中国樱桃花芽分化及开花规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国樱桃(Prunus pseudocerasus Lindl.)作为我国重要的果树种类之一,但其相关的研究报导较少。花芽分化是果树由营养生长阶段向生殖阶段的转折,它是果树生命周期中至关重要的生命现象之一。休眠是多年生落叶果树抵御不良环境的一种有效过程。落叶果树满足低温需求量顺利地完成自然休眠是进行下一个生长发育循环所必须经历的重要阶段,休眠已成为限制果树设施栽培发展的制约因素,同时也限制了落叶果树向暖热带地区发展。樱桃的开花物候期早,花期易受低温危害,这是造成浙中地区樱桃产量低而不稳的主要原因之一。因此,在容易遭受倒春寒侵袭的地区,选择开花晚的品种进行露地栽培,以免造成不必要的损失。本论文研究了樱桃花芽的整个发育过程,包括花芽分化、休眠和萌发的问题。
     通过生理学和形态学的方法对浙江地区的中国樱桃花芽生理分化期和形态分化期进行界定。通过摘叶和生理指标的测定确定短柄樱桃09年花芽的生理分化期为7月5号至7月25号,花芽形态分化开始于7月下旬,整个分化时期可分为花蕾分化期、花萼分化期、花瓣分化期、雄蕊分化期及雌蕊分化期这5个时期,在7月15号以前尚未开始形态分化,花原基和苞片原基的分化最早出现在7月15号;花萼分化期集中在8月;花冠原基的分化此期一般从9月上旬开始,可延续到9月中旬。花芽进入花瓣分化期后,其分化进程加速,很快过渡到下一时期。雄蕊原基最早出现在9月上旬,10月上旬除一小部分的花芽处于雄蕊分化期,其余全部进入雌蕊分化期。整个分化时间约持续70 d左右。
     通过田间温度记录仪连续三年对短柄樱桃花芽需冷量和金华地区冬季低温积累量进行了统计研究。结果表明:短柄樱桃花芽自然状态下打破休眠是在12月的中下旬。通过三年数据的比较与分析,犹他模型的统计结果比0-7.2℃、≤7.2℃模型更稳定,估计短柄樱桃需冷量在300 C.U左右;统计结果同时显示金华地区冬季的冷温积累量可以达到1000 C.U左右。通过形态解剖研究浙江地区中国樱桃休眠过程中花器官发育情况,整个休眠期间,花芽的内部细胞通过分裂,扩大和分化导致了器官的形成。雄蕊原基的发育最为明显,发育至通过维管组织相连的四个小孢子囊的花药结构,在打破休眠时花药发育为小孢子母细胞阶段。
     相同夜温条件下,通过设置六个不同的昼温度处理,研究了不同温度对中国樱桃花芽萌发过程中花器官发育的影响。结果表明,温度对樱桃花芽萌发的形态解剖和生理有显著影响。温度越高,花芽发育越快,开花越早。在35/10℃处理条件下,绝大多数花芽到达花序可见期便停止生长,不能正常开花而脱落;30/10℃处理极显著地抑制了花冠、雄蕊及雌蕊的发育,花药不能正常开裂散粉。在进行温度处理前,花药已发育到小孢子母细胞阶段。昼温30℃以上处理15天,小孢子母细胞不能进行正常减数分裂而导致雄性败育。25/10℃处理能进行减数分裂,形成四分体,但形成的花粉粒部分败育。通过测定在六个温度处理下中国樱桃花芽中丙二醛(MDA)含量的变化,探讨了不同温度下膜脂过氧化作用的情况。35/10℃、30/10℃、25/10℃三个处理下,MDA含量均是在花序可见期后开始升高;20/10℃、15/10℃、10/10℃三个处理相对稳定。表明昼温高于25℃造成了膜脂过氧化伤害。
     对浙中山区主栽的3个中国樱桃品种‘短柄’、‘黑珍珠’、‘大鹰嘴’的开花物候期、花器官、果实性状进行了观察。结果表明:3个品种开花物侯期有明显差异,‘大鹰嘴’花期最早,‘短柄樱桃’最晚。不同品种的雌蕊长度和子房直径无显著差异,花瓣颜色、形状、花冠大小差异显著,花粉量也存在显著差异。花冠直径与单果重存在明显的相关关系。对短柄樱桃花粉萌发率、花粉管伸长速率进行研究表明蔗糖对于维持樱桃花粉外界环境渗透压作用很明显,添加适量的硼酸有利于离体花粉的萌发。当蔗糖的浓度为30 g/L、硼酸的浓度为3 g/L时短柄樱桃花粉内外的渗透压保持平衡,离体萌发率最高。通过温度试验表明,在25℃条件下花粉萌发率和花粉管伸长速率均达到最高,说明早春低温不利于中国樱桃花粉萌发,影响授粉受精。
Chinese cherry(Prunus pseudocerasus Lindl.) is one of the important fruit tree species in South China, but has less research reports. Flower bud differentiation is the transition from the vegetative growth stage to the reproductive phase, and essential to the life cycle of fruit trees, which is one of the phenomenas of life. Dormancy is an effective process to resist adverse environment for perennial deciduous fruit trees. Deciduous fruit trees meet the chilling requirement and successfully complete dormancy is an important stage for the the next cycle of growth and development. Dormancy not only has become a limited factor for cultivation of fruit trees, but also limits the development of deciduous fruit trees cultivating to the warm tropical regions. The flowering phenology of cherry is early, and the phase of flowering is susceptible to the hazards of low temperature. This is one of the main reasons that the cherry productions are low and unstable. Therefore, the areas which vulnerable to be attacked by late spring coldness, we can select late flowering varieties in open field cultivation, so as to avoid unnecessary losses. This paper studied the whole process of development of the cherry flower bud, including the problems of flower bud differentiation, dormancy and germination.
