基于创新技法的机构拓扑结构若干问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机构拓扑结构是机构学研究的直接对象,对其进行描述和分析是机构结构学的基础,对其进行综合是机械产品设计的重要环节。目前,不仅稳定拓扑结构的研究重点已覆盖到非线性、强耦合的广义机构系统,而且变拓扑结构也成为研究热点。然而,在研究内容上,不同拓扑结构的理论研究相对独立,机构拓扑结构本身和相关概念的界线比较模糊,同时,尚未有考虑驱动和机架在内的稳定拓扑和变拓扑结构整体分析模型;此外,工程中迫切需要理论指导的专利资源有效利用在机构综合研究中仍是一个尚未探索的新课题。在研究方法上,直接运用数学方法和力学原理对非数值、非线性、变结构和强耦合机构拓扑系统进行研究,难以全面描述其详细结构信息,对于含有复合铰链和变胞运动副等复杂结构的拓扑系统,分析和综合非常困难,迫切需要改进研究方法,从更广泛的角度寻找解决途径。
     本文针对广义化和变结构机构拓扑在描述、分析和综合中存在的上述问题,采用TRIZ理论、公理设计理论、复杂性理论、组合技法、设计目录等多种具有不同优势的创新技法,结合数学方法和力学原理,开展了深入系统的研究。
     本文完成主要研究工作如下
     (1)针对机构拓扑结构缺乏系统模型、相关概念模糊不确定的问题,从集合论角度,对机构拓扑结构、运动链拓扑结构、变拓扑机构、可重构机构、变胞机构、稳定构态、变拓扑构态和变胞构态等概念提出了严密的数学表达;基于TRIZ物-场分析方法,建立了机构系统物-场模型;运用公理设计理论,对运动副物-场建立了功能域和物理域模型;运用TRIZ标准解找到了理想化模型转化方案;示例表明这些定义和模型可从不同层次对拓扑系统进行有效描述和分析。
     (2)针对复合铰运动链拓扑结构强耦合关系难以描述及同构识别困难的问题,按照复合铰链理想化模型转化思路,基于功能独立性公理,引入pin构件对复合铰链进行解耦,建立转化邻接矩阵对含复铰运动链进行描述,并提出了运用其阶数、对角线元素向量、矩阵特征值和特征向量等参数判断运动链拓扑同构关系的新方法,通过实例验证了方法的有效性。
     (3)针对变结构、非线性变胞运动副难以全面描述其结构信息的问题,将复杂性概念引入运动副物-场对模型中的“物质”进行描述;基于组合创新技法定义了约束函数,用于广泛描述运动副的性质、类型、级别、自由度、方位、约束的有效性、作用的程度及其变化等诸多信息;按照变胞副理想化模型转化思路,定义了反映运动副蜕化和激活状态的变胞基因,建立了基本运动副变胞模型;基于效应原理,分析了基元变胞的物理实现方式。实例应用验证了这些理论的正确性和有效性。
     (4)针对变拓扑机构非数值、非线性构态变化难以分析的问题,提出了机构构态切换的6个充分条件;基于TRIZ冲突问题解决技法,分析了变拓扑机构物-场的物理冲突,提出了利用稳定构态作为内部资源构建变拓扑机构超系统模型—胞源机构的新思路;运用集合论和旋量理论对胞源机构进行了描述和分析,构建了基于运动副约束函数的胞源机构邻接矩阵,建立了6类变胞形式的机构变胞态变胞方程。实例证明了理论的可行性和有效性。
     (5)针对面向专利资源进行机构综合创新的新课题进行了研究。基于TRIZ功能裁剪法和设计目录,构建了机构综合再创新程序化过程理论模型,通过实例应用证明了该过程模型在产品开发中的可操作性和实用性。
     总之,本文对机构拓扑结构的相关概念进行了严密数学定义,明确了概念之间的关系。运用诸多创新技法,结合数学方法和力学原理,对稳定拓扑和变拓扑机构的概念和系统模型进行了基础研究、对含复合铰链和变胞运动副的拓扑结构描述和分析问题进行了详细研究、对利用专利资源进行机构综合创新设计进行了初步探索。本文研究工作为机构学研究和机械产品创新设计提供了新的理论和方法,具有重要的应用价值。
Topology structure of mechanisms (TSM) reflects the composition and workingprinciple of mechanisms. The description and analysis of TSM lays the foundation ofstructural research of mechanisms, and the synthesis of TSM plays a key role inmechanical products designing. Presently, the key points of research of stable TSMare expended to nonlinear and strong-coupling generalized mechanism systems.Meanwhile, the mechanism with variable topologies (MVT) is becoming the hotresearch area in mechanisms.
     Up to now, theory researches of different topology structures are mutuallyindependent in mechanisms, and some concepts related to TSM and their relationshipremain ambiguous. On the other hand, there are few integral analysis models of stableTSM and MVT that take driver and frame into account. The utilizing of patentresources, which is very important for engineering design, is unexplored in the designand synthesizing of mechanisms. As for research methods, it is difficult to applymathematical methods and mechanics principles directly to represent the detailedinformation of TSM system with non-numerical, non-linear, variable structure andstrong-coupling characteristics. Analyzing and synthesizing are extremely difficultfor systems with complex structure, such as multiple joint and metamorphic pair.
