应对野战一线及重大灾险的便携、智能化骨折外固定系统的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:
     四肢骨折是平时和战时的常见伤残。据统计,在所有的战伤中,四肢受伤的占77%,并且其中32%伴随着骨折。由高能弹片造成的骨折大都伴有大面积的软组织损伤,伤口往往严重污染。现在普遍主张在救护所使用简单的外固定架进行骨折固定,便于伤员护送,减少并发症的发生。战伤骨折并且多为开放性骨折,若处理不当,易致再损伤及感染,致残率高,四肢战伤骨折的正确处理非常重要。应用于和平条件下的骨折外固定架及技术已较成熟,临床应用较广泛,但目前应用于野战和平时救灾应急条件下的四肢骨折外固定架的设计和技术与平时无异,仍处于平时一般处理水平,固定针需要借助电钻或者手摇钻协助旋入骨质,连接系统较复杂,操作繁琐。显然难以适应野战和平时抢险应急需要。
     因此研制出携带轻便、操作简单、实用的“平战结合简易手拧自攻可调式外固定架”,配备到营连卫生机构和平时战备及抢险救灾应急分队,易被非医务人员所掌握和操作,提高部队基层的火线战伤救治和平时抢险救灾救治水平,使伤员从战场火线和救灾现场,至后方医院之前这一时间段能得到积极有效的处理,减少再损伤,提高复杂战伤的治愈率,降低野战创伤的感染率,减少致残率,为战伤骨折、抢险救灾及日常生活中的各种意外事故造成的骨折提供更好的治疗,更高质量的设备和器材,为军事医学和救灾医学的发展及人类的健康生活作出积极的贡献。
     研究内容:
     (1)Mimics14.0软件在外固定架模型建立的初步应用。通过利用建模软件Mimics14.0软件,利用股骨、胫骨CT扫描数据,通过数据的转换及处理,初步建立股骨、胫骨和外固定器螺钉装配体,为后续的不同材质螺钉的赋值创造条件,导入Abaqus, Ansys等大型有限元分析软件分析,从而筛选出适宜战场和大型突发灾害导致胫骨、股骨开放性骨折的外固定螺钉的材料提供条件。
     (2)高速爆炸物三维有限元模型的建立。通过借助三维重建软件Mimics14.0软件,CAD辅助软件Pro/E,逆向工程软件Geomagic Studio,利用Ansys Workbench中的动态有限元分析模块,通过对模拟子弹不同入射角度(45度,67.5度,90度)的模拟,入射的速度为1400m/s,通过三维有限元的应力峰值Stress Intensity(Mpa)、变形量Total Deformation(mm)和等效弹性应变Von-mise (mm/mm)的分析比较运算结果,即利用计算机模拟三维动态有限元计算方法表现相同速度子弹不同入射角度对胫骨的生物力学变化,奠定火器伤致伤原理,致伤过程的有限元分析基础,为战场救护和临床工作中对于火器伤伤口的处置提供生物力学基础。
     (3)外固定系统自攻螺钉材料的生物力学性能比较研究(有限元方法)。通过一组有限元分析实验,通过建立三维有限元模型,比较临床常用的不同直径不同金属材料(钛合金,不锈钢,铁,铝合金,铜合金,镁合金)的自攻螺钉钻入骨皮质时螺钉和胫骨的应力大小和变形大小,定量化不同金属材料的生物力学特性,遴选出质轻,刚性佳,易携带的金属材料,便于外固定器的广泛应用。
     (4)常用外固定螺钉的有限元分析。钛合金自攻螺钉具有高强度,高硬度,组织相容性佳,弹性模量与骨组织相似等优点在临床应用较为广泛。通过利用Mimics14.0软件,Pro/E, Geomagic Studio逆向工程软件,Ansys Workbenchl3建立胫骨螺钉的三维有限元模型,通过对不同直径的钛合金自攻螺钉加载不同程度的纵向静载荷和力矩载荷,系统观察其生物力学特性产生的变化,为定量化研究螺钉钻入胫骨骨皮质时螺钉与胫骨的应力变化提供条件,为其它金属材料的有限元分析实验提供基础。
     (5)外固定系统自攻螺钉的生物力学阈值测定。传统的外固定系统的自攻螺钉需要借助电钻开路辅助。而作者所在的团队研究无需电钻或者手摇钻辅助的完全徒手自攻螺钉。作者通过一组动物生物力学实验,初步测定常规外固定系统自攻螺钉置入骨皮质时的螺钉应力的变化和力矩的变化,测定阈值和螺钉置入骨干时应力载荷和力矩载荷的变化趋势。
     (6)便携式简易外固定器的设计及初步研制。目前应用于野战条件下的外固定架体积庞大,繁琐笨重,单人无法独立完成,在战争或者地震等突发状况下难以满足要求。因此研制出体积小,质轻,价廉,便携的外固定器成为当务之急。此便携式简易外固定装置主要应用于战伤或者地震等突发状况下的下肢临时外固定,防止在转运过程中的由于断段移位引起的二次损伤,便于伤口的观察及护理,无需电钻,单人即可完成外固定架的操作,也可协同其他固定材料联合应用。
     螺钉的设计突破传统自攻螺钉头的模式,通过增加细化初级自攻螺钉头,双侧弧形开槽的模式形成两次自攻的效果,从而增大置钉时的扭矩,真正做到无需电钻辅助,手拧自攻螺钉的效果。骨钉夹的设计最初的设想是钳夹夹持两枚螺钉,钳夹的中心有栓钉固定,但是这种固定方法原则上要求螺钉的置入必须平行置入,否则将无法固定,不容许螺钉角度的偏差,而在实际操作过程中又无法做到螺钉的绝对平行。所以经过设计的改良,将骨钉夹设计为螺母旋入方式固定。允许螺钉有一定角度的误差(15°)左右,实现三维六自由度的固定。连接杆特征是个性化可伸缩式。本新型外固定的连接杆两端采用球窝设计,通过调整方向实现三维的固定。
     研究结果:
     (1)利用Mimics14.0软件,利用股骨、胫骨的CT扫描数据显示:股骨模型的面积为18030.40mm2,体积为106665.97mm3,共有20714个三角面片构成,胫骨模型的面积为5844.53mm2,体积为32594.19mm3,共有4744个三角面片构成,,螺钉的体积3302.18mm3,面积2289.59mm2,,共有4362个三角面片。
     (2)高速爆炸物的三维有限元分析显示:应力云分布显示胫骨最大应力值及集中部位位于子弹入射所贴近的骨皮质。子弹以1400m/s的速度不同角度穿过胫骨骨皮质时所产生的最大变形量为138.29mm(90°),其次为66.59mm,入射角度45°时,总变形量最小为62.56mm(67.5°)。等效弹性应变的大小依次为入射角45°(1.43mm/mm)>入射角90°(1.31mm/mm)>入射角67.5°(1.22mm/mm),应力强度峰值依次为67.5°(14447Mpa)>45°(2723Mpa)>90°(2401Mpa)。
     (3)有限元方法外固定系统自攻螺钉材料的生物力学性能比较研究。
     1. Von-mise等效云图显示纵向静载荷和顺时针力矩载荷施加时应力最大处位于外固定器螺钉与骨皮质的接触处,而总体形变最大的部位位于螺钉的钉尾。
     2.相同螺钉直径不同材料属性的纵向静载荷比较结果:结果显示在螺钉直径小于3.5mm时,钛合金的应力最为集中,其次为铜合金,其次为镁合金和铝合金,而不锈钢和铁的应力大小相似。总变形量镁合金变形最明显,其次为铝合金,钛合金,铜合金,而不锈钢与纯铁的总变形相似;螺钉直径为4mm时,不锈钢和铁的螺钉应力大于铝合金和镁合金;螺钉直径继续增大,直径为4.5mm时,铁的应力最为集中,其次为不锈钢和镁合金;总变形量六种金属材料几乎相似。显示在螺钉的直径较小(小于3.5mm),钛合金的应力集中,而变形较小,铜合金也体现出与钛合金相似的特性,而镁、铝合金由于质软变形较为明显,不锈钢的生物力学特性与纯铁的生物力学特性相似。螺钉的直径大于4mm时,显示不同的特性,铁和不锈钢材料的应力较为集中,而总体的变形量区域相似。
