我国不同年代玉米品种及自交系产量与农艺性状演变研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玉米是世界上最早利用杂种优势的作物之一,也是我国重要的粮食作物,其总产和单产均居第二位,对我国的粮食生产举足轻重。玉米新品种的应用是玉米增产的核心,玉米品种及其亲本自交系产量与农艺性状演变规律的研究已成为玉米遗传育种研究的热点之一。本文采用二因素裂区试验设计,以密度为主区,玉米品种及自交系为副区,通过方差分析、多重比较、相关及通径分析等方法,在新疆典型的大陆性干旱气候条件下对1950~2000年代玉米品种及1970~2000年代玉米自交系产量和农艺性状演变及产量与杂种优势的关系进行了研究。主要结果如下:
     1.1950~2000年代玉米品种产量持续增加。产量随年代的演变可分为三个时期。1950~1970年代产量极显著提高期,1970~1990年代增长缓慢期,1990~2000年代极显著增加期。
     2.1950~2000年代玉米品种在15000、45000、75000plants.ha-1密度下产量遗传增益分别为0.0732、0.1122、0.1125ton,ha-1.year-1,三种密度下平均增益为0.0993 ton.ha-1.year-1。玉米品种的耐密性没有提高。
     3.1950~2000年代玉米品种的千粒重、穗行数、行粒数、穗长、穗粗、秃尖长呈增加趋势;出籽率、ASI、倒折率、病株率呈减小趋势;株高、穗位高、生育期的演变无一定的规律。
     4.行粒数的增加是1950-2000年代玉米品种产量提高的最重要因素。穗粗、千粒重、穗长、株高的增加,生育期的延长对产量的提高也起着重要作用。出籽率的下降是1950-2000年代玉米品种产量提高的限制性因素。今后玉米品种选育中应重视对行粒数、千粒重、穗长的选择,可适当增加株高、延长生育期,同时协调与出籽率的关系。
     5.1970~2000年代玉米杂交种亲本自交系的产量得到了显著改良。15000、45000、75000plants.ha-1密度下产量遗传增益分别为0.0105、0.0268、0.0348ton.ha-1.year-1。三种密度平均增益为0.0240ton.ha-1.year-1。玉米自交系耐密性没有提高。
     6.1970~2000年代玉米自交系的千粒重、穗行数、穗长、穗粗呈增加趋势;ASI、秃尖长、病株率、倒折率呈减小趋势;行粒数、出籽率、株高、穗位高、生育期的变化无一定的规律。
     7.ASI的减小是1970~2000年代玉米自交系产量提高的最重要因素。行粒数、穗粗的增加对自交系产量的提高也起着重要作用。保持一定的株高和出籽率也是自交系获得高产的重要条件。
     8.杂种优势对产量的贡献率随密度的增加而减小。杂种优势随着年代的增加对产量的贡献率越来越小,密度越高这种趋势越明显。
As one of the earliest heterosis utilization crops in the world, maize takes the second place in both total production and yield, is extremely important to grain production in China. Application of the new maize varieties is the core of yield increase. One of the hotspots in maize genetics and breeding is the evolution of maize varieties and parent inbred lines yield and its agronomic characteristics. The split-plot design of two factors which main plot are densities and assistant plot are maize varieties and inbred lines was adopted in this experiment. By the methods of analysis of variance, mutiple comparison, correlation analysis and path coefficient analysis, the evolution of yield and agronomic characteristics of maize varieties from 1950s to 2000s and inbred lines from 1970s to 2000s, as well as the relationship between heterosis and yield were stduied in Xinjiang. The main results as followed.
     1. The yield of maize progressively increased from 1950s to 2000s. Evolution of maize varieties yield could be divided into three stages:significantly increasing stage from 1950s to 1970s, slightly increasing stage from 1970s to 1990s, highly increasing stage from 1990s to 2000s.
