新型可见光催化剂的制备及其光催化性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
最近几年来,利用新型高效的可见光催化剂处理环境污染问题已经成为重点研究内容之一。本文采用水热法合成了一系列可见光响应催化剂:Zn_xCd_(1-x)S、铋系光催化剂(Bi_2MoO_6,BiOX(X=Br, I))以及InVO_4。同时,利用XRD、SEM、TEM、UV-vis DRS以及N_2吸附-脱附等手段对它们的结构、形貌、光催化活性以及光催化机理进行了研究。具体工作如下:
     1.采用低温水热法合成了一系列由纳米颗粒组成的单分散球状Zn_xCd_(1-x)S,随着Cd含量的增加,Zn_xCd_(1-x)S的价带位置向更负的方向移动,而导带则向更正的方向移动,其中Zn_(0.4)Cd_(0.6)S光催化效果最佳,根据Zn_xCd_(1-x)S固溶体的价带和导带信息,我们推测hVB~+、·OH、HO_~(2·)、O_(2·)~-是参与Zn_xCd_(1-x)S降解RhB反应的主要活性氧化物种。此外,采用溶剂热法制备了Zn_xCd_(1-x)S固溶体,发现随着Zn/Cd摩尔比的减小,产物的形貌由六面体逐渐转变为纳米棒状。
     2.采用柠檬酸(CA)辅助水热法合成了尺寸可控的Bi_2MoO_6纳米片,并且对CA辅助水热合成纳米片的机理进行了探讨。此外,我们还探讨了前驱液pH值对光催化活性的影响,结果表明,pH为3.08时的Bi_2MoO_6活性最高。
     3.用PVP作为表面修饰剂,通过低温水热法合成了多层花状的BiOX(X=Br,I)。该花状结构由纳米片组装而成,PVP对这种结构的形成起了重要的作用。研究发现形貌对BiOBr的光催化性能有明显影响,由于花状BiOBr具有更高的比表面积,其光催化性能明显优于纳米片状的BiOBr
     4.采用溶剂热法合成了三维BiOBr_xI_(1-x)微米球,微米球是由二维纳米片组装而成的。Br/I摩尔比例对产物的BET表面积、孔结构、价带水平以及带隙值均有较大影响,相应的光催化活性也有较大差别,其中BiOBr_(0.2)I_(0.8)光催化性能最优,这可能是高比表面积、多孔结构、以及光吸收的增强三者之间共同协调作用的结果。最后,根据对价带和导带的分析,我们推测hVB~+是参与BiOBr_xI_(1-x)降解RhB反应的主要活性氧化物种。
     5.采用水热法合成了InVO_4光催化剂,并通过浸渍法制备了Fe_2O_3/InVO_4、NiO/InVO_4、CuO/InVO_4,光催化还原CO_2实验表明,反应产物主要为甲醇,Fe_2O_3/InVO_4活性最高,反应8小时后甲醇浓度达到191.45ppm。当Fe_2O_3与InVO_4复合时,由于它们具有合适的能带位置,从InVO_4上激发出来的电子能够转移到Fe_2O_3的导带上,从Fe_2O_3上激发出来的空穴能够转移到InVO_4的价带上,使电子-空穴对能够有效分离,从而提高其还原CO_2生成甲醇的能力。
In recent years, application of novel, efficient visible-light induced photocatalysts on solving environmental issues has become one of the most important research areas. In this work, several kinds of visible-light induced photocatalysts, Zn_xCd_(1-x)S, photocatalysts containing bismuth such as Bi_2MoO_6 and BiOX(X=Br, I) and InVO_4 were synthesized by hydrothermal method or solvothermal method. The prepared samples were characterized by XRD, SEM, TEM, UV-vis DRS, and nitrogen sorption/desorption to investigate the structure, morphology, photocatalytic activity and the photocatalytic mechanism of photocatalysts. The detailed works were summarized as follows.
