿维菌素与高效氯氰菊酯混用对二点叶螨和斜纹夜蛾幼虫的联合毒力[J].上海农业学报,2000,16(增刊):61-63.
    [29]毛立新,梁天锡.水稻飞虱对十三种杀虫剂的抗性监测[J].中国水稻科学,1992,6(2):70-76.
    [30]欧晓明,盛书祥,余淑英等.氧乐果与三氯杀蜗醇混剂对棉蚜和棉红蜘蛛的增效作用研究[J].江西农业学报,1996,8(2):138-143.
    [31]欧晓明,王跃龙,林雪梅等.灭多威与杀螟硫磷混剂的筛选及药效评价[J].植物保护,1997,23(2):26-29.
    [32]欧晓明,余淑英,林雪梅等.几种杀虫剂混用对粘虫增效作用的研究[J].华中农业大学学报,1999,18(:)28-32.
    [33]潘志萍,李敦松.昆虫抗药性监测与检测技术研究进展[J].应用生态学报.2006,17(8):1539-1543.
    [34]秦曙,朱九生,李捷等.丙溴磷与甲胺磷混配对棉铃虫增效作用研究[J].山西农业科学,1995,24(2):36-39.
    [35]邱立红,张文吉.几种增效剂的增效作用机理研究[J].农药科学与管理,2000,21(6):26-28.
    [36]任晓霞,李国清,王荫长等.丙辛混剂对棉铃虫幼虫的室内增效作用[J].农药科学与管理,2000,21(:)27-30.
    [37]茹李军,魏岑.农药混剂对害虫抗药性发展影响的探讨[J].中国农业科学,
    1997,30(2):65-69.
    [38]沈建新,胡根生.吡虫啉与几种常用农药混用对稻飞虱的综合防治效果[J].农药研究与应用.2008,12(1):30-32.
    [39]沈晋良.我国棉铃虫对拟除虫菊酯类农药的抗性监测及预报[J].昆虫知识,1991,28(6):337-340.
    [40]沈水男,江宏.稻褐飞虱对扑虱灵的抗药性监测[J].上海农业科技,2003,(6):104,105.
    [41]石江,陈灵敏,赵学平等.7051杀虫素与几种药剂混配的增效效果及田间试验[J].浙江农业科学,1998,(4):192-193.
    [42]苏建坤,张春梅,刘怀阿等.杀虫剂触杀联合毒力的研究[J].安徽农业科学,2000,28(4):461-463,465.
    [43]孙金秀,陈波,姚佩佩.有机磷与拟除虫菊酯农药联合作用的毒性评价[J].卫生毒理学杂志,2000a,14(3):141-145.
    [44]孙俊铭,韦刚,王皖伟等.毒死蜱与噻嗪酮、吡虫啉混用防治稻飞虱和二化螟田间试验[J].昆虫知识.2004,41(6):541-544.
    [45]谭福杰,沈晋良,陈进.杀虫剂混合作用的研究[J].南京农业大学学报,1987,(4):93-99.
    [46]唐建锋.贵州稻飞虱抗药性研究[D]:贵州大学硕士研究生论文.贵州大学,2006.
    [47]唐建锋,陈祥盛,周华梅.贵州省稻飞虱抗药性初步研究[J].中国植保导刊.2008,28(4):36-38.
    [48]唐振华,黄刚.昆虫抗药性及其治理.北京:农业出版社,1986.
    [49]田世尧,徐汉虹.二元杀虫剂混配比例与共毒系数的关系[J].昆虫天敌,1995,18(4):20-22.
    [50]万成松,孙修炼,张光裕等.棉铃虫核型多角体病毒与化学杀虫剂和卵磷脂混用的增效作用[J].昆虫学报,2000,43(4):346-355.
    [51]王保成,马恩波,任竹梅.两种有机磷农药及其混配农药的毒力测定[J].山西大学学报(自然科学版),2000,23(4):354-357.
    [52]王冬兰,刘贤进,张存政等.阿维菌素和吡虫啉对意大利蜂的联合毒性作用[J].江苏农业科学,2006,(1):146-148.
    [53]王恒亮,张俊涛,张玉聚等.Abamectin与几种杀虫杀螨剂及其混剂对棉叶螨的室内毒力测定[J].河南农业科学,2002,(3):32-33.
    [54]王乃庭,张小来,杨凤江等.吡虫啉与常用农药混用对白背稻虱和灰稻虱的防治效果[J].现代农业科技.2008,(2):78,79.