     3.相同螺钉直径不同材料属性的力矩比较结果。结果显示在不同的螺钉直径不同材质的金属施加同样大小的顺时针力矩时,螺钉直径小于4mm时,金属的生物力学特性表现的较为一致,其中以纯铁和不锈钢的应力最为集中,其次为铜合金,钛合金,而铝合金和镁合金的应力最小,而总变形量镁合金变形最明显,其次为铝合金,钛合金,铜合金,而不锈钢与纯铁的总变形相似;螺钉直径为4.5mm时,不锈钢和铁的螺钉应力大于铝合金和镁合金;铁的应力最为集中,其次为不锈钢和镁合金;总变形量最大为铜合金,其次为铝合金,钛合金,而不锈钢和铁的总变形量相似。显示在螺钉的直径较小(小于4mm),铁和不锈钢的应力集中,而变形较小,铜合金也体现出与不锈钢相似的特性,而镁、铝合金由于质软变形较为明显,应力最小,不锈钢的生物力学特性与纯铁的生物力学特性相似。螺钉的直径大于4mm时,显示不同的特性,总体的变形量以铜合金最为明显,而不锈钢和纯铁的变形情况相似。
     4.相同材料属性不同螺钉直径(3mm,3.5mm,4mm)的纵向静载荷比较结果:当施加相同载荷的纵向静载荷时,不同的金属材料表现出相似的特性,随着螺钉直径的增加,Von-mises应力峰值下降,而总变形量也出现下降的趋势。螺钉的直径从3mm增加到3.5mm,螺钉的应力分值平均下降10.6%,总变形量平均下降37.5%,螺钉的直径从3.5mm增加到4mm,螺钉的应力分值平均下降36.8%,总变形量平均下降70.2%。两组之间的下降率对比具有统计学意义的差别(P<0.05),提示螺钉的直径从3.5mm增加到4mm时相比与螺钉的直径从3mm增加到3.5mm,在相同载荷条件下螺钉的应力峰值和总变形量的下降率明显偏高。提示随着螺钉直径的增加,螺钉的应力相同载荷条件下的应力峰值和总变形量出现下降的趋势,而以从3.5mm的直径变为4mm直径下降的更为明显。
     比较不同的金属,研究发现,螺钉的直径由3mm增加到4mm时,各种金属表现出相似的生物力学特性,但是其中又具有细微的差别:螺钉的直径从3mm增加到3.5mm时,变形差异最显著的金属材料是镁合金(38.7%),其次为铝合金(37.7%),而螺钉的直径从3.5mm增加到4mm,螺钉峰值下降率最高的为镁合金(38.8%),而变形量差异最小的为铜合金。
     (4)常用钛合金外固定系统螺钉的有限元分析结果显示:1.应力云分布显示螺钉最大应力值及集中部位位于螺钉与骨骼的接触部位,变形最明显的部位位于钉尾。2.随着钛合金螺钉直径的增加,施加相同大小的轴向静载荷,螺钉的压应力峰值出现下降的趋势(284.3Mpa至156.8Mpa),而总体变形量也出现下降的趋势:3mm螺钉>3.5mm螺钉>4mm螺钉。
     对照1000N纵向静载荷与1500N纵向静载荷的比较结果,相同直径的螺钉的应力峰值与总变形量均呈现上升的趋势,而且呈正比。
     对于力矩载荷,相同的力矩载荷条件下,钛合金自攻螺钉的应力变化和总变形量呈现出3mm螺钉>3.5mm螺钉>4mm螺钉,但随着力矩载荷的增加,不同直径螺钉的应力峰值和总体位移变形量均表现出上升的趋势。
     (5)外固定系统自攻螺钉的生物力学阈值测定显示应力分布随着螺钉的置入而逐渐增加,当螺钉置入4.5mm时(突破骨皮质内层)时达到极值(1533N),自攻螺钉进入髓腔后出现显著下降的趋势。而自攻螺钉置入猪股骨干的力矩变化参考40个监测点波动幅度不大,平均值为2.5N.m.极值出现在螺钉置入6mm时,力矩的最大值为3.1N.m。从螺钉开始置入突破单侧皮质的过程中,随着螺钉的置入,力矩载荷呈现上升的趋势(位移0.5mm-4mm),至骨皮质内层达到高值(3.0N.m),突破内层皮质进入髓腔后力矩载荷出现后出现下降的趋势。
     研究结论:
     (1)Mimicsl4.0软件可迅速建立股骨、胫骨和螺钉装配体,实现体网格的划分,同时根据灰度阈值进行精确的材料属性划分,为进一步有限元分析奠定基础。
     (2)高速爆炸物动态有限元分析显示67.5。入射角所产生的破坏力较大,要求在临床工作中影像学通过子弹的方向初步判定损伤的情况。
     (3)金属材料有限元分析结果显示:1.应力云分布显示螺钉最大应力值及集中部位位于螺钉与骨骼的接触部位,变形最明显的部位位于钉尾。
     (4)动物骨生物力学实验表明应力变化和力矩实验均表明螺钉开始钻入外层骨皮质至内层骨皮质的过程中,压应力和力矩载荷均不断上升,至内层骨皮质时达到高值,突破内层骨皮质进入髓腔后均有不同程度的下降。
     (5)通过自攻螺钉的改进,连接杆和骨钉夹的改进,简化操作程序,基本实现单人操作,同时降低费用,通过连接杆的球窝关节实现三维的稳定。
Background:
     Fracture of limbs is common in peace time and war time.according to statistics,injures of limbs accounts for77%,combined with fractures(32%) in war fractures.fractures caused by high energy usually accompany with huge soft tissue injury. Simple external fixation was advocated to fix fracture in order to transfer the wounded to reduce the occurrence of complications in medical aid station Nowadays.war injury is general open fracture.if improper treatment is used,reinjury,influence and disability are easy to lead.Proper treatment of fracture of limbs is important.the device and technique of external fixation system has been mature in clinical activities at peace time,however,there are few differences about the design and technique of external fixation system between war time and peace time,the screw of external fixation system drills into the cortical,depending on electrical drill or hand drill,complicated connection system and operation are not suit for war time and emergency time.