     This dissertation is focusing on improving research method and solving theseproblems on a broader perspective. Several innovative methods with differentstrengths are adopted in research. These methods combined with mathematicalmethods and mechanics principles are employed to describe, analyze and synthesizegeneralized mechanisms and variable topology mechanisms.
     The main works of the dissertation are as follows
     (1) In order to build a system model of stable TSM and MVT and explicaterelationships among different TSMs, based on the set theory, the dissertation gives therigorous mathematical definitions of TSM, TSKC, MVT, Reconfigurable Mechanism,Metamorphic Mechanism, etc. Based on the Su-field analysis, the hierarchical modelis established to describe a mechanism system. The functional domain model and thephysical domain model are also built to represent a kinematic pair by applying theAxiomatic Design theory. To improve the ideality of the Su-field models of a multiplejoint and a metamorphic pair, the evolution schemes are created according to standard solutions of TRIZ. The examples indicate that these definitions and models caneffectively describe and analyze TSM at different levels.
     (2) To describe the strong coupled relation of the topological structure ofkinematic chains with multiple joint and identify isomorphism, based on thefunctional autonomy principle, the dissertation introduces the Pin-link to decouplemultiple joints according to the evolution scheme of a multiple joint model. Thetransformed adjacency matrix is established to describe kinematic chains withmultiple joints, and a new method for isomorphism identification of planar kinematicchains is proposed by using some characteristic parameters of the converted adjacentmatrix. The application examples show that the converted adjacent matrix couldconveniently represent planar kinematic chains with multiple joints, and the eigenvalues and eigenvectors of the converted adjacent matrix can be used to efficientlyidentify the isomorphism of planar kinematic chains.
     (3) In order to completely represent the structural information of a metamorphickinematic pair, the dissertation introduces the complexity into the Su-field model ofkinematic pair to describe the “substance” in the model. By using the combinationmethod, the constraint function is defined to represent the “field” in Su-field model ofkinematic pair, which can be used to describe the properties, type, grade, DOF,direction, constraint efficiency, degree, and their changes. According to the evolutionscheme of a metamorphic pair model, the metamorphic gene is defined to determinewhether a kinematic pair is activated or not while the metamorphic models of basickinematic pairs are constructed to denote the metamorphic directions of a pair. Thephysical implementations of metamorphic gene elements are analyzed based on theeffect principles. The examples show that the theory and the method can be used torepresent and analyze a metamorphic pair effectively.
     (4) To analyze the non-numerical and non-linear configuration transformation ofvariable topological mechanisms, the dissertation considers six sufficient conditionsfor configuration switching according to the definition of TSM. Based on TRIZ, thephysical contradictions in the Su-field model of MVT are analyzed and a newapproach to create the metamorphic origin mechanism by using the stableconfigurations as internal resources is proposed. With constraint functions aselements, the adjacent matrix of the metamorphic origin mechanism is built and themetamorphic equations of six kinds of metamorphic forms are established. Theexamples show that the method can analyze the configuration transformation of MVTreasonably.
     (5) Focusing on the innovative mechanism synthesis by using of patentresources, based on the function trimming of TRIZ and Catalog Design, thedissertation proposes a patent oriented and competitive patent circumvented processmodel of mechanism synthesis re-innovating. The application example indicates thatthis process model can feasibly direct the mechanism synthesis in the innovativedesign of products.
     In summary, the dissertation develops the rigorous mathematical expression toTSM system and clarifies the relationship among different TSMs. By using severalinnovation methods and combining with mathematical methods as well as mechanicalprinciples, the dissertation conducts basic research works on the systematical modelsof stable and variable topological mechanisms. The problems for describing andanalyzing the topological structure with multiple joints and metamorphic kinematicpairs are investigated. A patent oriented and competitive patent circumvented processmodel of mechanism synthesis innovation in product design is proposed. Thisdissertation provides new theories and methods for mechanism research andinnovative design of mechanical products.
引文
[1]邹慧君,颜鸿森.机械创新设计理论与方法[M].北京:高等教育出版社.2008,35-36.
    [2] Wohlhart K. Kinematotropic Linkages[A]. In: J. Lenarcic and V. ParentiCastelli(eds.). Recent Advances in Robot Kinematics[M]. Dordrecht: KluwerAcademic Publishers,1996:359-368.
    [3] Dai J S, Rees J J. Mobility in Metamorphic Mechanism of Foldable ErectableKinds. In: The25th ASME Biennial Mechanisms and Robotics Conference,Baltimore,1998. New York: ASME, l998.
    [4] Freudenstein F, Dobrjanskyj L. On a Theory of Type Synthesis of Mechanisms[A].In: Proceedings of11th International Congress of Applied Mechanics[C]. Berlin:Springer,1964:420-428.
    [5] Sohn W J, Freudenstein F. An Application of Dual Graphs to AutomaticGeneration of Kinematic Structure of Mechanisms[J]. ASME J. of MTAD.1986,108(3),86-DET-1.