    [55]王强.阿维菌素等杀虫剂混配对棉铃虫等害虫增效作用及其生理生化机制研究[D]:浙江大学博士学位论文.浙江大学,2004.
    [56]王心如,陈海燕,肖杭等.有机磷与拟除虫菊酯农药联合作用的研究[J].中华劳动卫生职业病杂志,2001,19(4):251-253.
    [57]王跃龙.扑虱灵复配剂型研究及应用前景[J].植物医生,1995,8(2):45-46.
    [58]文一,魏帅,潘家荣.有机磷农药混剂急性联合毒性及其评价[J].卫生研究,2008,37(1):101.
    [59]魏岑,范贤林,王文来等.菊酯、有机磷类混合制剂开发研究初报[J].植物保护学报.1989,16(3):197-203.
    [60]魏岑,赵永巧,范贤林等.氰戊菊酯、马拉硫磷及其混剂汰选选育棉铃虫抗药性研究[J].中国农业科学,1992,25(6):9-14.
    [61]吴金泉.菊杀混剂对桃蚜抗性发展的影响研究[J].农药科学与管理,1996,(3):19-22.
    [62]肖艳松,任新国,应志龙等.吡虫啉与丁硫克百威不同配比对稻飞虱的联合毒力[J].农药研究与应用.2007,11(1):31,32.
    [63]徐成明,杨孝年.毒死蜱-甲胺基阿维菌素苯甲酸盐对稻纵卷叶螟的防治效果[J].安徽农业科学.2007,35(21):6479-6480.
    [64]徐齐云,胡美英,钟国华.阿维菌素-吡虫啉可湿性粉剂对柑桔蚜虫的控制效果[J].中国南方果树,2006,35(5):17,18.
    [65]徐勇惠,沈国清,周福才等.苏脲1号对胺甲萘与对硫磷的增效作用[J].江苏农学院学报,1998,19(3):68-71.
    [66]杨恩会,林雁,吴益东.棉铃虫对氰戊菊酯-辛硫磷混剂的抗性演化及解毒酶活性变化[J].昆虫学报.2006,49(2):247-253.
    [67]姚洪渭,叶恭银,程家安.亚洲地区稻飞虱抗药性研究进展[J].农药,1998,37(9):6-11.
    [68]姚洪渭.白背飞虱抗药性机理的研究[D]:浙江大学博士学位论文.浙江大学,2001.
    [69]严兴祥,郑莉.吡虫啉、杀虫单、井冈霉素协同防治水稻中后期病虫害[J].农药,1999,38(1): 28,29.
    [70]曾益良,康乐,秦小薇等.毒死蜱与阿维菌素增效混配制剂对斑潜蝇属害虫的防治效果[J].昆虫学报,2002a,45(5):603-610.
    [71]曾益良,王大生,秦小薇等.氯氟氰菊酯与阿维菌素增效混配制剂对美洲斑潜蝇的防治效果[J].昆虫学报,2002b,45(6):753-758.
    [72]张峰,张荣荣,张辉.20%阿维-乙酰甲WP防治水稻纵卷叶螟、大螟试验总结[J].农业装备技术,2007,33(1):47-48.
    [73]张强,李慧冬,罗万春.22%毒死蜱-吡虫啉乳油防治苹果绵蚜效果好[J].农药,2002,41(2):21,22.
    [74]张强,罗万春.苦豆子7种生物碱对不同类型4种杀虫剂增效作用的研究[J].农药学学报,2002,4(3):57-61.
    [75]张文吉,韩熹莱,李学锋等.辛硫磷和溴氰菊酯混剂对家蝇抗性发展的影响[J].昆虫学报,1995,38(1):25-29.
    [76]赵敏,张国忠,吴传伟等.防治稻纵卷叶螟试验药剂对稻飞虱兼治效果研究[J].浙江农
    业科学.2009,(1):155-157.
    [77]赵修复.害虫防治之我见[J].福建农学院报.1981,1:1-6。
    [78]郑德赞.50%氟虫腈·敌百虫乳油防治水稻稻飞虱田间药效剂量的筛选[J].安徽农业科学,2008,36(19):8159,8292.
    [79]周荃,韩丽娟,王强等.三类辛硫磷混剂对棉铃虫的增效测定与田间应用[J].江苏农业科学,1997,(5):38-40.
    [80]周群喜,姜海洲,王泉章等.1991年洪灾后稻飞虱大发生[J].植物保护.1992,18(1):51.