     Portable,simple and functional adjustable external fixation at peace time and war timeis badly needed,the system are provided with the doctors or soldiers in primary health care institutions to improve the level of dealing with war wound and emergency and disasters in army base.The wounded could get useful treatment between the battlefield line and base hospital,reducing the rate of reinjuring,improving the recover rate of complicated fractures,decrease infection and disability rate.In order to provide better treatment for war fracture,fractures caused by accidence in emergency and disasters or daily life,higher quality equipments and systems are developer to make a significant contribution to military medicine and relief medicine.
     Contents:
     (1Preliminary Application of Mimics14.0Software in External Fixation Utilizing software of mimics14.0to reconstruct, combinate, assign material for three dimensional model by the dates of tibia and femur in order to imput to the finite element analysis softwares(such as Abaqus,Ansys) to select appropriate material of external fixation for open fractures of tibia and femur in emergency and disasters.
     (2)Reconstruction of three dimensional finite element analysis model of high explosive.depending on software of mimics14.0,Pro/e,reverse engineering software(Geomagic Studio),utilizing dynamic module of the software of Ansys Workbench.according to mimic different incident angle(45°,67.5°,90°)of bullet,the speed of a bullet is1400m/s,compareing operation results with stress intensity(Mpa),total deformation(mm) and Von-mise(mm),in other words,we relyed on dynamic FEA(Finite Element Analysis) results to show biomechanical changes of different incident angle with the same velocity,established FEA(Finite Element Analysis) basements of principle and procedure of firearm wound,which would be useful to dealing with firearm wound on battlefield line and in clinical activities.
     (3)Biomechanical research of self tapping screw materials in external fixation system(finite element analysis).Depending on FEA experiment,we established three dimensional FEA model to compare Von-mise and Total Deformation of the self tapping screw and the tibia while drilling with six kinds of materials(titanium alloy,structural steel,stainless steel,aluminum alloy,magnesium alloy,copper alloy) and different diameter sizes to quantificate biomechanical feature of different metals to select light,portable,rigid material in order to extent application of external fixation system.
     (4)Three dimensional finite element analysis of general self tapping screw of external fixation system.titanium alloy self tapping screws were extensively used in clinical activities because of the advantages of high intensity and hardness,good histocompatibility,similar elastic modulus(bone).We utilized softwares of Pro/e,Geomagic Studio,Ansys Workbench to set up FEA model of tibia-screw assembly,observing results of biomechanical datas after appling force and moment loads to different sizes of diameter,to study the variation of stresses while the screw penetrated into the cortical area of the shaft of tibia quantificately,to provide basements of FEA experiments of other metal materials.
     (5)Threshold determination of biomechanics of self tapping screw of external fixation system.The operation of traditional self tapping scres were assisted with electrical drill,but we were determined to design the screw without the assistance of electrical drill or hand drill.According to the animal biomechanical experiment,we have measured stresses and moment of force changes and tendency of general external fixation screws while penetrated into cortical bone.
     (6) The design and preliminary development of portable,simple external fixation system.the current external fixation system was difficult to meet the requirements in war time or emergency and disasters (such as earthquake) caused by huge volume,complex.Thus small volume,light,cheap,portable external fixation system was badly needed.The simple and portable external fixation systemwas used on battlefield to fix the fractures temporarily to prevent reinjury caused by displacement of fractured ends in transmission,the system was convenient to the observation and care of the wound.Moreover,the operation of system could be accomplished by one man without electrical drill,that was also assistant with other internal external fixation system.
     The design of screw had make a breakthrough of tradional self tapping screwhead.According to refining preminary self tapping screwhead,the style of bilateral arc groove was contributed to twice self tapping,enlarge the moment of force while drilling,which could achieve the effect of hand wring tapping without the assistance of electrical drill.The design of screw clamp was fixed two screws at one timeprimitively.Moreover,the clamp was fastened by stud in the centre,however,this method required screw drilling parallelly in principle,could not allow for error of drilling angle,it was difficult to penetrate in parallel in activities.we refined the clamp,which was fixed by cap nut.15°degree error was allowed for self tapping screw to fulfill three dimentional fixation.The feature of pipe link was retractable and individualized.The pipe link ends of the external fixation was designed as ball socket to achievement the effect of three dimentional fixation by adjusting the direction.
     Results:
     (1)Utilizing software of Mimics14.0and Pro/e,based on CT scan of tibia and femur:the tibia,femur and screw had been generated4744triangles,20714triangles,4362triangles respectively.the square and volumewere5844.53mm2,32594.19mm2,18030.40mm2,106665.97mm3,2289.59mm3,3302.18m m3respectively.
     (2)The three dimentional FEAof high explosive revealed;stress cloud distribution displayed the maximum stress value located in cortical bone where the high speed (1400m/s) bullet emitted in different angle was138.29mm(90°),the secondary value was66.59mm(45°),the minimum value was62.56mm(67.5°). comparison of Von-mise(mm/mm)value:45°(1.43mm/mm)>90°(1.31mm/mm)>67.5°(1.22mm/mm),comparison of stress intensity(Mpa)67.5°(14447Mpa)>45°(2723Mpa)>90°(2401Mpa).
     (3)Comparison of biomechanical value of self tapping screw of external fixation in FEA method.
     1. Von-mise equivalent images have showed the maximum stress was located between the self tapping screw and tibia cortical bone,the maximum total deformation value was located in the screw tail under force loads and clockwise moment loads.
     2.Comparison of force loads on different metals with the same diameter:when the diameter of screw was below3.5mm,the maximum stress of metal was titanium alloy,the stress value of copper alloy, magnesium alloy, aluminum alloy were less than titanium alloy's,the value of stainless steel and structural steel were similar.The maximum total deformation of metal was magnesium alloy,the next were aluminum alloy, titanium alloy and copper alloy,the value of stainless steel was similar as structural steel.when the diameter of screw was4mm,the stress value of stainless steel and structural steel were greater than the value of aluminum alloy and magnesium alloy;as the diameter was4.5mm,the maximum value was structural steel,the next were stainless steel and magnesium alloy.The values of total deformation were similar.This experiment revealed that the maximum stress and mimimum total deformation was titanium alloy,the feature of copper alloy was similar as ti,however, magnesium, aluminum alloy had maximum value of total deformation because of soft material,the biomechanical feature of stainless steel was similar with structural steel when the diameter of screw was less than3.5mm.The maximum stress value of metal were structural steel and stainless steel,but total deformation was similar when the diameter of self tapping screw was4mm.
     3.Comparison of moment loads on different metals with the same diameter.Under the same moment loads on different metals,when the diameter of the screw was less than4mm,the biomechanical feature were similar,the maximum stress value were structural steel and stainless steel,the next were copper alloy and titanium alloy,the minimum value existed in aluminum alloy and magnesium alloy,however,the maximum total deformation material was magnesium alloy. The secondary metals were aluminum alloy, titanium alloy and copper alloy,the minimum metals were stainless steel and structural steel.When the diameter of the screw was4.5mm,the stress value of structural steel and stainless steel were greater than aluminum alloy and magnesium alloy,the maximum value materialwas structural steel,the secondary metal contented stainless steel and magnesium alloy;the maximum total deformation material was copper alloy,the next were aluminum alloy and titanium alloy,thus the value of structural steel was similar as stainless steel.This experiment revealed:when the diameter of screw was less than4mm,the material of structural steel and stainless steel had higher stress value and less total deformation value,their biomechanical were similar as copper alloy,but the metals of magnesium alloy and aluminum alloy had the minimum stress value and the maximum total deformation because of texture.When the diameter of screw was more than4mm, copper alloy had the maximum total deformation value,the biomechanical feature of stainless steel was similar as structural steel's.