     2. The yield genetic gains of maize varieties were 0.0732,0.1122 and 0.1125 ton.ha-1.year-1 at the density of 15000,45000 and 75000 plants.ha-1 respectively, and the average yield genetic gain was 0.0993 tan.ha-1.yeaf-1. The density-tolerance of maize varieties was not improved.
     3. The 1000-kernel weight, kernels per ear, kernels per row, ear length, ear diameter and bald head length of maize varieties showed increasing trend from 1950s to 2000s, but the grain index, ASI, disease plant ratio and stem and root lodging ratio showed decreasing trend. The evolution of plant height, ear height and growth duration had no regular pattern.
     4. The increase of kernels per row was a crucial factor raising yield of maize varieties. The increase of ear diameter, ear length,1000-kernel weight, plant height and growth duration also played important roles to yield. The decrease of grain index limited the yield increase from 1950s to 2000s. Therefore, maize variety breeding must emphasized on selection of kernels per row,1000-kernel weight and ear length, properly increasing the plant height and growth duration, coordinating the relationship with the grain index.
     5. The yield of parent lines of maize hybrid was well improved from 1950s to 2000s. The yield genetic gains of inbred lines were 0.0105,0.0268 and 0.0348 ton.ha-1.year-1 at the density of 15000,45000 and 75000 plants.ha-1 respectively, and the average yield genetic gain was 0.0240 ton.ha-1.year-1. The density-tolerance of inbred lines was not improved.
     6. The 1000-kernel weight, kernels per ear, ear length and ear diameter of inbred lines represented increasing trend from 1970s to 2000s, but the disease plant radio, stem and root lodging radio, bald head length and ASI showed decreasing trend. The evolution of kernels per row, grain index, plant height, ear height and growth duration had no regular pattern.
     7. The most important reason of inbred lines yield increase was the decrease of ASI. The kernels per row and ear diameter also played important roles for yield increase. Moreover, maintaining certain plant height and grain index was a major factor for achieving high yield of inbred lines.
     8. The contribution rate of heterosis to yield declined with density increasing. In additional, the contribution of heterosis to yield was decreasing, and the trend more obvious in height density.
引文
[1]孙世贤.种植业结构调整中的玉米生产问题[J].种子,2000,05:30-31.
    [2]梁文科,戚廷香,李明顺,等.玉米两向分群育种策略初探[J].作物杂志,2007,3:10-12.
    [3]郭清保.2006年玉米市场分析展望[J].黑龙江粮食,2007,1:3.
    [4]石雷.引入美国种质对我国玉米育种的影响[J].玉米科学,2007,15(2):1-4.
    [5]田清震,张世煌,李新海,等.玉米育种发展动态[J].玉米科学,2007,15(1):24-28.
    [6]郭庆发,王庆成,汪黎明.中国玉米栽培学[M].上海:上海科学技术出版社,2004:284-300.
    [7]周洪生.21世纪初我国玉米遗传育种及玉米生产的发展战略[J].玉米科学,1996,4(4):1-5.
    [8]谢振江.我国玉米单交种产量及其各农艺性状.沈阳:沈阳农业大学,2007.遗传增益分析
    [9]Derieux,M.,Darrigrand,M.,Gallais,A.,et al.Estimation du progres genetique realise chez le maize grain en France entre 1950 et 1985[J]. Agronomie,1987,7,1-11.
    [10]Eyherabide, G H, Damilano A L, Colazo J C. Genetic gain for grain yield of maize in Argentina[J].Maydica,1994,39:207-211.
    [11]Frei,O.M. Changes in yield physiology of corn as a result of breeding in northern European[J]. Maydica,2000,45:173-183.
    [12]Bruulsema, T. W., Tollenaar, M., Heckman, J.R. Boosting crop yields in the next century[J]. Better Crop,2000,84:9-13.
    [13]Duvick,D.N. The contribution of breeding to yield advances in maize(Zea mays L.)[A]. Sparks,D.N (ed.)Adv.Agron.[C].San Diego,CA.,2005:83-145.