     1. A series of monodisperse Zn_xCd_(1-x)S spheres composed of nanoparticles have been successfully fabricated in high yield by a facile hydrothermal route at a relatively low temperature. The positions of conduction band and valence band for the solid solution of Zn_xCd_(1-x)S were shifted toward more positive potential and more negative potential with the increase of Cd content, respectively. Among all the prepared samples, Zn_(0.4)Cd_(0.6)S exhibited the best photocatayltic activity. According to the information of the valence band and conduction band, the hVB~+,·OH, HO_~(2·), and O_(2·)~- are regarded as the main active species during the photodegradation of RhB. In addition, we have also synthesized the Zn_xCd_(1-x)S solid solution via a simple one-pot solvothermal method. It was found that the morphologies of the products show a gradient evolution from hexagon to nanorods with decreasing the molar ratio of Zn/Cd.
     2. Bi_2MoO_6 nanoplates with different sizes have been controllably fabricated by citric acid (CA) assisted hydrothermal process and the mechanism for CA assisted hydrothermal synthesis of the Bi_2MoO_6 nanoplates is discussed. Moreover, the effect of pH values of the precursors on photocatayltic activity was investigated, the best photocatayltic activity was obtained at pH=3.08.
     3. Using polyvinylpyrrolidone (PVP) as surface modifier, we present a facile, one-step hydrothermal method for fabricating multilayered flower-like BiOX(X=Br, I) at a relatively low temperature of 120°C. Such three-dimensional (3D) BiOBr assemblies were constructed layer-by-layer from a large number of two-dimensional (2D) nanoplates and PVP plays an important role in the formation of flower-like structure. The morphology of the BiOBr sample can influence significantly on the photocatalytic properties, the BiOBr flowers exhibited higher visible-light photocatalytic activity than that of irregular BiOBr nanoplates due to its higher surface area.
     4. Self-assembled 3D BiOBr_xI_(1-x) microspheres composed of nanoplates have been successfully synthesized by a facile solvothermal method.The variation of molar ratio of Br/I leads to changes in their BET surface areas, porous structure, level of valence band and light absorption ability associated with the changes in band gap. It is shown that changes in optical and structural characteristics of BiOBr_xI_(1-x) solid solutions influence photocatalytic activity. Among all the prepared samples, the as-synthesized BiOBr_(0.2)I_(0.8) microspheres possessed the best photocatalytic activity under visible light irradiation, which is ascribed to their energy band structure, high BET surface area, and porous structure. In addition, the photoinduced holes (hVB~+) are regarded as the main active species during the photodegradation process based on analysis of the valence band and conduction band.
     5. InVO_4 was synthesized by hydrothermal method. Fe_2O_3/InVO_4, NiO/InVO_4 and CuO/InVO_4 were synthesized by impregnation method. The photocatalytic reduction of CO_2 experiments showed that the main production was methanol, Fe_2O_3/InVO_4 had the highest photocatalytic activity and the methanol concentration reached 191.45ppm after 8 hours’reaction. Fe_2O_3 and InVO_4 have matching band potentials, photoinduced electrons on the InVO_4 conduction band can transfer to the Fe_2O_3 conduction band, photoinduced holes Fe_2O_3 valence band can transfer to the InVO_4 valence band, which can promote the effective separation of photoinduced electron-hole pairs and enhace the ability to photoreduction CO_2 to yield methanol.
引文
[1] Akira Fujishima, Kenichi Honda, Electrochemical Photolysis of Water at a Semiconductor Eletrode, nature, 1972, 238, 37-38.
    [2]刘守新,刘鸿,光催化及光电催化基础与应用,化学工业出版社,2006.
    [3] Hoffmann M R,Martin S T,et al.Environmental Applications of Semiconduction photocatalysis, Chem Rev, 1995, 95(1): 69-96.