     4.Comparison of force loads on the same materials with the different diameters when the metals were loaded force loads,all of the materials exhibited similar characteristics,with the increase of the diameter of the screw,the peak value of Von-mise stress had dropped,thus the value of total deformation decreased.with the increase of the diameter of the screw from3mm to3.5mm,the average decline rate of total deformation value rate was10.6%,the average decline rate of total deformation value rate was37.5%. with the increase of the diameter of the screw from3.5mm to4mm,the average decline rate of total deformation value rate was36.8%,the average decline rate of total deformation value rate was70.2%.the statistical differences existed between the group(P<0.05).
     5.The statistical differences existed between2groups,comparing the increase of the diameter of the screw from3.5mm to4mm. with the increase of the diameter of the screw from3mm to3.5mm,the decline rates of stress value and total deformation value had a significant difference.Under the same load,the obvious decline tendency was observed with the increase of the diameter of the screw from3.5mm to4mm. Comparison of different metal,all of the metals displayed the similar biomechanical features,but fine distinction existed:with the increase of the diameter of screw from3mm to3.5mm,the maximum decline rate of metals was magnesium alloy (38.7%),the secondary one was aluminum alloy (37.7%), with the increase of the diameter of screw from3.5mm to4mm,the maximum decline rate of metals was magnesium alloy (38.8%),the minimum decline rate of total deformation was copper alloy.
     (4)FEA results of titanium alloy self tapping screw of external fixation:1. Von-mise equivalent images have showed the maximum stress was located between the self tapping screw and tibia cortical bone,the maximum total deformation value was located in the screw tail under force loads and clockwise moment loads.2. With the increase of the diameter of screw,the peak stress and total deformation value existed decline tendency(284.3Mpa to156.8Mpa),3mm screw>3.5mm screw>4mm screw respectively.
     Comparision of1000N force loads with1500N force loads,the stress value and total deformation value increased in direct ratio with the same diameter.
     Under the same moment force,the results of the peak stress value and total deformation:3mm screw>3.5mm screw>4mm screw,with the increase of moment force,the peak stress value and total deformation of different diameter screws had increasing tendency.
     (5)Threshold determination of biomechanics of self tapping screw of external fixation system revealed the stress value(1533N)appeared when the screw was penetrating into the inlayer(4.5mm) of cortical bone of tibia.
     The value displayed decreasing tendency as the screw drilled into marrow cavity.moment force changes had the small fluctuations(40points) with the average value(2.5N.m) of pig femur.The maximum value was3.1N.m when the screw drilled into cortical bone(6mm).in the procedure of the screw drilled,moment load value increased with the displacement(0.5mm-4mm),reached high value(3.0N.m)until inlayer of cortical bone,the value decreased when the screw penetrated into marrow cavity.
     Conclusion:
     (1)We can establish femur-screw,tibia-screw assembly rapidly,operate volume meshes and distinguish materials based on gray threshold with Mimics14.0software to set up the foundation of FEA.
     (2)High explosive dynamic FEA revealed collapsing force was huge in the incident angle of67.5°,we can decide damage area according to the direction of bullet in clinical activities.
     (3)Von-mise equivalent images have showed the maximum stress was located between the self tapping screw and tibia cortical bone,the maximum total deformation value was located in the screw tail under force loads and clockwise moment loads.
     (4)Animal biomechanical experiment displayed when the screw drilled into cortical bone(6mm).in the procedure of the screw drilled,moment load value increased with the displacement(0.5mm-4mm),reached high value(3.0N.m)until inlayer of cortical bone,the value decreased when the screw penetrated into marrow cavity.
     (5)With the improvement of self-tapping screw,clamp and pipe link,we can simplity operation proceduce,reduce cost,achieve three dimitional fixation by ball socket joint on pipe link and operate by one person.
引文
[1]Bluman E M, Ficke J R, Covey D C. War wounds of the foot and ankle:causes, characteristics, and initial management[J]. Foot Ankle Clin,2010,15(1):1-21.
    [2]Matsuura M, Lounici S, Inoue N, et al. Assessment of external fixator reusability using load-and cycle-dependent tests. [J]. Clin Orthop Relat Res,2003(406):275-281.
    [3]Agarwal S, Agarwal R, Jain U K, et al. Management of soft-tissue problems in leg trauma in conjunction with application of the Ilizarov fixator assembly.[J].Plast Reconstr Surg.2001,107(7):1732-1738
    [4]Quenneville C E, Dunning C E. Development of a finite element model of the tibia for short-Duration high-force axial impact loading[J].Comput Methods Biomech Biomed Engin,2011,14(2):205-212.
    [5]Gray H A, Zavatsky A B, Taddei F, et al. Experimental validation of a finite element model of a composite tibia[J]. Proc Inst Mech Eng H,2007,221(3):315-32 4.
    [6]Epari D R, Lienau J, Schell H, et al. Pressure, oxygen tension and temperature in the periosteal callus during bone healing--an in vivo study in sheep [J]. Bone,2008,43(4):734-739.
    [7]Spiegelberg B, Parratt T, Dheerendra S K, et al. Ilizarov principles of deformity correction.[J]. Ann R Coll Surg Engl,2010,92(2):101-105.
    [8]Nemec B, Santic V, Matovinovic D, et al. War wounds to the foot[J]. Mil Med,2000,165(1):18-20.
    [9]Sharma M, Langrana N A, Rodriguez J. Role of ligaments and facets in lumbar spinal stability.[J]. Spine (Phila Pa 1976),1995,20(8):887-900.
    [10]Easley S K, Pal S, Tomaszewski P R, et al. Finite element-based probabilistic analysis tool for orthopaedic applications[J]. Comput Methods Programs Biomed,2007,85(1):32-40.
    [1]Matsuura M, Lounici S, Inoue N, et al. Assessment of external fixator reusability using load-and cycle-dependent tests. [J]. Clin Orthop Relat Res,2003(406):275-281.
    [2]Vilayphiou N, Boutroy S, Szulc P, et al. Finite element analysis performed on radius and tibia HR-pQCT images and fragility fractures at all sites in men[J]. J Bone Miner Res,2011,26(5):965-973.
    [3]Verhulp E, Van Rietbergen B, Muller R, et al. Micro-finite element simulation of trabecular-bone post-yield behaviour--effects of material model, element size and type[J]. Comput Methods Biomech Biomed Engin,2008,11(4):389-395.
    [4]Agarwal S, Agarwal R, Jain U K, et al. Management of soft-tissue problems in leg trauma in conjunction with application of the Ilizarov fixator assembly.[J]. Plast Reconstr Surg,2001,107(7):1732-1738.
    [5]Easley S K, Pal S, Tomaszewski P R, et al. Finite element-based probabilistic analysis tool for orthopaedic applications[J]. Comput Methods Programs Biomed,2007,85(1):32-40.