    [14]Duvick D.N. What is yield?[A].Edmeades G.O.,Banziger B.,Mickekson H.R.et al.Developing Drought-and Low N-Tolerant Maize[C].Proceedings of Symposium. El Batan, Mexico.: CIMMYT,1997,332-335.
    [15]Duvick,D.N.,Smith,J.S.C.,Cooper,M. Long-term selection in a commercial hybrid maize breeding program[A]. In "Plant Breeding Reviews" J.Janick, ed., Long Term Selection:Crops, Animals, and Bacteria[C]. New York:John Wiley & Sons,2004:109-151.
    [16]Meghji, M.R.,Dudley,J.W., Lambert, R.J., et al. Inbreeding depression, inbred and hybrid grain yields, and other traits of maize genotypes representing three eras[J].Crop Sci,1984,24,545-549.
    [17]Russell, W.A. Agronomic performance of maize cultivars representing different eras of breeding[J].Maydica,1984,XXIX:375-390.
    [18]Crosbie,T.M., Changes in physiological traits associated with long-term breeding efforts to improve grain yield of maize[A].H.D.Loden and D.Wilkinson,eds.In:Proceedings of 37th Annual Corn & Sorghum Research Conference [C].Washington, D C, Chicago,IL,American Seed Trade Association,1982,37:206-223.
    [19]Barker,T., Campos,H., Cooper,M.etal. Improving drought tolerance in maize[A].J.Janick(Ed.),Plan Breeding Review[C].New York,John Wiley&Sons,Inc.,2005:173-253.
    [20]Edmeades, G.O., Bolan, J., Elings, A., Ribaut, J.M., Banziger, M., The role and regulation of the anthesis-silking interval in maize[A]. Westgate, M.E., Boote, K.J. (Eds.), In:Physiology and Modeling Kernel Set in Maize[C]. CSSA, Madison, WI,2000:43-73.
    [21]Russell W A. Genetic improvement of maize yields. Advance Agronomy,1991,46:245-298.
    [22]Tollenaar, M., and M.Mihajlovic.1991. Bromoxynil tolerance during the seedling phase is associated with genetic yield improvement in maize[J]. Can.J.Plant Sci.1998,71:1021-1027.
    [23]Russell,W.A.Evaluations for plant,ear,and grain traits of maize cultivars representing seven eras of breeding[J]. MAYDICA,1985,XXX:85-96.
    [24]Russell,W.A. Comparative performance for maize hybrids representing different eras of maize breeding[A].American Seed Trade Association,Corn and Sorghum Res.Conf[C].Chicago,Illinois,1974:81-101.
    [25]Duvick D N. Genetic contributions to advances in yield of U.S. maize[J]. Maydica,1992,37:69-79.
    [26]Dillehay,B.L., ROTH, G.W, Calvin, D.D, et al. Performance of Bt corn hybrids, their near Isolines, and leading corn hybrids in Pennsylvania and Maryland[J]. Agron.J.2004,96:818-824.
    [27]Rice,M.E. Perception and performance of Bt corn[A]. Proceedings of the 52nd Annual Corn & Sorghum Research Conference[C]. Washington, D.C.:American Seed Trade Association,1997,52:144-156.
    [28]史新海,李可敬,孙为森,等.山东省不同年代玉米杂交种主要农艺性状演变规律的研究[J].玉米科学,2000,8(2):33-35.
    [29]史新海,隋有功,宋再华,等.中熟高产玉米杂交种主要农艺性状演变规律的研究[J].作物学报,1996,23(6):750-756.
    [30]胡昌浩,董树亭,王空军,等.我国不同年代玉米品种生育特性演进规律研究*Ⅰ产量性状的演进[J].玉米科学,1998,2:44-48.
    [31]董树亭,王空军,胡昌浩.玉米品种更替过程中群体光合特性的演变[J].作物学报,2000,26(2):200-204.
    [32]王空军,董树亭,胡昌浩,等.我国玉米品种更替过程中根系生理特性的演进Ⅰ.根系活力与ATPase活性的变化[J],作物学报,2002,28(2):185-189.