    [81]朱鲁生,李光德,慕卫等.辛硫磷、甲氰菊酯及其混剂对鸡的比较毒性研究[J].山东农业大学学报,1999a,30(2):143-146.
    [82]朱鲁生,崔为正.甲氰菊酯、辛硫磷及其混剂对家蚕的比较毒性[J].农业环境保护,2000,19(1):35-37.
    [83]朱鲁生,王桂芝,徐玉新.甲氰菊酯、辛硫磷及其混剂对蜜蜂毒性及影响[J].农业环境保护,1999b,18(4):165-167.
    [84]朱鲁生.辛硫磷甲氰菊酯及其混剂对鹌鹑的毒性[J].农业环境保护,1999,18(6):258-259,267.
    [85]朱鲁生,樊德方,王玉军.辛硫磷、甲氰菊酯及其混剂对蚯蚓的毒性及安全性评价[J].浙江农业大学学报,1999c,25(1):77-80.
    [86]朱鲁生,樊德方,王军等.甲氰菊酯和辛硫磷及其混合剂在土壤中的残留[J].植物营养与肥料学报,2002,8(2):244-247.
    [87]朱鲁生,徐玉新,王玉军等.马拉硫磷、氰戊菊值及其混剂对土壤微生物影响研究[J].山东农业大学学报(自然科学版),2000,31(1):35-37.
    [88]朱念国,魏方林.毒死蜱-阿维菌素复配剂对棉铃虫的增效机理[J].浙江大学学报(农业与生命科学版),2002,28(3):319-324.
    [89]祝春强,刘明熙,韦永保等.锐劲特和三唑磷混用防治单季稻主要害虫的效果与技术[J].安徽农业科学,2002,30(1):57-59.
    [90]Abdalla S, Sammour E, Kandil M, et al. Joint action of two antimoulting compounds mixed with various conventional insecticides on Spodoptera littoralis[J]. Bulletin of the Entomological Society of Egypt, Economics Series,1988-1989,publ.1991,No.17,207-214.
    [91]Ascher K, Eliyahu M, Ishaaya I, et al. Synergism of pyrethroid-organophosphorus insecticide mixtures in insects and their toxicity against Spodoptera littoralis larvae[J]. Phytoparasitica,1986,14(2):101-110.
    [92]Auda M and Degheele D. Joint action of pyrethroids with chitin synthesis inhibitors, organophosphorous and carbamate insecticides on a susceptible and resistant strain of Spodoptera littoralis(Boisd)[J]. Mededelingen van de Faculteit Landbouwwetenschappen, RiJksuniversiteit Gent,1985,50(2b):751-760.
    [93]Bagwell R and Jr.Plapp F. Synergism of insecticides against susceptible and pyrethroid-resistant tobacco budworms by amitraz [J]. Journal of Economic Entomology,1992, 85(3):658-663.
    [94]Baicu T, Hussein S. Joint action of mixtures of insecticides with preparations of Bacillus thuringiensis Berliner againt different insect pests [J]. Buletinul de Protectia Plantelor,1984,4:55-62.
    [95]Bouy F, Ottea J, Dugger P, et al. Synergism of organophosphate and pyrethroid toxicity by dibrom in insecticide-susceptible and-resistant tobacco budworms, Heliothis virescens[J]. Proceedings Beltwide Cotton Conferences, San Antonio, USA,2000:Volume 2.2000,967-969.
    [96]Brindley W and Selim A. Synergism and antagonism in the analysis of insecticide resistance [J].Environmental-Entomology,1984,13(2):348-353.
    [97]Campanhola C, Jr.Plpap F. Toxicity and synergism of insecticides against susceptible and pyrethroid-resistant third instars of the tobacco budworm [J].Journal of Economic Entomology,1989a,82(6):1495-1501.
    [98]Campanhola C, Jr.Plpap F. Toxicity and synergism of insecticides against susceptible and pyrethroid-resistant neonate larvae and adults of the tobacco budworm [J].Journal of Economic Entomology,1989b,82(6):1527-1533.
    [99]Carrillo R, Lagunes T. Analysis of the joint action of insecticides on maize stem borer larval Spodoptera frugiperda[J].Folia Entomologica Mexicana,1990,79,93-107.
    [100]Cilek J, Dahlman D, et al. Possible mechanism of diazinon negative cross-resisttance in pyrethroid-resistant horn flies[J]. Journal Economic Entomology,1995,88(3):520-524.