     We defined the stage of physiological differentiation and morphological differentiation of the Chinese cherry flower buds in Zhejiang Province by the method of physiological and morphological. The period of physiological differentiation of Short-petiole cherry flower buds was defined in 2009 by picking off leaves and measuring physiological indicators, the results indicated that the phase started from July 5 to 25. Morphological differentiation began in late July. The whole process can be divided into the alabastrum differentiation stage, sepal primordial differentiation stage, petal primordial differentiation stage, and stamen and pistil primordial differentiation stage. Flower buds in a certain condition of non-differentiation., the stage of flower and bract primordia differentiation first appeared in the July 15. Most flower buds were found in the sepal primordial differentiation stage in August. The petal primordial differentiation started at the beginning of September, can be extended to mid-September after the petal primordial differentiation stage, the process accelerate, and soon translate to the next period. Stamen primordia differentiation first appeared in early September, all came into the pistil primordial differentiation stage except a small part of flower buds at stamen differentiation stage. The whole process approximately continues for 70 days.
     The chilling requirement of Short-Petiole Cherry and the accumulation of low temperature in Jinhua were calculated by temperature recorder during three years. The results showed that the time of dormancy breaking of Short-Petiole cherry flower bud under natural conditions is Sometime in December. Utah model results were more stable than 0-7.2℃,≤7.2℃models through analysing the three-year data; the chilling requirement of Short-Petiole cherry flower bud can reach about 300 C.U. The data also indicated that in Jinhua area, the chilling accumulation in winter was about 1000 C.U. The development of floral organs were researched during the process of dormancy. Cell division, enlargement, and differentiation, which lead to organogenesis, take place throughout the entire "dormancy" period. Stamen primordial develops to the structure of anthers which have four tetrasporangiates with the two locules in each of the two lobes being joined by connective tissue. In stage of dormancy breaking, anthers develop to the phase of pollen mother cells (PMC).
     Effect of temperatures on the development of flower organs of Cerasus pseudocerasus were examined at different day-temperatures (10-35℃) and the same night-temperature (10℃). The results showed that temperature significantly affected the morphology and physiology of flower buds. The higher the temperature, the earlier the flower buds developed and blossomed. In treatments with 35/10℃, the majority of flower buds was developmentally stopped at tight cluster stage and thus led to no flowering. In treatments with 30/10℃, development of flower, stamen and ovary was significantly inhibited and anthers did not normally dehisce. Paraffin section observation showed that anthers were developed to the microsporocyte stage before treatments with different temperatures. Fifteen days after treatments with the day-temperatures above 30℃, microsporocytes were stuck with tepetal cells and thus led to inhibition of normal meioses and stamen abortion. To investigate the status of membrane lipid peroxidation, contents of malondiadehyde (MDA) were detected in flower buds of Cerasus pseudocerasus treated with 6 different day-temperatures, respectively. The results showed that the contents of MDA increased after the stage of tight cluster in treatments with 35/10℃,30/10℃, and 25/10℃, respectively, whereas MDA levels were relatively stable in treatments with 20/10℃,15/10℃,10/10℃, respectively. This finding indicates that membrane lipid peroxidation damage was occurred at the day-temperature above 25℃.
     Characters of blossom phenophase, floral organs and fruits of three Chinese cherry cultivars,'Duan bing','Hei zhenzhu','Da yingzui’were observed in Zhejiang mountainous areas. The result showed that cultivars’the blossom phenophase greately differed among these cultivars,'Da yingzui'blossomed firstly,'Hei zhenzhu’latest. No significant difference was observed in pistil length and ovary diameter among the three cultivars. There were significant differences in petal color, shape, corolla size and Pollen quantity. A significant correlation was found between corolla diameter and fruit weight. Sucrose is important for the cherry pollen to maintain the external osmotic pressure. Pollen germination ratio、pollen tube elongation rate of Duan bing cherry were also studied. The results indicated the addtion of an appropriate amount of boric acid greatly benefited germination of vitro pollen. When concentration of sucrose was 30g/L, boric acid was 3g/L, inside and outside of'Duan bing’osmotic pressure comes to balance; the ratio of pollen germination under this condition was the highest. Temperature experiments showed that the temperature of 25℃was the optimal temperature for the pollen germination and pollen tube elongation rate. These results implied the fairly low temperature in the early spring was a obstacle for the pollen germination and pollination of Chinese cherry.
引文
[1]黄卫东.温带果树花芽孕育激素调控的研究进展[c].园艺学进展,北京:中国农业出版社,1994:37-44.
    [2]黄海,曹尚银,孙树侠,等.苹果不同品种在不同地区花芽形态分化开始的时期[J].园艺学报,1984,11(4):225-230.