    [4] Cai L, Liao X P, Shi B, Using Collagen Fiber as a Template to Synthesize TiO_2 and Fe_x/TiO_2 Nanofibers and Their Catalytic Behaviors on the Visible Light-Assisted Degradation of Orange II, Ind. Eng. Chem. Res., 2010, 49(7): 3194-3199.
    [5] Sathishkumar P, Anandan S, Maruthamuthu P, etal., Synthesis of Fe~(3+) doped TiO_2 photocatalysts for the visible assisted degradation of an azo dye, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 375(1-3): 231-236.
    [6] Yu L, Yuan S, Shi L, etal.,Synthesis of Cu~(2+) doped mesoporous titania and investigation of its photocatalytic ability under visible light, Microporous and Mesoporous Materials, 2010, 134(1-3): 108-114.
    [7] Kumaresan L, Prabhu A, Palanichamy M, etal., Synthesis and characterization of Zr~(4+), La~(3+) and Ce~(3+) doped mesoporous TiO_2: Evaluation of their photocatalytic activity, Journal of Hazardous Materials, 2011, 186(2-3): 1183-1192.
    [8] Bouattour S, Ana Maria Botelho do Rego, Lu(?)′s F. Vieira Ferreira, Photocatalytic activity of Li~+–Rb+–Y~(3+) doped or codoped TiO_2 under sunlight irradiation, Materials Research Bulletin, 2010, 45(7): 818-825.
    [9]马占营,何仰清,姚秉华,等,TiO_2半导体光催化剂表面改性方法的研究进展,咸阳师范学院学报,2008,23(6):40-43.
    [10] W. Choi, A. Termin, M R. Hoffmann, The role of metal dopants in quantum- sized TiO_2: correlation between photoreactivity and charge Crrier recombination dynamics, J. Phys. Chem., 1994, 98(51): 13669-13679.
    [11]刘淑芝,刘先军,徐胜利,等,提高TiO_2可见光分解水制氢活性的研究进展,应用化工,2008,37(12):1491-1495.
    [12]曹沛森,许璞,王玉宝,等,纳米TiO_2光催化剂的改性及应用研究进展,纳米材料与结构,2008,45(3):145-152.
    [13] Sato S, Photocatalytic activity of NOx-doped TiO_2 in the visible light region, Chem. Phys. Lett., 1986, 123 (1-2): 126-128.
    [14] Noda H, Oikawa K, Ogata T, et al., Preparation of Titanium(IV) oxides and its characterization, Bull. Chem. Soc. Japan., 1986, 8: 1084-1090.
    [15] Asahi R, Morikawa T, Ohwaki T, et a1.,Visible-light photocatalysis in Nitrogen-Doped Titanium Oxides, Science, 2001, 293 (5528): 269-271.
    [16] Diwald O, Thompson T L, Zubkov T, et al., Photochemical activity of nitrogen-doped rutile TiO_2(110) in visible light, J. Phys. Chem. B, 2004, 108 (19): 6004-6008.
    [17] Irie H, Watanabe Y, Hashimoto K, Nitrogen-Concentration Dependence on Photocatalytic Activity of TiO_(2-x)N_x Powders, J. Phys. Chem. B, 2003, 107 (23): 5483-5486.
    [18] Irie H, Washizuka S, Yoshino N, et al., Visible-light induced hydrophilicity on nitrogen-substituted titanium dioxide films, Chem. Commun., 2003, 11: 1298-1299.
    [19] Ihara T, Miyoshi M, Iriyama Y, et al., Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping, Appl. Catal., B, 2003, 42: 403-409.
    [20] Wu D Y, Long M C, Cai W M, Chen C, et a1., Low temperature hydrothermal synthesis of N-doped TiO_2 photocatalyst with high visible-light activity, Journal of Alloys and Compounds, 2010, 502(2): 289-294.
    [21]肖羽堂,李志花,许双双,非金属元素掺杂二氧化钛纳米管的研究进展,化工进展,2010,29(7):1235-1240.