    [101]Colin M, Belzunces L, Bruneau E. Impact of the synergism of pesticides on bees:biological effect of a combination of an insecticide with a fungicide [J]. Bees for pollination. Proceedings of an EC workshop, Brussels, Belgium,2-3March 1992.1992,167-170.
    [102]Curtis C. Theoretical model of the use of insecticide mixtures for management of resistance[J].Bull Entomol Res,1985,75:259-265.
    [103]Dale D. Insect pests of the rice plant-their biology and ecology. In:Heinrichs E A ed[J].Biology and management of rice insects.Wiley Eastern Limited,India.1994,363-486.
    [1O4]El-Lakwah F, Abdel L, El-Sayed F. Toxicity and joint action of the botanical insecticide Neemazal-W with malathion to the cowpea weevil, Callosobruchus maculates [J].Egyptian Journal of Agricultural Research,1999,77(3):1023-1034.
    [105]Endo S, Nagata T, Kawabe S, et al. Changs of insecticide susceptibility of the white backed planthopper Sogatella furcifera and the brown planthopper Nilaparvata lugens[J]. Appl.Entomol.Zool.1988,23(4):417-421.
    [106]Fahmy A and Miyata T. Joint action of chlorfluazuron with synergists and insecticides in chlorfluazuron-susceptible and resistant strains of diamondback moth, Plutella xylostella[J]. Journal of Pesticide Science,1998,23(3):223-229.
    [107]Fisher S. Joint action between binary mixtures of chlordimeform and insecticides[J]. Ecotoxicology and Environmental Safety,1992,23(1):11-21.
    [108]Fukuda H, Nagata T. Selective toxicity of several insecticides on three planthoppers[J]. Jap.J.Appl.Ent.Zool.1969,13(3):142-149.
    [109]Furuhashi K. Synergism of an organophosphorous insecticide on the control effect of synthetic pyrethroids against the citrus mite Panonychus citri, McGregor[J]. Proceedings of the Kanto Tosan Plant Protection Society,1990,37,219-220.
    [110]Hama H, Iwata T. Synergism of carbamate and organophosphorus insecticides againt insecticide-resistance green rice leafhoppers, Nephotettix cincticeps Uhler[J]. Jap J Appl Entomol Zool,1973,17(4):181-186.
    [111]Heinrichs EA, Rapusas HR. Levels of resistance to the white backed planthopper, Sogatella furcifera in rice varieties with the same major genes[J].Environ.Entomol.1983,12:1793-1797.
    [112]Hirai K. Development of insecticide resistance to organophosphates and carbamates in the white-backed planthopper, Sogatella furcifera, in Japan[J].J.Pestic.Sci.1994,19:229-232.
    [113]Hiromori H, Nishigaki J. Joint action of an entomopathogenic fungus with synthetic insecticides against the scarab beetle, Anomala cuprea larvae [J]. Applied Entomology and Zoology,1998,33(1):77-84.
    [114]Hosoda A. Incidence of insecticide resistance in the white-backed planthopper, Sogatella furcifera to organophosphates[J].Jpn.J.Appl.Ent.Zool.1989,33(4):193-197.
    [115]Jayanthi P and Padmavathamma K. Joint action of microbial and chemical insecticides on Spodoptera litura[J]. Journal of Tropical Agriculture,2001,39(2):142-144.
    [116]Joshi L, Charnley A, Arnold G, et al. Synergism between entomopathogenic fungi, Metarhizium spp, and the benzoylphenyl urea insecticide, teflubenzuron, againt the desert locust, Schistocerca gregaria[J].Proceedings, Brighton Crop Protection Conference, Pests and Diseases,1992, Brighton, November 23-26,1992,369-374.
    [117]Khan ZR, Saxena RC. A selected bibliography of the whitebacked planthopper Sogatella furcifera[J].Insect Sci.Applic.,1985,6(2):115-134.
    [118]Konno T, Kajihara O. Synergism of pirimicarb and organophosphorus insecticides againt the resistant rice stem borer, Chilo suppressalis Walker [J].Applied Entomology and Zoology,1985,20(4):403-410.
    [119]Mahmood T, Motoyama N. The mechanism of negative correlation between DDT and pyrethroid resistance found in a housefly strain [J]. Journal of Pesticide Science, 1994,19(3):197-207.
    [120]Mani G. Evolution of resistance in the presence of two insecticides [J]. Genetics, 1985,109:76-83.
    [121]Mathai S, Nair M, Mohandas N. Joint action of nuclear polyhedrosis virus(NPV) and insecticides againt the rice swarming caterpillar Spodoptera mauritia[J].Indian Journal of Plant Protection,1986,14(2):13-17.