    [3]黄海,乔宪生,曹尚银.关于苹果花芽生理分化时期的研究[J].园艺学报,1986,13(3):181-186.
    [4]曹尚银,张俊昌,魏立华.苹果花芽孕育过程中内源激素的变化[J].果树科学,2000,17(4):244-248.
    [5]曹尚银,黄海,乔宪生.苹果花芽形态分化发生过程及节位数增长模式研究[J].园艺学报,1989,16(4):267-274.
    [6]孙旭武,李唯,王力荣,等.桃花芽分化期蛋白质、氨基酸和碳水化合物含量的变化[J].甘肃农业大学学报,2004,39(3):295-299.
    [7]钟晓红,罗先实,陈爱华.李花芽分化与体内主要代谢产物含量的关系[J].湖南农业大学学报,1999,25(1):31-35.
    [8]杨晖,杨兰廷.杏花芽分化过程中芽和叶片核酸含量的动态变化[J].园艺学报,2000,27(2):90-94.
    [9]袁志友,李宪利,孙庆华,等.巨峰葡萄花芽分化的研究[J].西北植物学报,2003,23(3):389-394.
    [10]李秉真,孙庆林,张建华,等.‘苹果梨’花芽分化期叶片激素及核酸含量变化[J].园艺学报,1999,26(3):188-190.
    [11]王玉华,曲桂敏,沈向,等.欧洲甜樱桃(Ceraus avium (L.) Moench)花芽分化的研究[J].山东农业大学学报(自然科学版),2001,32(3):373-376.
    [12]吴海.中国樱桃花芽分化规律的研究[J].林业科技开发,2007,15:27-29.
    [13]Peang, L., Stepson M., Schneider G, el al. Gibberellin signals originating from apple fruit and their possible involvement in flower induction[J]. Acta Hort,1997,465:235-241.
    [14]Stephan, M., Bangerth, F, SchneiderG, Quantification of endogenous gibberellins in exudates from fruits of Malus domestica[J]. Plant Growth Regul,1999,28:55-58.
    [15]Ramirez, H., Bodson, M, Vernoyen MN. Endogenous cytokinins and fruit bud formation in apple [J]. Acta Hort,2000,514:245-248.
    [16]Ogata, T., Hasukawa, H, Shiozaki S. Seasonal changes in endogenous gibberellin contents in Satsuma mandarin during flower differentiation and the influence of paclobutrazol on Gibberellin synthesis[J]. J. Japan Soc Hort Sci,1996,65:245-255.
    [17]Koshita, Y., Takahara, T, Ogata T. Involvement of endogenous plant hormanes of leaves in flower bud formation of Satsuma mandarin [J]. Scientia Hort,1999,79:185-194.
    [18]Cline, MG. The role of hormones in apical dominance:New approaches to an old problem in plant development[J]. Physiol Plant,1994,90:230-237.
    [19]Mc Arthey, SJ, Li, SH. Selective inhibition of flowering in Braebum apple trees with GA3[J]. HortScience,1998,33:699-700.
    [20]Proietti, P., Tombesi A. Effects of gibberellins acid, asparagines and giutamine on flower bud inducteon in olive[J]. J Horti Sci,1996,71:383-388.
    [21]Grochowska, MJ., Hodun M. The dwarfing effect of single application of growth inhibitors to the root stem connection the collar tissue'of five species of fruit trees[J]. J Hort Sci,1997,72:83-91.
    [22]Rakngan, J., Gemma H, Iwahori S. Flower bud formation in Japanese pear trees under adverse conditions and effects of some growth regulators[J]. Jpn J Trop Agr,1995,39:1-6.
    [23]Skogerbo, G. Effects of root pruning and trunk girding on xylem eytokinin content of apple [J]. Norweigian J Agric Sci,,1992,6:499-527.
    [24]Okuda, H. A comparison of IAA and ABA levels in leaves and roots of two Citrus cultivars of alternate bearing[J]. J Hort Sci Biot,2000,75:355-359.
    [25]Kojema, K., Yayata, Y., Yamamolo M. Effects of cropping on photosynthesis, dark resperation, leaf ABA concentration and inflorescence induction in Satsuma mandarin[J]. J Japan Soc Hort Sci,,1995, 64:9-16.
    [26]Bangerth PK. Can regulatory mechanism in growth and development be elucidated through the study of endogenous hormone concentration[J]. Acta Gort,1998,463:77-78.
    [27]Davenport, T L. Citrus flowering[J]. Hortic Rev,1990,12:349-409.
    [28]Bangerth, F.K., Can Regulatory Mechanism in Fruit Growth and Development Be Elucidated Through the Study of Endogenous Hormone Concentrations?[J]. Acta Hort,1998,463:77-88.
    [29]Yamashita, K., Kitazono, K, lwasaki S. Flower bud differentiation of Satsuma mandarin as promoted by soil-drenching treatment with IAA, BA or paclobutrazol solution[J]. Japan Soc Hort Sci,1997,66:67-76.
    [30]Sanyal, P., Banbgerth, F, Stress induced ethylene evolution and its possible relationships to auxin-transport, CTK levels and flower bud formation in shoots of apple seedling and bearing apple trees[J]. Plant Growth Regul,1998,24:172-184.