    [1]Golubovic I, Vukasinovic Z, Stojiljkovic P, et al.Surgical treatment of tibial nonunion after wounding by high velocity missile and external fixators:a case report. Srp Arh Celok Lek.2012 Jul-Aug; 140(7-8):515-20
    [2]Clelland NL,Ismail YH,Zaki HS,et al. Three-dimensional finite element stress analysis in and around the Screw-Vent implant, Int J Oral Maxillofac.Implants ,1991,6(4):391-8.
    [3]Evans SP, Parr WC, Clausen PD,et al.Finite element analysis of a micromechanical model of bone and a new 3D approach to validation.J Biomech. 2012 Oct 11;45(15):2702-5
    [4]Carr BG, Nance ML, Branas CC, et al. Unintentional firearm death across the urban-rural landscape in the United States.J Trauma Acute Care Surg.2012, 73(4):1006-10.
    [5]Johnson J, Markiewicz MR, Bell RB, et al. Gun orientation in self-inflicted craniomaxillofacial gunshot wounds:risk factors associated with fatality.Int J Oral Maxillofac Surg.2012 Aug;41(8):895-901.
    [6]Hafeez K, Siddiqui A, Haroon-ur-Rashid, et al. The posterior tibial island flap for coverage in complex injuries of the lower extremity.Microsurgery.2012 Oct;32(7):539-45.
    [7]Golema W, Jurek T, Thannhauser A, et al. Possibilities of energy augmentation of pellets shot from ASG replicas and gunshot wounds.Arch Med Sadowej Kryminol. 2011 Oct-Dec;61(4):313-8.
    [1]Large TM, Douglas G, Erickson G, et al. Effect of negative pressure wound therapy on the elution of antibiotics from polymethylmethacrylate beads in a porcine simulated open femur fracture model.J Orthop Trauma.2012 Sep;26(9):506-11.
    [2]Becher S, Ziran B. Retrograde intramedullary nailing of open femoral shaft fractures:a retrospective case series.J Trauma Acute Care Surg.2012 Mar;72(3):696-8.
    [3]Ayoub MA, Gad HM. Neglected neck femur fractures in adolescents and young adults:factors predicting the surgical outcome.J Orthop Sci.2013 Jan;18(l):93-100
    [4]Pieske O, Pichlmaier L, Kaltenhauser F,,et al. Hydroxyapatite-coated pins versus titanium alloy pins in external fixation at the wrist:a controlled cohort study.J Trauma.2011 Apr;70(4):845-51
    [5]Clelland NL,Ismail YH,Zaki HS,et al. Three-dimensional finite element stress analysis in and around the Screw-Vent implant, Int J Oral Maxillofac.Implants ,1991,6(4):391-8.
    [6]Singh S, Mogra S, Shetty VS, et al. Three-dimensional finite element analysis of strength, stability, and stress distribution in orthodontic anchorage:a conical, self-drilling miniscrew implant system. Am J Orthod Dentofacial Orthop.2012 Mar;141(3):327-36
    [7]Krittian SB, Lamata P, Michler C, et al. A finite-element approach to the direct computation of relative cardiovascular pressure from time-resolved MR velocity data.Med Image Anal.2012 Jul; 16(5):1029-37
    [8]Oken OF, Soydan Z, Yildirim AO, et al. Performance of modified anatomic plates is comparable to proximal femoral nail, dynamic hip screw and anatomic plates:finite element and biomechanical testing.Injury.2011 Oct;42(10):1077-83.
    [9]Geramy A, Kizilova N, Terekhov L. Finite element method (FEM) analysis of the force systems produced by asymmetric inner headgear bows.Aust Orthod J.2011 Nov;27(2):125-31.
    [10]Karargyris O, Romoudis P, Morassi LG, et al. Distraction over Nail Using Circular External Fixation for Septic Pseudarthrosis of the Tibia.J Long Term Eff Med Implants. 2012;22(2):137-43
    [1]Matsuura M, Lounici S, Inoue N, et al. Assessment of external fixator reusability using load-and cycle-dependenttests.[J].Clin Orthop Relat Res,2003(406):275-2 81.
    [2]Pedrini G, Cardi M, Landini A, et al. Management of severe open ankle-foot trauma by a simple external fixation technique:an alternative during war and in resource-poor and low-technology environments. J Orthop Trauma,2011,25(3):180 -187.
    [3]Possley DR, Burns TC, Stinner DJ,et,al.Temporary external fixation is safe in a combat environment.J Trauma.2010 Jul;69 Suppl 1:S135-9.
    [4]Clelland NL,Ismail YH,Zaki HS,et al. Three-dimensional finite element stress analysis in and around the Screw-Vent implant, Int J Oral Maxillofac.Implants ,1991,6(4):391-8.
    [5]Agarwal S, Agarwal R, Jain U K, et al. Management of soft-tissue problems in leg trauma in conjunction with application of the Ilizarov fixator assembly.[J]. Plast Reconstr Surg,2001,107(7):1732-1738.
    [6]Vilayphiou N, Boutroy S, Szulc P, et al. Finite element analysis performed on radius and tibia HR-pQCT images and fragility fractures at all sites in men[J]. J Bone Miner Res,2011,26(5):965-973.
    [7]Verhulp E, Van Rietbergen B, Muller R, et al. Micro-finite element simulation of trabecular-bone post-yield behaviour--effects of material model, element size and type[J]. Comput Methods Biomech Biomed Engin,2008,11(4):389-395.
    [8]Lei T, Xie L, Tu W, Chen Y, Tan Y. Development of a finite element model for blast injuries to the pig mandible and a preliminary biomechanical analysis. J Trauma Acute Care Surg.2012 Oct;73(4):902-7.
    [9]Gurgel-Juarez NC, de Almeida EO, Rocha EP, et,al. Regular and platform switching:bone stress analysis varying implant type. J Prosthodont.2012 Apr;21(3):160-6.
    [10]Easley S K, Pal S, Tomaszewski P R, et al. Finite element-based probabilistic analysis tool for orthopaedic applications[J]. Comput Methods Programs Biomed,2007,85(1):32-40.
    [1]Malakasi A, Lallos SN, Chronopoulos E, et al. Comparative study of internal and hybrid external fixation in tibial condylar fractures.Eur J Orthop Surg Traumatol. 2013 Jan;23(1):97-103.
    [2]Bode G, Strohm PC, Sudkamp NP, et al. Tibial shaft fractures management and treatment options. A review of the current literature.Acta Chir Orthop Traumatol Cech.2012;79(6):499-505.
    [3]Gessmann J, Jettkant B, Konigshausen M, et al. Improved wire stiffness with modified connection bolts in Ilizarov external frames:a biomechanical study.Acta Bioeng Biomech.2012;14(4):15-21.
    [4]Penn-Barwell JG, Murray CK, Wenke JC. Early antibiotics and debridement independently reduce infection in an open fracture model.J Bone Joint Surg Br. 2012 Jan;94(1):107-12.
    [5]Robbins J, Gerlinger TL, Ward JA. Can the Carbon Fiber Rods for the Hoffmann II External Fixation System Be Reused?Am J Orthop (Belle Mead NJ).2012 Dec;41(12):551-3
    [6]Kuzyk PR, Zdero R, Shah S, et al. Femoral head lag screw position for cephalomedullary nails:a biomechanical analysis. J Orthop Trauma.2012 Jul;26(7):414-21.