    [6] Hwang W M, Hwang Y W. Computer Aided Structural Synthesis of PlanarKinematic Chains with Simple Joins[J]. Mech. Mach. Theory,1992,27(l):189-199.
    [7] Verho A. Extension of the Concept of the Group[J]. Mech. Mach. Theory,1973,8(2):249-256.
    [8] Wohlhart K. Position Analysis of Normal Quadrilateral Assur Groups[J]. Mech.Mach. Theory,2010,45(9):1367-1384.
    [9] Shai O. Topological Synthesis of All2D Mechanisms Through Assur Graphs[A].In: Proceedings of the ASME Design Engineering Technical Conference[C].ASME2010International Design Engineering Technical Conferences andComputers and Information in Engineering Conference(IDETC/CIE2010),Montreal, Quebec, Canada,2010, Vol.2:34th Annual Mechanisms and RoboticsConference, Parts A and B:1727-1738.
    [10] Durango S, Calle G, Ruiz O. Analytical Method for the Kinetostatic Analysis ofthe Second-class RRR Assur Group allowing for Friction in the KinematicPairs[J]. J. Braz. Soc. Mech. Sci.&Eng.,2010,32(3):200-207.
    [11]李树军,戴建生.基于Assur杆组元素的平面机构的拓扑描述[J].机械工程学报,2011,47(19):8-13.
    [12]杨廷力.机械系统基本理论:结构学、运动学、动力学[M].北京:机械工业出版社,1996.
    [13]曹惟庆.连杆机构的分析与综合(第二版)[M].北京:科学出版社,2002.
    [14] Mruthyunjaya T S. Kinematic Structure of Mechanisms Revisited[J]. Mech.Mach. Theory,2003,38(4):279-320.
    [15]黄真,丁华锋.多环运动链环路代数基础理论的建立及其应用[J].中国科学E辑(技术科学),2007,37(7):903-904.
    [16] Crossley F R E. Permutations of Kinematic Chains with Eight Members or Lessfrom Graph-theoretic Viewpoint[A]. In: The Developments in Theoretical andApplied Mechanics[M], Oxford: Pergamon Press,1965, Vol.2:467-486.
    [17] Woo L S. Type Synthesis of Plane Linkages[J]. ASME Trans., J. Eng. Indust.,Series B,1967,89(1):158-172.
    [18] Uieker J J, Raicu A. A Method for the Identification and Recognition ofEquivalence of Kinematic Chains[J]. Mech. Mach. Theory,1975,10(5):375-383.
    [19] Mruthyunjaya T S, Raghavan M R. Structural Analysis of Kinematic Chains andMechanisms based on Matrix Representation[J]. ASME Trans. J. Mech. Des.,1979,101(3):488-494.
    [20] Yan H S, Hall A S. Linkage Characteristic Polynomials: Definition,Coefficientsby Inspection[J]. ASME Trans. J. Mech. Des.,1981,103(3):578-584.
    [21] Yan H S, Hall A S. Linkage Characteristic Polynomials: Assembly TheoremsUniqueness[J]. ASME Trans. J. Mech. Des.,1982,104(1):11-20.
    [22] Rao A C. Circuit and Cut-set Matrices to Aid Detection of Isomorphism[J]. J.Inst. Eng. India, Part MC, Mech. Eng. Div.,1985, Vol.65:177-180.
    [23] Mruthyunjaya T S. A Computerized Methodology for Structural Synthesis ofKinematic Chains: Part l: Formulation[J]. Mech. Mach. Theory,1984,19(6):487-495.
    [24] Mruthyunjaya T S. A Computerized Methodology for Structural Synthesis ofKinematic Chains: Part2: Application to Several Fully or Partially KnownCases[J]. Mech. Mach. Theory,1984,19(6):497-530.
    [25] Mruthyunjaya T S. A Computerized Methodology for Structural Synthesis ofKinematic Chains: Part3: Application to New Case of10-link Three FreedomChains[J]. Mech. Mach. Theory,1984,19(6):507-530.
    [26] Ambekar A G, Agrawal V P. Canonical Numbering of Kinematic Chains andIsomorphism Problem: Min Code[J]. Mech. Mach. Theory,1987,22(5):453-461.
    [27] Rao A C, Varada R D. Application of the Hamming Number Technique to DetectIsomorphism among Kinematic Chains and Inversion[J]. Mech. Mach. Theory,1991,26(1):55-75.
    [28]罗玉峰,杨廷力,曹惟庆.用关联度和关联度码识别运动链同构[J].机械工程学报,1991,27(2):44-50.
    [29] Chu J K, Cao W Q. Identification of Isomorphism among Kinematic Chains andInversion Using Link’s Adjacent-Chain-Table[J]. Mech. Mach. Theory,1994,9(l):53-68.
    [30]孔凡国,邹慧君.一种机构运动链同构识别的新方法研究[J].中国机械工程,1997,8(2):30-33.
    [31]刘川禾,杨廷力.用多面立体拓扑结构码置换群法判定运动链同构[J].机械科学与技术,1999,18(2):180-185.
    [32]冯春,陈永.基于遗传算法的机构运动链同构识别[J].机械工程学报,2001,37(10):27-30.
    [33]万金保,董铸荣,沈守范.用邻接矩阵识别机构运动链同构的研究[J].机械工程学报,2004,40(7):85-88.