    [31]孙文全,褚孟.梅树花形成期氨基酸变化的研究[J].园艺学报,1998,15(4):280-283.
    [32]Zhong XH, L.X, Chen AH. Study on Nai plum's flower bud differentiation and its content of metabolic products[J]. J Hunan Agri Uni,1999,25:31-35.
    [33]Coen, E.S., Romero, J. M. Doyle, S. et al. floricaula:a homeotic gene required for flower development in antirrhinum majus[J]. Cell,1990,63 (6):1311-1322.
    [34]Weigel, D., Alvarez, J., Smyth, D:R, et al. LEAFY controls floral meristem identity in Arabidopsis[J]. Cell,1992,69(5):843-59.
    [35]Weigel, D., Nilsson, O. A developmental switch sufficient for flower initiation in diverse plants[J]. Nature,1995,377(6549):495-500.
    [36]Sachs, R.M. Nutrient diversion:An hypothesis to explain the chemical control of flowering[J], Hort Sci,1977,12:220-219.
    [37]Luckwill, L.C. A new look at the process of fruit bud formation in apple[J]. Warsaw,1974,3: 237-245.
    [38]Bernier, G. The control of floral evocation and morphogenesis[J]. Annual review of plant physiology, 1988,39:175-219.
    [39]Luckwill, L.C. The control of growth and fruitfulness of apple trees[J]. The Physiology of Tree Crops,1970:247-254.
    [40]Grochowska, M.J., Karaszewska, A., Jankowska, B. et al. The pattern of hormones of intact apple shoots and its changes after spraying with growth regulators[J].1983:25-38.
    [41]Lavee, S. Involvement of plant growth regulators and endogenous growth substances in the control of alternate bearing[J]. Acta Hort,1989,239:311-322.
    [42]郗荣庭.果树栽培学总论第三版[M].中国农业出版社:北京.1995.
    [43]曹尚银,张秋明,吴顺.果树花芽分化机理研究进展[J].果树学报,2003,20(5):345-350.
    [44]王玉华,范崇辉.大樱桃花芽分化期内源激素含量的变化[J].西北农业学报,2002,11(001):64-67.
    [45]Seeley, S.D., Damavandy, H., Lamar Anderson, J, et al. Autumn-applied growth regulatiors influence leaf retention, bud hardines, bud and flower size, and endodormancy in peach and cherry[J]. Amer. Soc. Hort Sci,1992,117(2):203-208.
    [46]高东升.设施果树自然休眠生物学研究[D].2001,泰安:山东农业大学博士论文.
    [47]朱永亮,吴贯明.杨树芽休眠及其解除过程中内源激素的动态分析[J].南京林业大学学报,1990,14(1):7-15.
    [48]段成国.内源ABA和GA对欧洲甜樱桃花芽自然休眠的调控[D].山东农业大学硕士论文,2004.
    [49]Fuchigami, L.H., Wisniewski, M. Quantifying bud dormancy:physiological approaches.[J]. HortScience,1997,32:618-632.
    [50]Weinberger, J.H. Chilling requirements of peach varieties[J]. Amer Soc Hort Sci,1950,56:122-128.
    [51]Richardson, E.A., Seeley, S.D., Walker, D.R. A model for estimating the completion of rest for'Red haven' and' Elbert' peach trees.[J]. Hort Sci,1974,9(4):331-332.
    [52]Shaltout, A.D., Unrath, C.R. Rest completion prediction model for'Starkrimson Delicious' apple [J]. J.Amer. Soc.Hort.Sci,1983,108:958-961.
    [53]Fishman, S., Erez, A., Couvillon G.A. The temperate dependence of donnancy breaking in plants:computer simulation of process stuied under controlled temperature.[J]. J.Theor.Biol,1987, 126(3):309-321.
    [54]Fishman, S., Erez, A, Couvillon G.A. The temperate dependence of dormancy breaking inplants:mathematical analysis of a two-step model involving a cooperative transition.[J]. J.Theor.Biol.,1987,124(4):473-483.
    [55]Allan, P. Measuring winter chilling in areas with mild winters[J]. Deciduous Fruit Grower,1999, 49(10):1-10.
    [56]陈登文.杏品种的低温需求量研究[J].西北植物学报,1999,(2):297-331.
    [57]Erez A, Benderr J, Petri JL, et al. First experiences with chill-unit models in southern Brazil.[J]. Acta.Hort.,1986.184:79-86.
    [58]王力荣,朱更瑞,方伟超,等.桃品种需冷量评价模式的探讨[J].园艺学报,2003,30(4):379-383.
    [59]Rowland, L.J., Arora, R. Proteins related to endodormancy(rest) in woody perennials[J]. Plant Sci, 1997,126(2):119-144.
    [60]Morris, C.F., Anderberg, R. J., Goldmark, P. J, et al. Molecular Cloning and Expression of Abscisic Acid-Responsive Genes in Embryos of Dormant Wheat Seeds[J]. Plant Physiol,1991,95(3): 814-821.
    [61]Fumio, T., Kenji, T. AkiniroI, et al., Protein changes in the flower buds of Japanese pear during breaking of dormancy by chilling or high temperature treatment [J]. Amer Soc Hort Sci,1998, 123(4):532-536.