    [22]朱蕾,崔晓莉,沈杰,等,直流反应磁控溅射方法制备碳掺杂TiO_2薄膜及其可见光活性,物理化学学报,2007,23(11):1662-1666.
    [23]肖鹏,李露,卢露,等,碳掺杂TiO_2纳米管列阵的制备及其光催化性能的研究,材料导报,2010,24(4):19-21.
    [24] Nagaveni K, Hegde M S, Ravishankar N,et al.,Synthesis and structure of nanoerystalline TiO_2 with lower band gap showing high photocatalytie activity, Langmuir,2004,20(7): 2900-2907.
    [25] Li H Y, Wang D J, Fan H M, et al., Synthesis of highly efficient C-doped TiO_2 photocatalyst and its photo-generated charge-transfer properties, Journal of Colloid and Interface Science, 2011, 354(1): 175-180.
    [26] Irie H, Watanabe Y, Hashimoto K, Carbon-doped Anatase TiO_2 Powders as a Visible-light Sensitive Photocatalyst, Chem. Lett., 2003, 32 (8): 772-777.
    [27] Sakthivel S, Kisch H, Daylight photocatalysis by carbon-modified titanium dioxide, Angew. Chem. Int. Ed., 2003, 42 (40): 4908-4911.
    [28] Ohno T, Akiyoshi M, Umebayashi T, et al., Preparation of S-doped TiO_2 photocatalysts and their photocatalytic activities under visible light, Appl. Catal., A, 2004, 265 (1): 115-121.
    [29] Ohno T, Mitsui T, Matsumura M, Photocatalytic activity of S-doped TiO_2 photocatalyst under visible light, Chem. Lett., 2003, 32 (4): 364-365.
    [30] Wang Y, Li J, Peng P, etal., Preparation of S-TiO_2 photocatalyst and photodegradation of L-acid under visible light, Applied Surface Science, 2008, 254(16): 5276-5280.
    [31] Umebayashi T, Band gap narrowing of titanium dioxide by sulfur doping, Appl. Phys. Lett., 2002, 81 (3): 454-456.
    [32] Cui Y, Du H, Wen L, Origin of visible-light-induced photocatalytic properties of S-doped anatase TiO_2 by first-principles investigation, Solid State Communications, 2009, 149(15-16):634-637.
    [33] Liu Y, Liu J, Lin Y, etal., Simple fabrication and photocatalytic activity of S-doped TiO_2 under low power LED visible light irradiation, Ceramics International, 2009, 35(8): 3061-3065.
    [34] Li H X, Li G S, Zhu J, Wan Y, Preparation of an active SO_4~(2-)/TiO_2 photocatalyst for phenol degradation under supercritical conditions, Journal of Molecular Catalysis A: Chemical, 2005, 226(1): 93-100.
    [35] Xu G Q, Zheng Z X, Wu Y C, Feng N, Effect of silica on the microstructure and photocatalytic properties of titania, Ceramics International, 2009, 35(1): 1-5.
    [36] Zhao W, Ma W H, Chen C C, et al., Shuai Z G,Efficient Degradation of Toxic Organic Pollutants with Ni_2O_3/TiO_(2-x)B_x under Visible Irradiation, J. Am. Chem. Soc., 2004, 126 (15), 4782-4783.
    [37] Chen D M, Yang D, Wang Q, et al., Effect of boron doping on photocatalytic activity and microstructure of titanium dioxide nanoparticles, Ind. Eng. Chem. Res., 2006, 45 (12): 4110-4116.
    [38] Xu J J, Ao Y H, Chen M D, Fu D G, Low-temperature preparation of Boron- doped titania by hydrothermal method and its photocatalytic activity, Journal of Alloys and Compounds, 2009, 484(1-2): 73-79.
    [39]于爱敏,武光军,严晶晶,等,水热法合成可见光响应的B掺杂TiO_2及其光催化活性,催化学报,2009,30(2):137-141.