    [34] Cubillo J P, Wan J B. Comments on Mechanism Kinematic Chain IsomorphismIdentification Using Adjacent Matrices[J]. Mech. Mach. Theory,2005,40(1):131-139.
    [35]孔凡国,邹慧君.基于支持向量机运动链同构识别的方法研究[J].机械科学与技术,2007,26(5):563-566.
    [36]聂松辉,刘宏昭,邱爱红.平面运动链同构识别的距离和序列法[J].中国机械工程,2008,19(2):217-221.
    [37]伍星华,聂松辉.平面运动链同构识别的全等环路法[J].机械科学与技术,2009,28(2):205-209.
    [38] Denavit J, Hartenberg R S. A Kinematic Notation for Lower Pair MechanismsBased on Matrices[J]. J. Appl. Mech.(Trans. ASME),1955,22(2):215-221.
    [39] Earl C F, Rooney J. Some Kinematic Structures for Robot Manipulator Design[J].J. of MTAD.,1983,105(l):15-22.
    [40] Dimentberg F M. Determination of the Motion of Spatial Mechanisms(Russian)[M]. Moscow: Akad Nauk,1950.
    [41] Ball R. A Treatise on the Theory of Screws[M]. England: Cambridge UniversityPress,1900.
    [42] Yang T, Freudenstein F. Application of Dual-Number Quaternion Algebra to theAnalysis of Spatial Mechnisms[J]. ASME Trans.,86E(J. App. Mech.),1964,31(2):300-308.
    [43] Sugimoto K, Duffy J. Application of Linear Algebra to Screw Systems[J]. Mech.Mach. Theory,1982,17(1):73-83.
    [44] Hunt K H. Structural Kinematic of In-parallel-Actuated Robot-Arms[J]. J. ofMTAD,1983,105(4),705-712.
    [45] Mohamed M G, Durry J. A Direct Determination of the Instantaneous Kinematicsof Fully Parallel Robot Manipulators[J]. J. of MTAD,1985,107(2):226-229, No.84-DET-114.
    [46] Huang Z,Li Q C. General Methodology for Type Synthesis of Lower-MobilitySymmetrical Parallel Manipulators and Several Novel Manipulators[J]. Int. J.Rob. Res.,2002,21(2):131-145.
    [47]黄真,赵永生,赵铁石.高等空间机构学[M].北京:高等教育出版社,2006.
    [48] Zeng D X, Huang Z. Type Synthesis of the Rotational Decoupled ParallelMechanism Based on Screw Theory[J]. Science China(Technological Sciences),2011,54(4):998-1004.
    [49] Hervé J M. Analyse Structurelle Des Mécanismes Par Groupe DesDéplacements[J]. Mech. Mach. Theory,1978,13(4):437-450.
    [50] Angeles J. Spatial Kinematic Chains: Analysis, Synthesis, Optimization[M].Berlin: Springer-Verlag,1982.
    [51] Hervé J M, Sparacino F. Structural Synthesis of Parallel Robots GeneratingSpatial Translation[C]. In: Fifth International Conference on Advanced Robotics,Pise, Italy,1991:808-813.
    [52] Fanghella P, Galletti C. Metric Relations and Displacement Groups inMechanism and Robot Kinematics[J]. J. Mech. Des.,1995,117(3):470-478.
    [53] Hervé J M. The Lie Group of Rigid Body Displacement, a Fundamental Tool forMechanism Design[J]. Mech. Mach. Theory,1999,34(5):719-730.
    [54] Rico J M, Aguilera L D, Gallardo J, et al. A More General Mobility Criterion forParallel Platforms[J]. ASME J. Mech. Des.,2006,128(1):207-219.
    [55] Rico J M. Mobility of Single Loop Linkages: A Final Word?[A]. In: Proc. ofASME Mechanisms Conf.[C],2007, DETC2007-34936.
    [56] Meng J, Liu G F, Li Z X. A Geometric Theory for Analysis and Synthesis ofSub-6DOF Parallel Manipulators[J]. Trans. on Robotics,2007,23(4):625-649.
    [57] Lee C C, Hervé J M. Uncoupled Actuation of Over-Constrained3T-1R HybridParallel Manipulators, Robotics[M]. Cambridge Shire: Cambridge UniversityPress,2008.
    [58] Yang T L. Kinematic Structural Analysis and Synthesis of Over-ConstrainedSpatial Single loop Chains[A]. In: Proc. of the19th Biennial MechanismsConf.[C], Columbus:ASME,1986,86-DET-189.
    [59] Yang T L, Yao F H. The Topological Characteristics and Automatic Generationof Structural Analysis and Synthesis of Plane Mechanisms, Part l: Theory, Part2:Application[A]. In: Proc. of ASME Mech. Conf.[C],1988,15(l):179-190.
    [60] Yang T L, Liu A X, Jin Q, et al. Position and Orientation Characteristic Equationfor Topological Design of Robot Mechanisms[J]. J. Mech. Des.,2009,131(2):1-17.
    [61]邹慧君,高峰.现代机构学进展(第2卷)[M].北京:高等教育出版社,2011.