    [62]Jeknic, Z., Tony H, Chen H, Changes in protein profiles of polar tissues during the induction of bud dormancy by SD photoperiods[J]. Plant Cell Physiol,1999,40(1):25-35.
    [63]Or, E., Viloznyl, YoramE. The transduction of the signal for grape bud dormancy breaking induced by hydrogen cyan amide may involve the SNF-like protein kinase GDBRPI[J]. Plant Mol Bio, 2000,43:483-494.
    [64]Lang, G.A., Tao, J. Dormant peach flower bud proteins associated with chill unit accumulation or negation temperatures[J]. Hort Sci,1991,26:733.
    [65]Lang, GA., Tao, J. Analysis of fruit bud proteins associated with plant dormancy[J]. Hort Sci,1990, 25:1068.
    [66]Arora, R., Wisniewski, M.E., Scorza,R. Cold acclimation in genetically related (sibling) deciduous and evergreen peach(Pruns persica L.Batch) [J]. Plant Physiol,1992,99:1562-1568.
    [67]Wetzel, S, C., Demmers, J.S. Greenwood. Seasonally fluctuating bark proteins are a potential form of nitrogen storage in three temperate hardwoods[J]. Planta,1989,178(3):275-281.
    [68]Karssen, C.M., Zagorski, S, Kepczynski, J. et al. Key role for endogenous gibberellins in the control of seed germination[J]. Ann Bot,1989,63(1):71.
    [69]Smart, C.M., Scofield, S. R., Bevan, M. W., et al. Delayed leaf senescence in tobacco plants transformed with tmr, a gene for cytokinin production in Agrobacterium[J]. Plant Cell,1991,3(7): 647-656.
    [70]Lang, G.A. Dormancy:the missing links:molecular studies and integration of regulatory plant and environmental interactions[J].Hort Sci,1994,29(11):1255-1263.
    [71]Hauagge, R., Cummins, J. N. Cummins. Genetics of length of dormancy period in Malus vegetative buds[J]. Amer Soc Hort Sci,1991,116:121-126.
    [72]王力荣,朱更瑞,王覃元.桃需冷量遗传特性的研究[J].果树科学,1996,13(4):237-240.
    [73]Aubert, D., Chevillard, M., Dome, A. M., et al. Expression patterns of GAS A genes in Arabidopsis thaliana:the GASA4 gene is up-regulated by gibberellins in meristematic regions[J]. Plant Mol Biol, 1998,36(6):871-883.
    [74]Wang, H, Qi, Q, Schorr, P, et al. ICK1, a cyclin-dependent protein kinase inhibitor from Arabidopsis thaliana interacts with both Cdc2a and CycD3, and its expression is induced by abscisic acid[J]. Plant J,1998,15(4):501-510.
    [75]孙维洋.不同温度对保护地甜樱桃花器官发育的影响及促花措施的研究[D].硕士论文泰安:山东农业大学,2000.
    [76]沈元月,郭家选,刘成连,等.温度对桃花器官发育的影响[J].园艺学报,1999,26(1):1-6.
    [77]何亚丽,沈剑,王惠林.冷地型草坪草耐热机理初探Ⅰ.草地早熟禾在热境胁迫下叶片叶绿素含量和POD酶活性的变化[J].上海农学院学报,1997,15(2):128-132.
    [78]司家钢,孙日飞,吴飞燕,等.高温胁迫对大白菜耐热性相关生理指标的影响[J].中国蔬菜.1995,15(4):4-6.
    [79]林定波,卓志福.高温胁迫对温州蜜柑蛋白质合成的影响[J].园艺学报,1996,23(002):115-118.
    [80]Scalabrelli, G., Di Marco, L., Messina, R., et al. Dormancy release in peach bud dormancy as related to climatic conditions[J]. Acta Hort,1990,315:187-196.
    [81]Jon Lloyd, D.F. Effect of defoliation time on depth of dormancy and subsequent vegetative and reproductive development in low chill peaches[J]. Acta Hort,1990,279:223-230.
    [82]Champagnat, P. Rest and activity in buds of trees [J]. Ann Sci For,,1989,46:9-26.
    [83]Faust, M., Liu, D., Line, M. J., et al. Conversion of bound to free water in endodormant buds of apple is an incremental process[J]. Acta Hort,1994,395:113-118.
    [84]Anderson, J.V., Horvath. D.P. Random sequencing of cDNAs and identification of mRNAs[J]. Weed Sci,2001,49(5):590-597.
    [85]Horvath, D.P, Anderson, J. V. The effect of photosynthesis on underground adventitious shoot bud dormancy/quiescence in leafy spurge (Euphorbia esula L.).2000:30-34.
    [86]Fobert, P.R., Coen, E. S, Murphy, G. J, et al. Patterns of cell division revealed by transcriptional regulation of genes during the cell cycle in plants[J]. EMBO J,1994.13(3):616.
    [87]Kashmir Singh, Sanjay Kumar. Paramvir Singh Ahuja, Differential expression of Histone H3 gene in tea (Camellia sinensis (L.) O. Kuntze) suggests its role in growing tissue[J]. Mol Bio Rep,2009, 36:537-542.
    [88]Vantard, M., Cowling, R., Delichere, C. Cell cycle regulation of the microtubular cytoskeleton[J]. Plant Mol Bio,2000,43(5):691-703.