    [1]Bluman E M, Ficke J R, Covey D C. War wounds of the foot and ankle:causes, characteristics, and initial management[J]. Foot Ankle Clin,2010,15(1):1-21.
    [2]Clemens M W, Parikh P, Hall M M, et al. External fixators as an adjunct to wound healing.[J]. Foot Ankle Clin,2008,13(1):145-156.
    [3]Parrett B M, Matros E, Pribaz J J, et al. Lower extremity trauma:trends in the management of soft-tissue reconstruction of open tibia-fibula fractures. [J]Plast Reconstr Sur g.2006,117(4):13 15-1322
    [4]Schell H, Epari D R, Kassi J P, et al. The course of bone healing is influenced by the initial shear fixation stability [J]. J Orthop Res,2005,23(5):1022-1028.
    [5]Klobucar H, Delinar D,Korzinek M,et al.CMC external fixator.[J].Acta Chir Orthop Traumatol Cech,2001,68(1):55-58.
    [6]Labeeu F, Pasuch M, Toussaint P, et al. External fixation in war traumatology: report from the Rwandese war (October 1,1990 to August 1,1993)[J]. J Trauma,1996,40(3 Su ppl):S223-S227.
    [7]龚灏,刘好源,周文光.一种用于骨折治疗的快速外固定系统的研制[J].医疗卫生装备,2010,31(6):53-54.
    [8]Korzinek K, Delimar D, Tripkovic B. External fixator for war purposes:the CMC fixator.[J]. Mil Med,1999,164(5):358-360.
    [1]Bluman E M, Ficke J R, Covey D C. War wounds of the foot and ankle:causes, characteristics, and initial management[J]. Foot Ankle Clin,2010,15(1):1-21.
    [2]Pettit G D. History of external skeletal fixation[J]. Vet Clin North Am Small Anim Pract,1992,22(1):1-10.
    [3]Matsuura M, Lounici S, Inoue N, et al. Assessment of external fixator reusability using load-and cycle-dependent tests. [J]. Clin Orthop Relat Res,2003(406):275-281.
    [4]Agarwal S, Agarwal R, Jain U K, et al. Management of soft-tissue problems in leg trauma in conjunction with application of the Ilizarov fixator assembly.[J]. Plast Reconstr Surg,2001,107(7):1732-1738.
    [5]Clemens M W, Parikh P, Hall M M, et al. External fixators as an adjunct to wound healing.[J]. Foot Ankle Clin,2008,13(1):145-156.
    [6]Parrett B M, Matros E, Pribaz J J, et al. Lower extremity trauma:trends in the management of soft-tissue reconstruction of open tibia-fibula fractures.[J]. Plast Reconstr Surg,2006,117(4):1315-1322,1323-1324.
    [7]Labeeu F. [External fixator:treatment of choice in war traumatology][J]. Acta Chir Belg,1985,85(4):251-259.
    [8]Labeeu F, Pasuch M, Toussaint P, et al. External fixation in war traumatology: report from the Rwandese war (October 1,1990 to August 1,1993)[J]. J Trauma,1996,40(3 Suppl):S223-S227.
    [9]Bosse M J, Holmes C, Vossoughi J, et al. Comparison of the Howmedica and Synthes military external fixation frames[J]. J Orthop Trauma,1994,8(2):119-126.
    [10]Klobucar H, Delinar D, Korzinek M, et al. CMC external fixator.[J]. Acta Chir Orthop Traumatol Cech,2001,68(1):55-58.
    [11]Korzinek K. War injuries of the extremities[J]. Unfallchirurg,1993,96(5):242-247.
    [12]Korzinek K, Delimar D, Tripkovic B. External fixator for war purposes:the CMC fixator.[J]. Mil Med,1999,164(5):358-360.
    [13]赵卫东等韦兴侯树勋.新型套筒式外固定器的生物力学相关研究[J].中华创伤骨科杂志,2004,6(8):889-892.
    [14]李平生等何向阳宋斌.新型平战通用单侧组合式骨外固定器的临床应用研究[J].医疗卫生装备,2010,31(6):8-10.
    [15]龚灏等刘好源周文光.一种用于骨折治疗的快速外固定系统的研制[J].医疗卫生装备,2010,31(6):53-54.
    [16]Davison B L, Cantu R V, Van Woerkom S. The magnetic attraction of lower extremity external fixators in an MRI suite[J]. J Orthop Trauma,2004,18(1):24-27.
    [17]Cook S D, Thomas K A, Kay J F. Experimental coating defects in hydroxylapatite-coated implants.[J]. Clin Orthop Relat Res,1991(265):280-290.
    [18]Moroni A, Aspenberg P, Toksvig-Larsen S, et al. Enhanced fixation with hydroxyapatite coated pins.[J]. Clin Orthop Relat Res,1998(346):171-177.
    [19]Moroni A, Caja V L, Maltarello M C, et al. Biomechanical, scanning electron microscopy, and microhardness analyses of the bone-pin interface in hydroxyapatite coated versus uncoated pins[J]. J Orthop Trauma,1997,11(3):154-161.
    [20]Caja V L, Moroni A. Hydroxyapatite coated external fixation pins:an experimental study.[J]. Clin Orthop Relat Res,1996(325):269-275.
    [21]Moroni A, Faldini C, Pegreffi F, et al. Fixation strength of tapered versus bicylindrical hydroxyapatite-coated external fixation pins:an animal study[J]. J Biomed Mater Res,2002,63(1):61-64.
    [22]张磊等王龙江戴景兴.可动态检测骨折断端压力的单边加压外固定架的设计与测评[J].中华创伤骨科杂志,2005,7(6):541-543.
    [23]O'Sullivan M E, Bronk J T, Chao E Y, et al. Experimental study of the effect of weight bearing on fracture healing in the canine tibia[J]. Clin Orthop Relat Res,1994(302):273-283.
    [24]Arazi M, Yalcin H, Tarakcioglu N, et al. The effects of dynamization and destabilization of the external fixator on fracture healing:a comparative biomechanical study in dogs[J]. Orthopedics,2002,25(5):521-524.
    [25]Hente R, Cordey J, Rahn B A, et al. Fracture healing of the sheep tibia treated using a unilateral external fixator. Comparison of static and dynamic fixation[J]. Injury,1999,30 Suppl 1:A44-A51.
    [26]Wallace A L, Draper E R, Strachan R K, et al. The effect of devascularisation upon early bone healing in dynamic external fixation[J]. J Bone Joint Surg Br,1991,73(5):819-825.
    [27]胥少汀等.实用骨科学[M].北京:人民军医出版社,1996.391-399.
    [28]张启明.80-Ⅰ型多功能骨折外固定器简介[J].军队卫生装备,1985,3(15).
    [29]Rodger M P, Standley D, Kazel M. Hoffman Ⅱ external fixator techniques--a work-around to use small pins in large clamps. [J]. J R Army Med Corps,2010,156(3):214.
    [30]李起鸿.半环槽式外固定器治疗的研究与临床应用[J].中华骨科杂志,1985,4(32).