    [33]王空军,董树亭,胡昌浩,等.我国玉米品种更替过程中根系生理特性的演进Ⅱ.根系保护酶活性及膜脂过氧化作用的变化[J],作物学报,2005,28(3):384-388.
    [34]王空军,郑洪建,刘开昌,等.我国玉米品种更替过程中根系时空分布特性的演变[J],植物生态学报,2001,25(4):472-475.
    [35]孙庆泉,胡昌浩,董树亭,等.我国不同年代玉米品种生育全程根系特性演化的研究[J].作物学报,2003,29(5):641-645.
    [36]张泽民,刘丰明,李雪英.河南省1963-1993年玉米杂交种籽粒产量及其组成性状的遗传增益[J].作物学报,1998,(24)2:182-186
    [37]张泽民,李雪英,高书颖,等.玉米遗传增益的穗粒性状基础[J].洛阳农专学报,1996,16(2):5-9.
    [38]张泽民,贾长柱.玉米株型对遗传增益的影响[J].遗传,1997,19(2):31-31.
    [39]张泽民,刘丰明,牛云生,等.不同年代玉米杂交种干物质积累与分配规律的研究[J].河南农业大学学报,1997,31(2):118-122.
    [40]谢振江,李明顺,李新海,等.华北地区玉米杂交种农艺性状演变规律的研究[J].西北农业学报,2007,16(2):28-32.
    [41]谢振江,李明顺,李新海,等.华北地区不同年代玉米杂交种农艺性状的改良进展[J].玉米科学,2007,15(2):102-106.
    [42]霍仕平,晏庆九,张健,等.我国西南地区近20年玉米杂交种籽粒产量及相关性状的遗传增益[J].杂粮作物,2001,21(1):5-8.
    [43]柳家友,柏志安,吴伟华.玉米杂交种主要穗部性状之演变及对育种目标的影响[J].玉米科学,2004,12(专刊):3-4.
    [44]Duvick D N.,Cassman K G.Post-green revolution trends in yield potential of temperate maize in the North-Central United States[J].Crop Science,1999,39:1622-1630.
    [45]牛连杰.不同年代玉米自交系性状改良趋势的研究[J].中国种业,2004,12:37-38.
    [46]王振华,王义波,王永普,等.玉米自交系株形和产量性状的遗传改良效果[J].作物杂志,2000(1):15-16.
    [47]王建革.我国玉米自交系性状的改进[J].玉米科学,1997,5(4):26-29.
    [48]张泽民,刘丰明,牛连杰,等.不同年代玉米自交系性状改良趋势的研究[J].遗传,1998,20(增刊):75-77
    [49]潘家驹.作物育种学总论[M].北京:中国农业出版社,1998:82-84.
    [50]北京农业大学作物育种教研室.植物育种学[M].北京:北京农业大学出版社,1989:103-106.
    [51]张世煌,田清震,李新海,等.玉米种质改良与相关理论研究进展[J].玉米科学,2006,14(1):1-6.
    [52]毛建昌,张世煌,李向拓.选育高产、高配合力玉米自交系的途径与方法[J].中国农业科学,2006,39(5):872-878.
    [53]Schnell F W. Trends and problems in breeding methods for hybrid corn. In Anon.(ed) XVI British Poultry Breeders Roundtable,1974:86-98.
    [54]Duvick,D.N. Genetic contribution to yield gains of U.S. hybrid maize from 1930 to 1980[C]. W.R.Fehr(ED).Genetic contribution to yield gains of five major crop plants[A]. Madison,WI,USA: CSSA Special Publication No.7.Crop Science Society of America, American Society of Agronomy,1984b:15-47.
    [55]胡小平,王长发.SAS基础及统计实例教程[M].西安:西安地图出版社,2001.
    [56]周玉芝,段会军,姬惜珠,等.河北省夏播玉米品种主要农艺性状演变规律的研究[J].河北农业科学,2005,28(2):1-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700