    [62]杨廷力,刘安心,罗玉峰,等.机器人机构结构综合方法的基本思想、特点及其发展趋势[J].机械工程学报,2010,46(9):1-11.
    [63] Burns R H, Crossley F E. Kinetostatic Synthesis of Flexible Link Mechanisms.ASME Paper,1968, No.68-MECH-36.
    [64] Her I. Methodology for Compliant Mechanism Design:[D]. Indiana: PurdueUniversity,1986.
    [65] Midha A, Her I, Salamon B A. A Methodology for Compliant MechanismsDesign(Part I): Introduction and Large-Deflection Analysis[A]. In: Hoeltzel DA(ed.). Advances in Design Automation[C].18th ASME Design AutomationConference, Scottsdale, AZ, USA,1992, DE-Vol.44-No.2:29-38.
    [66] Howell L L, Midha A. A Method for the Design of Compliant Mechanisms withSmall-Length Flexural Pivots[J]. J. Mech. Des.,1994,116(1):280-290.
    [67]陆佑方.柔性多体系统动力学[M].北京:高等教育出版社.1996.
    [68] Hopkins J B. Design of Parallel Flexure Systems via Freedom and ConstraintTopologies(FACT)[D], Cambridge MA: MIT,2005.
    [69]丁希仑,刘颖.用李群李代数分析具有空间柔性变形杆件的机器人动力学[J].机械工程学报,2007,43(12):184-189.
    [70] Shao B, Miao Q H, Wu H T, et al. The Robot Forward Dynamics Based on ScrewTheory[C]. In:1st International Conference on Modeling and Simulation.2008,124-129.
    [71]刘铸永,洪嘉振.柔性多体系统动力学研究现状与展望[J].计算力学学报,2008,25(4):411-416.
    [72] Selig J M, Bayro E. Rigid Body Dynamics Using Clifford Algebra[J]. AACA,2010,20(1):141-154.
    [73]李守忠,于靖军,宗光华.基于旋量理论的并联柔性机构构型综合与主自由度分析[J].机械工程学报,2010,46(13):54-60.
    [74]于靖军,毕树生,宗光华等.基于伪刚体模型法的全柔性机构位置分析[J].机械工程学报.2002,38(2):75-78.
    [75] Hetrick J A, Kota S. An Energy Formulation for Parametric Size and ShapeOptimization of Compliant Mechanisms[J]. J. Mech. Des.,1999,121(2):229-234.
    [76] Zhou Hong, Ting K L. Topological Synthesis of Compliant Mechanisms UsingSpanning Tree Theory[J]. J. Mech. Des.,2005,127(4):753-759.
    [77] Hull P V, Canfield S. Optimal Synthesis of Compliant Mechanisms UsingSubdivision and Commercial FEA[J]. J. Mech. Des.,2006,128(2):337-348.
    [78] Her I, Midha A. A Compliance Number Concept for Compliant Mechanisms andType Synthesis[J]. J. of MTAD.,1987,109(3):348-355.
    [79] Yu Y Q, Howell L L, Yue Y, et al. Dynamic Modeling of Compliant MechanismsBased on the Pseudo-Rigid-Body Model[J]. J. Mech. Des.,2005,127(4):760-765.
    [80]赵宏哲,毕树生,于靖军.三角形柔性铰链的建模与分析[J].机械工程学报,2009,45(8):1-5.
    [81] Staicu S. Recursive Modelling in Dynamics of Delta Parallel Robot[J]. Robotica,2009,27(02):199-207.
    [82]于靖军,裴旭,毕树生,等.柔性铰链机构设计方法的研究进展[J].机械工程学报,2010,46(13):2-13.
    [83] Panganiban H, Jang G W, Chung T J. Topology Optimization ofPressure-Actuated Compliant Mechanisms[J]. Finite Elem. Anal. Des.,2010,46(3):238-246.
    [84] Parise J J, Howell L L, Magleby S P. Ortho-Planar Linear-Motion Springs[J].Mech. Mach. Theoty,2001,36(11-12):1281-1299.
    [85] Lobontiu N. Compliant Mechanisms: Design of Flexue Hinges[M]. Abingdon:CRC Press,2002.
    [86] Yan H S, Hsu C H. Contracted Graphs of Kinematic Chains with MultipleJoints[J]. Math. Comput. Model.,1988,10(9):681-695.
    [87] Hsu C H. Simplification of Multiple Joints[J]. J. Chin. Soc. Mech. Eng.,1991,12(4):357-363.
    [88] Hsu C H. Enumeration of Basic Kinetic Chains with Simple and MultipleJoints[J]. J. Franklin Inst.,1992,329(4):775-789.
    [89] Chu J K, Cao W Q. Identification of Isomorphism of Kinematic Chains throughAdjacent-Chain-Table[C]. In: The22nd Biennial Mechanisms Conference[A].Scottsdale, AZ, USA, September13-16,1992. New York: ASME,1992:207-210.
    [90]宋黎,杨坚.用邻接矩阵判断含复铰平面运动链同构和拓扑对称的新方法[J].机械科学与技术,2005,24(8):1005-1008.
    [91]宋黎,范崇辉.全铰链平面连杆机构运动综合的结构类型优选方法[J].机械工程学报,2009,45(3):132-137.