    [40] Li D, Haneda H, Hishita S, et a1., Fluorine-doped TiO_2 powders prepared by spray pyrolysis and their improved photocatalytic activity for decomposition of gas-phase acetaldehyde, J. Fluorine Chem., 2005, 126: 69-77.
    [41] Yu J G, Yu J C Jimmy, Cheng B, et a1., The effect of F~--doping and temperature on the structural and textural evolution of mesoporous TiO_2 powders, J. Solid State Chem., 2003, 174 (2): 372-380.
    [42] Xu J J, Ao Y H, Fu D G, Yuan C W, Low-temperature preparation of F-doped TiO_2 film and its photocatalytic activity under solar light, Applied Surface Science, 2008, 254(10): 3033-3038.
    [43]陈恒,龙明策,徐俊,等,可见光响应的氯掺杂TiO_2的制备、表征及其光催化活性,催化学报,2006,27(10):890-894.
    [44] Luo H M, Takata T, Lee Y, etal., Photocatalytic Activity Enhancing for Titanium Dioxide by Co-doping with Bromine and Chlorine, Chem.Mater, 2004, 16(5): 846-849.
    [45]文晨,孙柳,张纪梅,等,碘掺杂对纳米TiO_2催化剂光催化活性的影响,高等学校化学学报,2006,27(12):2408-2410.
    [46] Oleksiak A, Szybowska K, Jasulaitiene V, Preparation and characterisation of visible light responsive iodine doped TiO_2 electrodes, Electrochimica Acta, 2010, 55(20): 5881-5885.
    [47] Song S, Tu J J, He Z Q, etal., Visible light-driven iodine-doped titanium dioxide nanotubes prepared by hydrothermal process and post-calcination, Applied Catalysis A: General, 2010, 378(2): 169-174.
    [48] He Z Q, Zhan L Y, Hong F Y, etal., A visible light-responsive iodine-doped titanium dioxide nanosphere, Journal of Environmental Sciences, 2011, 23(1): 166-170.
    [49] Hong X T, Wang Z P, Cai W M, Visible-light-activated nanoparticle photocatalyst of Iodine-doped Titanium dioxide, Chem. Mater., 2005, 17(6): 1548-1552.
    [50] Long R, Dai Y, Huang B B, Structural and electronic properties of iodine-doped anatase and rutile TiO_2, Computational Materials Science, 2009, 45(2): 223-228.
    [51] Long M C,Cai W M, Wang Z P, et al., Correlation of electronic structures and crystal structures with photocatalytic properties of undoped,N-doped and I-doped TiO_2, Chem.Phys. Lett., 2006, 420(1-3): 71–76.
    [52]徐凌,金属非金属共掺杂TiO_2的理论与实验研究,(博士学位论文),华中科技大学,2010.
    [53] Liu W X, Ma J, Qu X G, Cao W B, Hydrothermal synthesis of (Fe, N) co-doped TiO_2 powders and their photocatalytic properties under visible light irradiation, Res Chem Intermed, 2009, 35(3): 321-328.
    [54] Li X, Chen Z M, Shi Y C, Liu Y Y, Preparation of N, Fe co-doped TiO_2 with visible light response, Powder Technology, 2011, 207(1-3): 165-169.
    [55] Hamadanian M, Reisi-Vanani A, Majedi A, Synthesis, characterization and effect of calcination temperature on phase transformation and photocatalytic activity of Cu,S-codoped TiO_2 nanoparticles, Applied Surface Science, 2010, 256(6): 1837-1844.
    [56] Cong Y, Tian B Z, Zhang J L, Improving the thermal stability and photocatalytic activity of nanosized titanium dioxide via La~(3+) and N co-doping, Applied Catalysis B: Environmental, 2011, 101(3-4): 376-381.
    [57] Xiao Q, Ouyang L L, Gao L, Jiang W J, One-step hydrothermal preparation and photocatalytic activity of (C, S, Sm)-tridoped mesoporous TiO_2 photocatalyst under visible light irradiation, Materials Chemistry and Physics, 2010, 124(2-3): 1210-1215.