    [31]Finlay J B, Moroz T K, Rorabeck C H, et al. Stability of ten configurations of the Hoffmann external-fixation frame[J]. J Bone Joint Surg Am,1987,69(5):734-744.
    [32]Berkowitz M J, Kim D H. Using an external fixation "kickstand" to prevent soft-tissue complications and facilitate wound management in traumatized extremities.[J]. Am J Orthop (Belle Mead NJ),2008,37(3):162-164.
    [33]Kowalski M, Schemitsch E H, Harrington R M, et al. Comparative biomechanical evaluation of different external fixation sidebars:stainless-steel tubes versus carbon fiber rods[J]. J Orthop Trauma,1996,10(7):470-475.
    [34]Clary E M, Roe S C. In vitro biomechanical and histological assessment of pilot hole diameter for positive-profile external skeletal fixation pins in canine tibiae[J]. Vet Surg,1996,25(6):453-462.
    [35]Kellam J F, Waddell J P. Fractures of the distal tibial metaphysis with intra-articular extension--the distal tibial explosion fracture [J]. J Trauma,1979,19(8):593-601.
    [36]Calhoun J H, Li F, Bauford W L, et al. Rigidity of half-pins for the Ilizarov external fixator[J]. Bull Hosp Jt Dis,1992,52(1):21-26.
    [37]O'Doherty D M, Butler S P, Goodship A E. Stress protection due to external fixation[J]. J Biomech,1995,28(5):575-586.
    [38]Kume M H, Malafaia O, Dietz U A, et al. [The influence of the number of bars on the axial compressive strength of uniplanar external fixators in polyurethane tibia models][J]. Rev Col Bras Cir,2010,37(1):58-63.
    [39]Degernes L A, Roe S C, Abrams C J. Holding power of different pin designs and pin insertion methods in avian cortical bone[J]. Vet Surg,1998,27(4):301-306.
    [40]Bouvy B M, Markel M D, Chelikani S, et al. Ex vivo biomechanics of Kirschner-Ehmer external skeletal fixation applied to canine tibiae[J]. Vet Surg,1993,22(3):194-207.
    [41]李平生何向阳宋斌.野战单侧组合式骨外固定器的生物力学测试及相关研究[J].医疗卫生装备,2010,31(2):15-18.
    [42]Duan D, Liu G, Du J, et al. A biomechanical analysis of unilateral hooked-sulcated external fixator on osteomined tibia[J]. Chin Med Sci J,1998,13(1):49-52.
    [43]Schell H, Epari D R, Kassi J P, et al. The course of bone healing is influenced by the initial shear fixation stability[J]. J Orthop Res,2005,23(5):1022-1028.
    [44]Antoci V, Roberts C S, Antoci V J, et al. The effect of transfixion wire number and spacing between two levels of fixation on the stiffness of proximal tibial external fixation[J]. J Orthop Trauma,2005,19(3):180-186.
    [45]Kummer F J. Biomechanics of the Ilizarov external fixator.[J]. Bull Hosp Jt Dis Orthop Inst,1989,49(2):140-147.
    [46]Gunzburg R, Boulvin S, Bourgeois R, et al. Biomechanical behavior of the tibiofibular frame in nonunion[J]. Acta Orthop Belg,1991,57(3):234-241.
    [47]Yilmaz E, Belhan O, Karakurt L, et al. Mechanical performance of hybrid Ilizarov external fixator in comparison with Ilizarov circular external fixator.[J]. Clin Biomech (Bristol, Avon),2003,18(6):518-522.
    [48]Dougherty P J, Vickaryous B, Conley E, et al. A comparison of two military temporary femoral external fixators.[J]. Clin Orthop Relat Res,2003(412):176-183.
    [49]Krischak G D, Janousek A, Wolf S, et al. Effects of one-plane and two-plane external fixation on sheep osteotomy healing and complications[J]. Clin Biomech (Bristol, Avon),2002,17(6):470-476.
    [50]Brynk T, Hellmich C, Fritsch A, et al. Experimental poromechanics of trabecular bone strength:role of Terzaghi's effective stress and of tissue level stress fluctuations[J]. J Biomech,2011,44(3):501-508.
    [51]Zhim F, Laflamme G Y, Viens H, et al. Biomechanical stability of high tibial opening wedge osteotomy:internal fixation versus external fixation.[J]. Clin Biomech (Bristol, Avon),2005,20(8):871-876.
    [52]Santangelo J R, Glisson R R, Garras D N, et al. Tibiotalocalcaneal arthrodesis: a biomechanical comparision of multiplanar external fixation with intramedullary fixation[J]. Foot Ankle Int,2008,29(9):936-941.
    [53]Duda G N, Sporrer S, Sollmann M, et al. Interfragmentary movements in the early phase of healing in distraction and correction osteotomies stabilized with ring fixators[J]. Langenbecks Arch Surg,2003,387(11-12):433-440.
    [54]Epari D R, Lienau J, Schell H, et al. Pressure, oxygen tension and temperature in the periosteal callus during bone healing--an in vivo study in sheep [J]. Bone,2008,43(4):734-739.
    [55]Gardner T N, Hardy J, Evans M, et al. Temporal changes in dynamic inter fragmentary motion and callus formation in fractures[J]. J Biomech,1997,30(4):315-321.
    [56]Spiegelberg B, Parratt T, Dheerendra S K, et al. Ilizarov principles of deformity correction.[J]. Ann R Coll Surg Engl,2010,92(2):101-105.
    [57]Nemec B, Santic V, Matovinovic D, et al. War wounds to the foot[J]. Mil Med,2000,165(1):18-20.
    [58]Petermann J, Ishaque B, Ziring E, et al. External patellotibial transfixation: indications, operative technique and outcome[J]. Knee,2001,8(2):111-121.
    [59]Turcic J, Cavcic J, Smud D, et al. [Osteosynthesis revision in war fractures][J]. Unfallchirurg,1998,101 (6):476-481.
    [60]W-Dahl A, Toksvig-Larsen S. No clinical benefits using a new design of pins for external fixation:a randomized study in 50 patients operated on by the hemicallotasis technique[J]. Arch Orthop Trauma Surg,2008,128(7):661-667.
    [61]Bek D, Demiralp B, Kurklu M, et al. Ankle arthrodesis using an Ilizarov external fixator in patients wounded by landmines and gunshots[J]. Foot Ankle Int,2008,29(2):178-184.
    [62]Zinman C, Norman D, Hamoud K, et al. External fixation for severe open fractures of the humerus caused by missiles[J]. J Orthop Trauma,1997,11(7):536-539.
    [63]Noonan K J, Price C T. Pearls and pitfalls of deformity correction and limb lengthening via monolateral external fixation[J]. Iowa Orthop J,1996,16:58-69.
    [64]El-Mowafi H, Abulsaad M, El-Adl W. Prophylactic surgical correction of Crawford's type II anterolateral bowing of the tibia using Ilizarov's method[J]. Acta Orthop Belg,2005,71(5):577-581.
    [65]Kucukkaya M, Karakoyun O, Armagan R, et al. [Correction of complex lower extremity deformities with the use of the Ilizarov-Taylor spatial frame][J]. Acta Orthop Traumatol Turc,2009,43(1):1-6.
    [66]Norman D, Hamoud K, Ries D, et al. [External humeral fixation in war injuries][J]. Harefuah,1996,131(9):310-312,375.