    [92] Ding H F, Zhao J, Huang Z. Unified Topological Representation Models ofPlanar Kinematic Chains[J]. J. Mech. Des.(Trans. ASME),2009,131(11):114503-1145038.
    [93] Dargar A, Khan R A, Hasan A. Application of Link Adjacency Values to DetectIsomorphism among Kinematic Chains[J]. Int. J. Mech. Materi. Des.,2010,6(2):157-162.
    [94] Shan H L. Kinematic, Dynamic and Workspace Analysis of a Novel6-DOFParallel Manipulator[D]. Buffalo: State University of New York,2010.
    [95] Chuang C, Lee J. Topological Synthesis of Underactuated Passively AdaptiveFinger Mechanisms[C]. The13th World Congress in Mechanism and MachineScience, Guanajuato, México, Jun.19-25,2011: A12-333.
    [96] Bergelin B, Slaboch B, Sun J, et al. A Handy New Design Paradigm[J]. Mech.Sci.,2011,2(1):59-64.
    [97] Nyseth D L, Krampotich D J. Transport Module With Latching Door[P]. USPatent:5915562,1999.
    [98] Nasser S, Rincon D, Rodriguez M. Design of an Anthropomorphic UnderactuatedHand Prosthesis with Passive-Adaptive Grasping Capabilities[C]. FloridaConference on Recent Advances in Robotics, FCRAR2006, Miami, Florida,May25-26,2006.
    [99] Carroll D W, Magleby S P, Howell L L, et al. Simplified Manufacturing througha Metamorphic Process for Compliant Ortho-Planar Mechanisms[A]. In:IMECE2005-82093. ASME2005International Mechanical EngineeringCongress and Exposition, Orlando, Florida USA, Nov.5-11,2005:389-399.
    [100] Bruzzone L, Bozzini G. Constructive Redesign of a Modular MetamorphicMicrogripper[A]. In: Romansy18Robot Design, Dynamics and Control[M].Italy: CISM,2010:42-44.
    [101] Kuo C H. Structural Characteristics of Mechanisms with Variable TopologiesTaking into Account the Configuration Singularity[D]. Tainan: National ChengKung University,2004,7-8.
    [102]潘慧静.变自由度机构类型和构态的分析与综合研究[D].秦皇岛:燕山大学,2010,22-23.
    [103] Chen I M, Li H S, Cathala A. Mechatronic Design and Locomotion ofAmoebot—a Metamorphic Underwater Vehicle[J]. J. Robot. Syst.,2003,20(6):307-314.
    [104] Hoberman Associates Inc., Company Profile and Selected Works:1990-2012.http://www. hoberman.com/HobermanPortfolio.pdf.
    [105] Galletti C, Fanghella P. Kinematotropic Properties and Pair Connectivities inSingle-Loop Spatial Mechanisms[A]. In: Proceedings of the10th WorldCongress on the Theory of Machines and Mechanisms[C]. Oulu, Finland, Jun.20–24,1999:560-565.
    [106] Galletti C, Fanghella P. Single-loop Kinematotropic Mechanisms[J]. Mech.Mach. Theory,2001,36(6):743–761.
    [107] Galletti C, Giannotti E. Multiloop Kinematotropic Mechanisms[C]. In:27thBiennial Mechanisms and Robotics Conference. ASME2002InternationalDesign Engineering Technical Conferences and Computers and Information inEngineering Conference, Montreal, Quebec, Canada, Sep.29–Oct.2,2002:455-460.
    [108] Lee C C, Hervé J M. Discontinuous Mobility of Four-Link Mechanisms withRevolute, Prismatic, and Cylindric Pairs through the Group Algebraic Structureof Displacement Set[A]. In: Proceedings of VIII International Conference on theTheory of Machines and Mechanisms[C]. Liberec, Czech, Sep.5-7,2000:377-382.
    [109] Lee C C, Hervé J M. Discontinuous Mobility of One Family of Spatial6RMechanisms through the Group Algebraic Structure of Displacement Set[A]. In:27th Biennial Mechanisms and Robotics Conference [C]. ASME2002International Design Engineering Technical Conferences and Computers andInformation in Engineering Conference, Montreal, Canada, Sep.29-Oct.2,2002.
    [110] Lee C C, Hervé J M. Synthesis of Two Kinds of Discontinuously MovableSpatial7R Mechanisms through the Group Algebraic Structure of DisplacementSet[A]. In: Proceedings of11th World Congress[C]. Tianjin, China, April1-4,2004:197-201.
    [111] Lee C C, Hervé J M. Discontinuously Movable Seven-link Mechanisms viaGroup-Algebraic Approach[J]. J. Mech. Eng. Sci., Proc. Inst. Mech. Eng.,2005,219(C6),577-587.
    [112] Lee C C, Hervé J M. Discontinuously Movable8R Mechanisms with an Infinityof Bifurcations[A]. In: Proceedings of12th IFToMM Word Congress[C].Besancon, France,2007: CK187.
    [113] Kuo C H, Yan H S. On the Mobility and Configuration Singularity ofMechanisms with Variable Topologies[J]. J. Mech. Des.(Trans. ASME),2007,129(6):617-624.