    [89]Devitt, M.L., Stafstrom, J. P.. Cell cycle regulation during growth-dormancy cycles in pea axillary buds[J]. Plant Mol Bio,1995,29(2):255-265.
    [90]Sauter, M., Mekhedov, S. L., Kende, H. Gibberellin promotes histone H1 kinase activity and the expression of cdc2 and cyclin genes during the induction of rapid growth in deepwater rice internodes[J]. Plant. J,1995,7(4):623-632.
    [91]孙晓梅,王大政.不同处理和贮藏方法对百合花粉生活力的影响[J].辽宁农业科学,2000(6):27-30.
    [92]Matsubara,.s. Overcoming theself-incompatibility of Lilium longiglorum Thumb by application of flower organ extract or temperature treatment of pollen [J]. Euphytica,1981,30:97-103.
    [93]J.M. Vantuyl, M, Clara Marcucci, T. Visser. Pollen and application method incompatibity and incongruitu inlilium[J]. Euphytica,1982,31:613-619.
    [94]王兵益,王伟.滇牡丹花粉贮藏方法的探索[J].云南大学学报,2001,23:109-110.
    [95]王燕,张黎明.贮藏温度对银杏花粉生活力的影响[J].湖北农学院学报,2002,22(3):213-214,218.
    [96]孙霞,邢世岩,银杏花粉生活力研究[J].果树科学,1998,15(1):58-64.
    [97]姜玲,柯云.介绍一种测定银杏花粉生活力的方法[J].植物生理学通讯,1998,34(4):266.
    [98]粱建萍,韩有志,丁香花粉生活力及其贮藏性的研究[J].山西林业科技,2000,(1):10-11,19.
    [99]谷淑芬,张旭东.丁香花粉贮藏及生命力测定[J].林业科技,1998,23(6):18-19.
    [100]罗凤霞,代力民.丁香花粉生命力及贮藏条件的研究[J].Joummal of Forestry Research,2003,14(1):67-70.
    [101]曹汉玉,吴得军.日本落叶松花粉生活力测定[J].山东林业科技,1996,(2):39-40.
    [102]宁依萍,王国义.红松花粉贮藏与活力测定方法[J].林业科技,1995,(5):9-15.
    [103]程广有,唐晓杰.不同贮藏温度对东北红豆衫花粉寿命的影响[J].吉林林学院学报,1998,14(4):146-148.
    [104]粱万福,辛亨泰.玉米花粉的冷藏研究[J].西北师范大学学报,1995,31(4):50-51.
    [105]徐翠莲,黄晓书.玉米花粉的采集、干燥和贮藏的初步研究[J].河南农业科学,1996,(8):8-10.
    [106]辛亨泰,粱万福.玉米花粉的冷藏研究[J].西北植物学报,1994,14(6):33-39.
    [107]Rodriguez-Riano, T., Dafni, A., A new procedure to assess pollen viability [J]. Sex Plant Rep,2000, 12:242-244.
    [108]周耀辉,黄启尧.甘蔗花粉低温贮存与生活力.[J].甘蔗糖业,1994,(2):7-10.
    [109]周耀辉,黄启尧.用培养法测定甘蔗花粉生活力[J].甘蔗糖业,1994,1(2):10-12.
    [110]范源洪,蔡青.甘蔗野生资源花粉低温贮存技术研究[J].甘蔗糖业,1994,(5):10-17.
    [111]孙光玲,汪银生.烟草花粉贮藏与活力测定[J].中国烟草,1994,(1):20-22.
    [112]彭伟秀,李凤兰.文冠果不同类型花粉生活力测定及比较[J].河北林果研究,1999,14(1):51-53.
    [113]姜茜.糖与pH影响蚕豆花粉萌发率的实验[J].生物学通报,2001,36(4):39.
    [114]刘绚霞.醋酸洋红染色法测定油菜花粉的生活力[J].陕西农业科学,1998,(1):23-24.
    [115]王少先.高温与生长调节物质对辣椒花粉的影响[J].河南农业科学,1997(2):23-25.
    [116]. 张玉进,张兴国.魔芋花粉的低温和超低温保存[J].园艺学报,2000,27(2):139-140.
    [117]符碧,杨应华.几种微量物质对荔枝花粉萌发及生长的影响[J].曲阜师范大学学报,2001,27(2):78-80.
    [118]朴永浩,曲柏宏.梨花粉贮藏特性与授粉能力的研究[J].北方园艺,2002(5):54-55.
    [119]扈惠灵,李炜.13个梨品种花粉量及花粉发芽率的研究[J].中国南方果树,2002.31(6):57.
    [120]骆建霞,史燕山.僚李花粉生活力试验[J].天津农学院学报,1999,6(6):33-37,41.
    [121]钟晓红.李树授粉试验及其花粉生活力测定[J].湖南农学院学报,1994,20(2):138-142.
    [122]周怀军,赵阿曼.李杏花粉生活力试验研究[J].河北林业科技,2001(3):5-9.
    [123]向旭,张展薇.荔枝花粉育性及储藏性研究[J].广东农业科技,1994(4):25-27.