    [58] Wu Y M, Zhang J L, Xiao L, Chen F, Properties of carbon and iron modified TiO_2 photocatalyst synthesized at low temperature and photodegradation of acid orange 7 under visible light, Applied Surface Science, 2010, 256(13): 4260-4268.
    [59] Tan K Q, Zhang H R, Xie C F, etal., Visible-light absorption and photocatalytic activity in molybdenum- and nitrogen-codoped TiO_2, Catalysis Communications, 2010, 11(5): 331-335.
    [60] You L S, Li T Q, Ge F Q, Synthesis of S/Cr doped mesoporous TiO_2 with high-active visible light degradation property via solid state reaction route, Applied Surface Science, 2011, 257(13): 5544-5551.
    [61] Víctor M. Menéndez-Flores, Detlef W. Bahnemann, Teruhisa Ohno, Visible light photocatalytic activities of S-doped TiO_2-Fe~(3+) in aqueous and gas phase, Applied Catalysis B: Environmental, 2011, 103(1-2): 99-108.
    [62] Zeng Y, Wu W, Soowohn L, Gao J H, Photocatalytic performance of plasma sprayed Pt-modified TiO_2 coatings under visible light irradiation, Catalysis Communications, 2007, 8(6): 906-912.
    [63] Ishibai Y, Sato J, Nishikawa T, etal., Synthesis of visible-light active TiO_2 photocatalyst with Pt-modification:Role of TiO_2 substrate for high photocatalytic activity, Applied Catalysis B: Environmental, 2008, 79(2): 117-121.
    [64] Anpo M, Takeuchi M, The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation, J. Catal., 2003, 216 (1-2): 505-516.
    [65] Li X Z, Li F B, Study of Au/Au~(3+)-TiO_2 Photocatalysts toward Visible Photooxidation for Water and Wastewater Treatment, Environ. Sci. Technol., 2001, 35 (11): 2381-2387.
    [66] Jang H S, Kim H G, Borse P H, etal., Simultaneous hydrogen production and decomposition of H2S dissolved in alkaline water over CdS-TiO_2 composite photocatalysts under visible light irradiation, International Journal of Hydrogen Energy, 2007, 32(18): 4786-4791.
    [67] Jang J S, Kim H G, Joshi U A, etal., Fabrication of CdS nanowires decorated with TiO_2 nanoparticles for photocatalytic hydrogen production under visible light irradiation, International Journal of Hydrogen Energy, 2008, 33(21): 5975-5980.
    [68] Smith Y R, Raj K J A, Subramanian V, etal., Sulfated Fe_2O_3–TiO_2 synthesized from ilmenite ore: A visible light active photocatalys, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 367(1-3): 140-147.
    [69] Liu H, Shon H K, Sun X, Vigneswaran S, etal., Preparation and characterization of visible light responsive Fe_2O_3–TiO_2 composites, Applied Surface Science, 2011, 257(13): 5813-5819.
    [70] Chen L C, Tsai F R, Fang S H, etal., Properties of sol–gel SnO_2/TiO_2 electrodes and their photoelectrocatalytic activities under UV and visible light illumination, Electrochimica Acta, 2009, 54(4): 1304-1311.
    [71] Khan R, Kim T J, Preparation and application of visible-light-responsive Ni-doped and SnO_2-coupled TiO_2 nanocomposite photocatalysts, Journal of Hazardous Materials, 2009, 163(2-3): 1179-1184.
    [72] Ilive V, Tomova D, Rakovsky S, etal., Enhancement of photocatalytic oxidation of oxalic acid by gold modified WO3/TiO_2 photocatalysts under UV and visible light irradiation, Journal of Molecular Catalysis A: Chemical, 2010, 327(1-2): 51-57.
    [73] Irie H, Miura S, Kamiya K, Efficient visible light-sensitive photocatalysts: Grafting Cu(Ⅱ) ions onto TiO_2 and WO3 photocatalysts, Chemical Physics Letters, 2008, 457(1-3): 202-205.