    [114] Dai J S, Zhang Q X. Metamorphic Mechanisms and Their ConfigurationModels[J]. Chin. J. Mech. Eng.,2000,13(3):212-218.
    [115]张忠海.变胞机构的结构学研究与应用[D].北京:北京邮电大学,2009.
    [116] Tsai L W. Mechanism Design: Enumeration of Kinematic Structures Accordingto Function[M]. Boca Raton: CRC Press LLC,2001.
    [117] Dai J S, Rees J J. Matrix Representation of Topological Changes inMetamorphic Mechanisms[J]. J. Mech. Des.,2005,127(4):675-682.
    [118]吴艳荣,金国光,李东福,等.描述变胞机构构态变换的邻接矩阵法[J].机械工程学报,2007,43(7):23-26.
    [119] Yan H S, Kuo C H. Representations and Identifications of Structural andMotion State Characteristics of Mechanisms with Variable Topologies[J]. Trans.Can. Soc. Mech. Eng.,2006,30(1),19-40.
    [120]李树军,戴建生.变胞机构的构态变换矩阵与运动副方位变胞[J].中国机械工程,2010,21(14):1698-1703.
    [121] Lan Z H, Du R. Representation of Topological Changes in MetamorphicMechanisms with Matrices of the Same Dimension[J]. J. Mech. Des.(Trans.ASME),2008,130(7):074501.1-074501.4.
    [122]杨飞,陶建国,邓宗全.描述变胞机构构态变换的一种新方法及其在构型综合中的应用[J].机械工程学报,2011,47(15):1-8.
    [123]李端玲,张忠海,戴建生,等.变胞机构的研究综述与展望[J].机械工程学报,2010,46(13):14-21.
    [124] Yan H S, Kuo C H. Topological Representations and Characteristics of VariableKinematic Joints[J]. J. Mech. Des.(Trans. ASME),2006,128(3):384-391.
    [125]王德伦,戴建生.变胞机构及其综合的理论基础[J].机械工程学报,2007,43(8):32-42.
    [126]畅博彦,金国光,戴建生,等.描述变胞机构构态变换的关联矩阵法[J].机械科学与技术,2011,30(3):507-516.
    [127] Zhang L P, DAI J S. Reconfiguration of Spatial Metamorphic Mechanisms[J]. J.Mech. Robot.,2009(1):1-8.
    [128]张忠海,李端玲,廖启征.柔性变胞机构的拓扑结构表示及构态变换分析[J].北京邮电大学学报,2010,33(3):75-79.
    [129] Khoshnevis B, Kovac R, Shen W M, et al. Reconnectable Joints for Self-Reconfigurable Robots[A]. In: Proceedings of the2001IEEE/RSJ InternationalConference on Intelligent Robots and Systems[C]. Maui, Hawaii, USA, Oct.29-Nov.03,2001:584-589.
    [130] Slaboch B J, Voglewede P A. Development of Planar Mechanism State Matricesfor Reconfigurable Mechanisms[A]. In: Proceedings of the ASME2010International Design Engineering Technical Conferences&Computers andInformation in Engineering Conference IDETC/CIE2010[C]. Montreal, Quebec,Canada, August15-18,2010:763-769.
    [131] Aghili F, Parsa K. A Reconfigurable Robot with Lockable Cylindrical Joints[J].IEEE Trans. Robot.,2009,25(4):785-797.
    [132] Kuo C, Dai J S, Yan H S. Reconfiguration Principles and Strategies forReconfigurable Mechanisms[A]. In: ASME/IFToMM International Conferenceon Reconfigurable Mechanisms and Robots, ReMAR2009[C]. London, UK,2009:1-7.
    [133]约翰逊R C著.机械设计综合:创造性设计与最优化[M].陆国贤译.北京:机械工业出版社,1987.
    [134]曹志奎.机械演绎法创新设计机构[J].机械设计与研究,1995,11(2):30-32.
    [135] Yan H S. Creative Design of Mechanical Devices[M]. Singapore: SpringerVerlag,1998.
    [136]吕仲文.机械创新设计[M].北京:机械工业出版社,2004.
    [137]蒙运红,吴昌林.机构运动链构型创新设计方法的研究[J].中国机械工程,2004,15(23):2088-2091.
    [138]邱清盈,张惠,冯培恩.专利知识辅助产品创新的方法[J].浙江大学学报(工学版),2011,45(2):228-246.
    [139]刘翔,李彦,李文强,等.构建支持产品创新设计的专利知识库[J].机械设计与研究,2010,26(6):7-11.
    [140] Trappey A J C, Trappey C V, Wu C Y. Automatic Patent DocumentSummarization for Collaborative Knowledge Systems and Services[J]. J. Syst.Sci. Syst. Eng.,2009,18(1):71-94.
    [141]唐炜,刘细文.专利分析法及其在企业竞争对手分析中的应用[J].现代情报,2009(9):179-186.
    [142]张玲,朱长宝.基于专利技术知识的机械产品创新设计初探[J].机械设计,2005,22(9):4-6.
    [143]檀润华.TRIZ及应用[M].北京:高等教育出版社,2010:392.