    [124]陈延惠,李洪涛.猕猴桃花粉生活力及其贮藏性的研究[J].河南农业大学学报,1996,30(2):175-177.
    [125]贾冬梅.果树花粉的采集与贮存保鲜[J].中国果菜,2001(1):23.
    [126]符碧.尿素和硼及生长调节剂对荔枝花粉萌发与生长的影响[J].云南师范大学学报,2001,21(3):62-65.
    [127]王文举,张军翔.花期喷硼对元帅苹果坐果及硼对苹果花粉萌发的影响[J].宁夏农林科技,1996(6):32-33.
    [128]赵红军,周润生.不同苹果品种的花朵出粉率和花粉发芽率观察[J].落叶果树,1996(4):18-19.
    [129]刘存宏,李华.苹果花粉贮藏实验[J].山西果树,1997(4):7.
    [130]王彩虹,田义柯.果树花粉保存研究进展[J].落叶果树,1996.增刊:35-39.
    [131]程中平,蔡礼鸿.桃花粉发芽力的观察[J].落叶果树,2002(2):1-3.
    [132]何天明,张琦.香梨花器官特征及花粉生活力研究初报[J].新疆农业大学学报,2000,23(3):35-38.
    [133]王彩虹,李嘉瑞.杏花粉的低温与超低温贮藏研究[J].莱阳农学院学报,1996,13(2):169-173.
    [134]薛妙男,刘华英.沙田抽花粉低温贮藏的研究[J].广西植物,2000,20(4):367-370.
    [135]詹亚光,陈艳.自桦花粉生命力[J].东北林业大学学报,1998(2):77-79.
    [136]李要民,陈良碧.不同温度条件下贮藏的3种禾本科植物花粉活力变化[J].植物生理学通讯, 1998,34(1):35-37.
    [137]李桂云.不同培养基对果树花粉发芽率影响的试验[J].山西果树,2001(1):4-5.
    [138]钟晓红.李树授粉试验及其花粉生活力测定[J].湖南农学院学报,1994,20(2):138-142.
    [139]孙晓梅,王大政.不同处理和贮藏方法对百合花粉生活力的影响[J].辽宁农业科学,2000(6):27-30.
    [140]林梅,郭彤.植物生长调节剂和微量元素对茶树花粉发芽率的影响[J].福建农业大学学报,2001,30(4):557-559.
    [141]粱建萍,韩有志.丁香花粉生活力及其贮藏性的研究[J].山西林业科技,2000(1):10-11,19.
    [142]刘武林.花粉的采集、贮藏和生活力检验[J].吉林农业科学,1981.3:87-93.
    [143]胡适宜.植物学实验方法(一)花粉生活力的测定[J].植物学通报,1993.10(2):60-62.
    [144]王钦丽,卢龙斗.花粉的保存及其生活力测定[J].植物学通报,2002.19(3):365-373.
    [145]王钦丽,熊涛,花粉生活力的测定[J].植物杂志,2002.15:28-29.
    [146]李建华,戚行江.中国樱桃品种诸暨短柄樱桃[J].园艺学报,2007,34(4):1065.
    [147]戚行江.短柄樱桃特征特性及栽培技术要点[J].福建果树,2007(1).
    [148]萧浪涛,王三根.植物生理学试验技术[M].北京:中国农业出版社.2005:152-153.
    [149]王晶英.植物生理生化实验技术与原理[M].哈尔滨:东北林业大学出版社.2003,13-15.
    [150]华东农业大学.,果树研究方法[M].第二版,北京:农业出版社,1990.
    [151]黄海.关于果树花芽分化的研究[J].果树科学,1982(1):81-88.
    [152]吴月燕,李培民,吴秋峰.葡萄叶片内碳水化合物及蛋白质代谢对花芽分化的影响[J].浙江万里学院学报,2002,15(4):54-57.
    [153]李学柱,胡运权,孔焱,等.甜橙大小年结果的研究.[J].园艺学报,1980.7(4):17-23.
    [154]孙文全,褚孟媛.梅树花芽形成期体内氨基酸含量的变化[J].园艺学报,1988.15(4):280-283.
    [155]邓烈,李学柱,何绍兰,等.柑桔花芽分化与内源激素及淀粉酶活性的关系[J].西南农业大学学报,1991,13(1):87-91.
    [156]谢文全.多胺代谢与园艺植物开花的关系[J].园艺学报,1989,16(8):134-140.
    [157]郑家基,谢厚钗.龙眼越冬期叶片多胺含量的变化[J].园艺学报,1996,23(3):295-296.
    [158]罗允,彭抒昂,马湘淘.草莓成花过程中Ca2+、CaM及成花物质含量变化[J].山地农业生物 学报,2000,19(4):266-271.
    [159]昌忠恕.果树生理[M].上海科学技术出版社,1981.
    [160]王力荣,胡霓云.桃品种的低温需求量[J].果树科学,1992,9(1):39-42.
    [161]Guerriero, R., Viti R, Monteleone, P. Comparison of three different methods for the evaluation of dormancy in apricot (in Italian)[J]. Frutticoltura,2002(3):73-77.
    [162]姜卫兵,韩浩章,戴美松,等.苏南地区主要落叶果树的需冷量[J].果树学报,2005(22):75-77.