    [74] Brahimi R, Bessekhouad Y, Bouguelia A, Trari M, Improvement of eosin visible light degradation using PbS-sensititized TiO_2, Journal of Photochemistry and Photobiology A: Chemistry, 2008, 194(2-3): 173-180.
    [75] Vogel R, Hoyer P, Weller H, Quantum-Sized PbS, CdS, Ag_2S, Sb_2S_3, and Bi_2S_3 Particles as Sensitizers for Various Nanoporous Wide-Bandgap Semiconductors, J. Phys. Chem., 1994, 98: 3183-3188.
    [76] Zhang P, Xu M X, Fang H B, etal., Low-temperature synthesis of InVO_4 doped TiO_2 sol and visible-light photocatalytic activities of InVO_4-TiO_2 films, Materials Letters, 2009, 63(24-25): 2146-2148.
    [77] Yang C Y, Wang W D, Shan Z C, etal., Preparation and photocatalytic activity of high-efficiencyvisible-light- responsive photocatalyst SnS_x/TiO_2, Journal of Solid State Chemistry, 2009, 182(4): 807-812.
    [78] Gao C, Li J T, Shan Z C, etal., Preparation and visible-light photocatalytic activity of In_2S_3/TiO_2 composite, Materials Chemistry and Physics, 2010, 122(1): 183-187.
    [79]刘祥英,邬腊梅,柏连阳,半导体光催化的特点及提高催化效率的途径,辽宁大学学报:2010, 37(1), 71-78.
    [80] Bignozzi C A, Argazzi R, Lleverlaan C J, Molecular and supramolecular sensitization of nanocrystalline wide band-gap semiconductors with monouclear and polynuclear metal complexes, Chem Soc Rev, 2000, 29(2): 87-96.
    [81] Zhang D D, Qiu R L, Song L, etal., Role of oxygen active species in the photocatalytic degradation of phenol using polymer sensitized TiO_2 under visible light irradiation, Journal of Hazardous Materials, 2009, 163(2-3):843-847.
    [82] Song L, Qiu R L, Mo Y Q, Zhang D D, etal., Photodegradation of phenol in a polymer-modified TiO_2 semiconductor particulate system under the irradiation of visible light, Catalysis Communications, 2007, 8(3): 429-433.
    [83] Shang J, Chai M, Zhu Y F, Photocatalytic degradation of polystyrene plastic under fluorescent light, Environ. Sci. Technol., 2003, 37 (19): 4494-4499.
    [84] Li X Z, Zhao W, Zhao J C, Visible light-sensitized semiconductor photocatalytic degradation of 2,4-dichlorophenol, Sci. China, Ser. B, 2002, 45 (4): 421-425.
    [85] Iliev V, Phthalocyanine-modified titania-catalyst for photooxidation of phenols by irradiation with visible light, J. Photochem. Photobiol., A, 2002, 151 (1-3): 195-199.
    [86] Chen Y H, Franzreb M, Lin R H, etal., Platinum-Doped TiO_2/Magnetic Poly (methyl methacrylate) Microspheres as a Novel Photocatalyst,Ind.Eng.Chem.Res, 2009, 48(4): 7616-7623.
    [87] Kumaresan L, Mahalakshmi M, Palanichamy M, etal., Systhesis,Characterization, and Photocatalytic Activity of Sr~(2+) Doped TiO_2 Nanoplates, Ind.Eng.Chem.Res, 2010, 49(4): 1480-1485.
    [88] Chen D, Jiang Z, Geng J, etal., Carbon and Nitrogen Co-doped TiO_2 with Enhanced Visible-Light Photocatalytic Activity, Ind.Eng.Chem.Res, 2007, 46(9): 2741-2746.
    [89] Zhang S, Song L, Preparation of visible-light-active carbon and nitrogen codoped titanium dioxide photocatalysts with the assistance of aniline, Catalysis Communications, 2009, 10(13): 1725-1729.