    [144]檀润华,丁辉.创新技法与实践[M].北京:机械工业出版社,2010:285.
    [145] Altshuller G. The Innovation Algorithm-TRIZ, Systematic Innovation andTechnical Creativity[M]. Worcester: Technical Innovation Center, Inc,1999.
    [146] Savransky S D. Engineering of Creativity: Introduction to TRIZ Methodologyof Inventive Problem Solving[M]. Boca Raton, FL: CRC Press LLC,2000.
    [147] Rantanen K, Domb E. Simplified TRIZ: New Problem-Solving Applications forEngineers and Manufacturing Professionals[M]. Boca Raton, FL: St. Lucie Press,2002.
    [148] Terninko J, Zusman Alia, Zlotin B. Systematic Innovation: An Introduction toTRIZ[M]. Boca Raton, FL: St. Lucie Press,1998.
    [149] Souchkov V. Made with TRIZ[R/PDF]. http://www.xtriz.com/MadeWithTRIZ.pdf,2009-12-20.
    [150] Stuart J. Transactional TRIZ, Theory, Application, and Execution, Part I:Theory[R/PDF]. http://www.transactionaltriz.com/uploads/TransTRIZTheory.pdf,2005-09-01.
    [151] Stuart J. Transactional TRIZ, Theory, Application, and Execution, Part II: TheContradiction Matrix[R/PDF]. http://transactionaltriz.com/uploads/TransTRIZMatrix.pdf,2009-09-03.
    [152] Mann D. Application of TRIZ Tools in a Non-Technical Problem Context[J].TRIZ J.,2000,(8)(http://www.triz-journal.com).
    [153] Suh N P. Axiomatic design: Advances and Applications[M]. New York: OxfordUniversity Press,2001.
    [154]杨廷力,金琼,刘安心,等.现代机构学理论体系的构建与发展趋势[A].见:机械设计与研究,第十五届中国机构与机器科学国际学术会议论文集专刊
    [C].2006:62-67.
    [155]刘川禾,杨廷力,刘毅.变拓扑机构理论的基本问题[J].机械工程学报,2005,41(8):56-62.
    [156] Yan H S, Hwang Y W. The Generalization of Mechanical Devices[J]. J. Chin.Soc. Mech. Eng.(Taiwan),1988,9(4):283-293.
    [157]丁华锋,黄真.平面机构统一拓扑描述模型的建立及同构判别[J].机械工程学报,2009,45(3):99-103.
    [158]李树军,宋桂秋,杜立群,等.用拓扑特性矩阵辨识运动链的同构体及机架变换研究[J].机械工程学报,2002,38(1):149-153.
    [159]张利萍,王德伦,戴建生.变胞机构的基因进化综合理论[J].机械工程学报,2009,45(2):106-113.
    [160] Fey V, Rivin E I. Innovation on Demand[M]. New York: Cambridge UniversityPress,2005.
    [161] Terninko J. Su-Field Analysis[J]. TRIZ Journal,2000(2):23-29.
    [162]宋黎,成玲,杨坚.含复铰平面运动链拓扑对称性识别的邻接矩阵方法[J].机械科学与技术,2006,25(2):149-152.
    [163] Michel Alhadeff-Jones. Three Generations of Complexity Theories: Nuancesand Ambiguities[J]. Educational Philosophy and Theory,2008,40(1):66-69.
    [164]段永朝.复杂性理论专家解析互联网复杂现象[EB/OL].http://www.chinalabs.com/html/jiaodiandaodu/20111207/41969.html,2011-02-08.
    [165] Suh N P. Complexity: Theory and Applications[M]. New York: OxfordUniversity Press,2005.
    [166] Lu S C-Y, Suh N P. Complexity in Design of Technical Systems[J]. CIRPAnnals-Manufacturing Technology,2009,58(1):157-160.
    [167] Khan W A. The Conceptual Design of Robotic Using Complexity Criteria[D].Ph.D., McGill University (Canada),2008.
    [168] Larry L H.Compliant Mechanism[M].New York:John Wiley&Sons,Inc.,2001.
    [169]张敬菽,陈德贵,刘洪武.低压断路器操作机构的动态仿真与优化设计[J].中国电机工程学报,2004,24(3):102-107.
    [170]檀润华,曹国忠,陈子顺.面向制造业的创新设计案例[M].北京:中国科学技术出版社,2009.
    [171] Zhang L, Wang D L, Dai J S. Biological Modeling and Evolution Based onSynthesis of Metamorphic Mechanisms[J]. ASME Trans., J. Mech. Des.,2008,130(7):072303.
    [172]杨谊昌,蓝兆辉.一种具有三种构态循环的变胞机构优化综合[J].机械设计与研究,2007,23(6):61-64.
    [173] Mann D L. Hands on Systematic Innovation[M], CREAX Press,2007.
    [174] Roth K. Konstruieren Mit Konstruktion-Katalogen[M]. Berlin: Springer-Verlage,1982.
    [175]柯勒R著.机械设计方法学[M].党志梁等译.北京:科学出版社,1990.
    [176]符炜.机械创新设计构思方法[M].长沙:湖南科学技术出版社,2006,131-133.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700