    [67]Komurcu M, Yanmis I, Atesalp A S, et al. Treatment results for open comminuted distal humerus intra-articuler fractures with Ilizarov circular external fixator[J]. Mil Med,2003,168(9):694-697.
    [68]Liu G, Du J, Xu Z. Biomechanical study on unilateral single-plane external fixer[J]. Chin Med Sci J,1995,10(4):226-228.
    [69]Golubovic Z, Vidic G, Trenkic S, et al. Treatment of open tibial shaft fracture with soft tissue and bone defect caused by aircraft bomb--case report.[J]. Srp Arh Celok Lek,2010,138(7-8):510-514.
    [70]Golubovic Z, Stojiljkovic P, Mitkovic M, et al. [Treatment of multiple fractures in a patient wounded by aircraft bombing]. [J]. Srp Arh Celok Lek,2010,138(5-6):362-366.
    [71]Miric D, Bumbasirevic M, Radulovic N, et al. [External fixation of war injuries of the proximal femur].[J]. Acta Chir Iugosl,2005,52(2):101-105.
    [72]Kuklo T R, Groth A T, Anderson R C, et al. Recombinant human bone morphogenetic protein-2 for grade III open segmental tibial fractures from combat injuries in Iraq.[J]. J Bone Joint Surg Br,2008,90(8):1068-1072.
    [73]Rowley D I. The management of war wounds involving bone.[J]. J Bone Joint Surg Br,1996,78(5):706-709.
    [74]Possley D R, Burns T C, Stinner D J, et al. Temporary external fixation is safe in a combat environment.[J]. J Trauma,2010,69 Suppl 1:S135-S139.
    [75]Keeling J J, Gwinn D E, Tintle S M, et al. Short-term outcomes of severe open wartime tibial fractures treated with ring external fixation.[J]. J Bone Joint Surg Am,2008,90(12):2643-2651.
    [76]Gibbons A J, Mackenzie N, Breederveld R S. Use of a custom designed external fixator system to treat ballistic injuries to the mandible [J]. Int J Oral Maxillofac Surg,2011,40(1):103-105.
    [77]Kim Y H, Inoue N, Chao E Y. Kinematic simulation of fracture reduction and bone deformity correction under unilateral external fixation[J]. J Biomech,2002,35(8):1047-1058.
    [78]Blokhuis T J, de Bruine J H, Bramer J A, et al. The reliability of plain radiography in experimental fracture healing[J]. Skeletal Radiol,2001,30(3):151-156.
    [79]Reichert J C, Epari D R, Wullschleger M E, et al. Establishment of a preclinical ovine model for tibial segmental bone defect repair by applying bone tissue engineering strategies [J]. Tissue Eng Part B Rev,2010,16(1):93-104.
    [80]Mitkovic M, Bumbasirevic M, Golubovic Z, et al. New concept in external fixation.[J]. Acta Chir Iugosl,2005,52(2):107-111.
    [81]Lerner A, Nierenberg G, Stein H. Ilizarov external fixation in the management of bilateral, highly complex blast injuries of lower extremities:a report of two cases.[J]. J Orthop Trauma,1998,12(6):442-445.
    [82]Quenneville C E, Dunning C E. Development of a finite element model of the tibia for short-duration high-force axial impact loading[J]. Comput Methods Biomech Biomed Engin,2011,14(2):205-212.
    [83]Gray H A, Zavatsky A B, Taddei F, et al. Experimental validation of a finite element model of a composite tibia[J]. Proc Inst Mech Eng H,2007,221(3):315-324.
    [84]Brekelmans W A, Poort H W, Slooff T J. A new method to analyse the mechanical behaviour of skeletal parts[J]. Acta Orthop Scand,1972,43(5):301-317.
    [85]Rybicki E F, Simonen F A, Weis E J. On the mathematical analysis of stress in the human femur[J]. J Biomech,1972,5(2):203-215.
    [86]Chen G, Schmutz B, Epari D, et al. A new approach for assigning bone material properties from CT images into finite element models[J]. J Biomech,2010,43(5):1011-1015.
    [87]Chong D Y, Hansen U N, Amis A A. Analysis of bone-prosthesis interface micromotion for cementless tibial prosthesis fixation and the influence of loading conditions[J]. J Biomech,2010,43(6):1074-1080.
    [88]Prasad J, Wiater B P, Nork S E, et al. Characterizing gait induced normal strains in a murine tibia cortical bone defect model [J]. J Biomech,2010,43(14):2765-2770.
    [89]Lotz J C, Colliou O K, Chin J R, et al. Compression-induced degeneration of the intervertebral disc:an in vivo mouse model and finite-element study[J]. Spine (Phila Pa 1976),1998,23(23):2493-2506.
    [90]Wong C, Mikkelsen P, Hansen L B, et al. Finite element analysis of tibial fractures[J]. Dan Med Bull,2010,57(5):A4148.
    [91]Completo A, Fonseca F, Simoes J A. Finite element and experimental cortex strains of the intact and implanted tibia[J]. J Biomech Eng,2007,129(5):791-797.
    [92]Rajapakse C S, Magland J, Zhang X H, et al. Implications of noise and resolution on mechanical properties of trabecular bone estimated by image-based finite-element analysis[J]. J Orthop Res,2009,27(10):1263-1271.
    [93]Ural A, Vashishth D. Effects of intracortical porosity on fracture toughness in aging human bone:a microCT-based cohesive finite element study [J]. J Biomech Eng,2007,129(5):625-631.
    [94]Vilayphiou N, Boutroy S, Szulc P, et al. Finite element analysis performed on radius and tibia HR-pQCT images and fragility fractures at all sites in men[J]. J Bone Miner Res,2011,26(5):965-973.
    [95]Verhulp E, Van Rietbergen B, Muller R, et al. Micro-finite element simulation of trabecular-bone post-yield behaviour--effects of material model, element size and type[J]. Comput Methods Biomech Biomed Engin,2008,11(4):389-395.
    [96]Saxena R, Zachariah S G, Sanders J E. Processing computer tomography bone data for prosthetic finite element modeling:a technical note[J]. J Rehabil Res Dev,2002,39(5):609-614.
    [97]Sharma M, Langrana N A, Rodriguez J. Role of ligaments and facets in lumbar spinal stability.[J]. Spine (Phila Pa 1976),1995,20(8):887-900.
    [98]Easley S K, Pal S, Tomaszewski P R, et al. Finite element-based probabilistic analysis tool for orthopaedic applications [J]. Comput Methods Programs Biomed,2007,85(1):32-40.
    [99]Baidya K P, Ramakrishna S, Rahman M, et al. Advanced textile composite ring for Ilizarov external fixator system.[J]. Proc Inst Mech Eng H,2001,215(1):11-23.
    [100]Watson M A, Mathias K J, Maffulli N, et al. The effect of clamping a tensioned wire:implications for the Ilizarov external fixation system.[J]. Proc Inst Mech Eng H,2003,217(2):91-98.
    [101]Pedrini G, Cardi M, Landini A, et al. Management of severe open ankle-foot trauma by a simple external fixation technique:an alternative during war and in resource-poor and low-technology environments[J]. J Orthop Trauma,2011,25(3):180-187.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700