    [163]沈元月,郭家选,高东升.温度与果树设施园艺[J].山东农业大学学报(自然科学版),2000.31(2):217-220.
    [164]Oukabli, A., Mahhou A. Dormancy in sweet cherry (Prunus avium L.) under Mediterranean climatic conditions[J]. Biotechnol. Agron. Soc. Environ.,2007,11(2):133-139.
    [165]Luna, V, Lorenzo, E., Reinoso, H, et al. Dormancy in peach (Prunus persica L.) flower buds. I. Floral morphogenesis and endogenous gibberellins at the end of the dormancy period[J]. Plant Physiol 1990,93:20-25.
    [166]Luna, V, Reinoso, H, Lorenzo, E, et al. Dormancy in peach (Prunus persica L.) flower buds. Ⅱ.Comparative morphology and phenology in floral and vegetative buds, and the effect of chilling and gibberellin A3[J]. Trees (Berl),1991(5):244-246.
    [167]Basconsuelo, S, Reinoso, H, Lorenzo, E, et al. Dormancy in peach (Prunus persica L.) flower buds. Ⅳ. Floral bud morphogenesis as influenced by chilling and gibberellin A3.[J]. Plant Growth Regul, 1995,16:113-119.
    [168]Lang, G.A, Early, J.D, Martin, G.C, et al. Endo-para and eco-dormancy:physiological terminology and classification for dormancy research.[J]. HortScience (Calcutta),1987.22:371-377.
    [169]赵世杰,许长成,邹琦,等.植物组织中丙二醛测定方法的改进[J].植物生理学通讯,1991,30(3):207-210.
    [170]张志良.植物生理学实验指导[M].北京:高等教育出版社,2000.
    [171]陈文荣.水稻(Oryza sativa L.)锌高效营养生理机制研究[D].浙江大学博士学位论文,2008.
    [172]Liu, P, Yang, Y. S, Xu, G, et al. Physiological response of rare and endangered seven-son-flower (Heptacodium miconioides) to light stress under habitat fragmentation.2006,57(1):32-40.
    [173]胡适宜.被子植物胚胎学[M].北京:高等教育出版社.1984:23-27.
    [174]何天明,张琦.新梨7号小孢子败育的解剖学观察[J].果树学报,2002,19(2):94-97.
    [175]王永军,张改生,王军卫,等.小麦遗传型与生理型雄性不育花药同工酶的比较研究[J].麦类作物学报,2005,25(5):44-49.
    [176]张子学,侯喜林.辣椒细胞质雄性不育与活性氧代谢的关系[J].西北植物学报,2005.25(4):799-802
    [177]陈贤丰,梁承邺.水稻不育花药中H202积累与膜质过氧化加剧.[J].植物生理学报,1991,17(1):44-48.
    [178]赵会杰,刘华山,林学梧,等.小麦胞质不育系花粉败育与活性氧代谢关系的研究.[J].作物学报,1996,22(3):365-367.
    [179]段俊,梁承邺,张明永.玉米细胞质雄性不育性与膜质过氧化的关系[J].植物生理学通讯,1996,32(5):331-334.
    [180]张明永,梁承邺,段俊.油菜细胞质雄性不育系发育进程中活性氧的代谢[J].植物学报,1997,39(5):480-482.
    [181]安岩.胡萝卜雄性不育系生理生化特性的研究[D]博士论文北京:中国农业大学.2004.
    [182]张明永,梁承邺,段俊,等.CMS水稻不同器官的膜脂过氧化水平[J].作物学报,1997,23(5):603-606.
    [183]何亚丽,沈剑,王惠林.冷地型草坪草耐热机理初探Ⅰ.草地早熟禾在热境胁迫下叶片叶绿素含量和POD酶活性的变化[J].上海农学院学报,1997,15(2):128-132.
    [184]田莉莉,方金豹.杏开花结果习性研究初报[J].山西果树,2002(1):4-6.
    [185]Egea, J, Burgos, L. Detecting cross incompatibility of three North American apricot cultivars and establishing the first incapability group in apricot [J]. J.Am.Soc.Hortic.Sci,1996,121(6):1002-1005.
    [186]蒲富慎.果树种质资源描述符[M].北京:农业出版社,199064-77.
    [187]马惠馨,吴柄玉,郝明.我国北方山楂花冠径与果实横径的相关及回归分析[J].特产研究,1991,]3(4):25-27.
    [188]吕增仁,常淑荣.杏实生树若干性状间相关性的初步分析[J].河北农业大学学报,1993,16(2): 51-54.
    [189]李文生,张开春,张晓明.甜樱桃品种的植物学性状与品种鉴定[J].落叶果树,2005,37(2):15-16.
    [190]张德巧,於虹,徐增莱.蓝浆果花冠形态特征及其与果实横径相关性的分析[J].植物资源与环境学报,2008.17(1):1-6.
    [191]李平,张朝红,艾绍周.猕猴桃花粉萌发的影响因子[J].北方果树,2007(1):5-7.
    [192]李大志,谢深喜,魏岳荣.湖南主要梨品种花粉省略的研究[J].湖南农业大学学报,1999,25(3):184-187.
    [193]夏仁学,彭抒昂,陈桂林.板栗花粉发芽影响因子及发芽动态的研究[J].武汉植物学研究,1989,7(4):351-354.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700