    [122]Matsumura, M., H. Takeuchi, M. Satoh, et al. Species-specific insecticide resistance to imidacloprid and fipronil in the rice planthoppers, Nilaparvata lugens and Sogatella furcifera, in East and Southeast Asia[J]. Pest Manag. Sci.2008,64:1115-1121.
    [123]Nagata T, Masuda T. Insecticide susceptibility and wing-form ratio of the brown planthopper, Nilaparvata lugens and the white backed planthopper, Sogatella furcifera of southeast Asia[J].Appl.Entomol.Zool.1980,15:10-19.
    [124]Nagata T, Masuda T, Moriya S. Development of insecticide resistance in the brown planthopper, Nilaparvata lugens[J]. Appl.Entomol.Zool.1979,14(3):264-269.
    [125]Oi M. and Motoyama N. A theoretical analysis of the joint action of insecticides by toxicokinetic approaches [J].Journal of Pesticide Science,1991 a,16(3):465-473.
    [126]Oi M. and Motoyama N. In virto studies on the joint action of insecticides[J].Journal of Pesticide Science,1991b,16(3):475-480.
    [127]Oi M. and Motoyama N. Joint action of insecticides against diazinon-resistant houseflies [J] Japanese Journal of Applied Entomology and Zoology,1991c,35(3):231-239.
    [128]Pilling E and Jepson P. Synergism between ENI fungicides and a pyrethroid insecticide in the honeybee [J]. Pestic Sci,1993,39(4):293-297.
    [129]Robertson J and Smith K. Joint action of pyrethroids with organophosphorus and carbamate insecticides applied to western spruce budworm [J].Journal of Economic Entomology,1984, 77(1):16-22.
    [130]Roush R.Designing resistance management programs:How can you choose? [J]. Pest.Sci,1989,26:23-41.
    [131]Sakai S. A quantitative approach on relation between the joint action of insecticides and insecticide resistance [J]. In International Congress of Entomology,13, Moscow,1968. Trudy,1971,2:273-274.
    [132]Salama H, Moawed S. Joint action of nuclear polyhedrosis virus and chemical insecticides againt the black cutworm, Agrotis ipsilon[J]. Acta Biologica Hungarica,1988,39(1):99-107.
    [133]Saleh A, Ibrahim G, Taha H. Joint action of some synthetic pyrethroids with acaricides against Tetranychus urticae Koch [J]. Bulletin of Faculty of Agriculture,University of Cairo,1989,40(2):419-425.
    [134]Salem I and Magee W. A simple method of estimating the co-toxicity effect of the joint action of two insecticide mixtures at any levels in numerical value[J]. Meded Rijksfac Landbouwwet. Gent,1978,43(2):1217-1224.
    [135]Sun Y.P. Dynamics of insect toxicology and its relationship to performance, synergism, and structure-activity relationship of insecticides [J]. New York,Academic Press,1970,201-211.
    [136]Sun Y.P, Johnson E. Analysis of joint action of insecticides against house flies[J]. Journal of Economic Entomology,1960,53:887-891.
    [137]Tabashink B and McGaughey W. Resistance risk assessment for single and multiple insecticides:responses of Indian meal moth to bacillus thuringiensis[J]. J Econ Entomol,1994,87:835-841.
    [138]Takahashi H, Kato A, et al. Potentiations of N-methylcarbamate toxicities by organophosphorus insecticides in male mice [J]. Fundamental and Applied Toxicology, 1987,8(2):139-146.
    [139]Tomar S, Saxena V. Synergism of alpha-hexachlorocyclohexane with N-methyl carbamate insecticides[J].Indian Journal of Entomology,1990,52(4):618-621.
    [140]Wen YC,Fan KH,Han ZJ. Susceptibility of Nilaparvata lugens and Sogatella furcifera to various insecticide and resistance in field populations [J].Journal of Economic Entomology,submitted.
    [141]Wu G, You M, Zhao S, et al. Synergism of Bacillus thuringiensis pretreatment to organophosphate and carbamate insecticides in Plutella xylostella [J]. Acta Entomologica Sinica,2001,44(4):454-461.
    [142]Yamamoto I, Kyomura N, et al. Negatively correlated cross resistance:combinations of N-methylcarbamate with N-propylcarbamate or oxadiazolone for green rice leafhopper[J].Arch Insect Biochem Physiol,1993,22(1/2):227-288.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700