    [90] Ma L L, Li J L, Sun H Z, etal., Self-assembled Cu_2O Flowelike architecture: Ployol synthesis, photocatalytic activity and stability under simulated solar light, Materials Research Bulletin, 2010, 45(8), 961-968.
    [91] Gu Y, Su X, Du Y, Wang C, Preparation of flower-like Cu_2O nanoparticles by pulse electrodeposition and their electrocatalytic application, Applied Surface Science, 2010, 256(20), 5862-5866.
    [92] Wang Q, Chen G, Zhou C, etal., Sacrificial template method for the synthesis of CdS nanosponges and their photocatalytic properties, Journal of Alloys and Compounds, 2010, 503(2), 485-489.
    [93] Zhang Z, Hossain M, Takahashi T, Fabrication of shape-controlledα-Fe_2O_3 nanostructures by sonoelectrochemical anodization for visible light photocatalytic application, Materials Letters, 2010, 64(3): 435-438.
    [94] Zhang Z, Hossain M, Takahashi T, Self-assembled hematite (a-Fe_2O_3) nanotube arrays for photoelectrocatalytic degradation of azo dye under simulated solar light irradiation, Applied Catalysis B: Environmental, 2010, 95(3-4): 423-429.
    [95] Li F T, Liu Y, Liu R H, etal., Preparation of Ca-doped LaFeO_3 nanopowers in a reverse microemulsion and their visible light photocatalytic activity, Materials Letters, 2010, 64(2): 223-225.
    [96] Jia L, Li J, Fang W, H.Song, etal., Visible-light-induced photocatalyst based on C-doped LaCoO_3 synthesized by novel microorganism chelate method, Catalysis Communications, 2009, 10(8): 1230-1234.
    [97] U.Sulaeman, S.Yin, T.Sato, Visible light photocatalytic acivity induced by the carboxyl group chemically bonded on the surface of SrTiO_3, Applied Catalysis B: Environmental, 2011, 102(1-2): 286-290.
    [98] Lin H Y, Chen Y F, Chen Y W, Water splitting reaction on NiO/InVO_4 under visible light irradiation, International Journal of Hydrogen energy, 2007, 32(1): 86-92.
    [99] Zou Z, Ye J, Arakawa H, Photophysical and photocatalytic properties of InMO_4(M=Nb~(5+),Ta~(5+)) under visible light irradiation, Materals Research Bulletin, 2001,36(7-8): 1185-1193.
    [100] Chiou Y C, Kumar S, Wu J C S, Photocatalytic splitting of water on NiO/InTaO_4 catalysts prepared by an innovative sol-gel method, Applied Catalysis, 2009, 357(1): 73-78.
    [101] Hara M, Takata T, Kondo J N, etal., Photocatalytic reduction of water by TaON under visible light irradiation, Catalysis Today, 2004, 90(3-4): 313-317.
    [102] Fu H B, Zhang S C, Zhang L W, etal., Visible-light-driven NaTaO_(3-x)N)x catalyst prepared by a hydrothermal process, Materials Research Bulletin, 2008, 43(4): 864-872.
    [103] Hara M, Hitoki G, Takata T, etal., TaON and Ta3N5 as new visible light driven photocatalysts, Catalysis Today, 2003, 78(1-4): 555-560.
    [104]邹文,郝维昌,信心,等,不同晶型Bi_2O_3可见光光催化降解罗丹明B的研究,无机化学学报,2009,25(11):1971-1976.
    [105] Zhang L S, Wang W Z, Yang J, etal., Sonochemical synthesis of nanocrystallite Bi_2O_3 as a visible-light-driven photocatalyst, Applied Catalysis A: General, 2006, 308: 105-110.
    [106] Chen R, Shen Z R, Wang H, etal., Fabrication of mesh-like bismuth oxide single crystalline nanoflakes and their visible light photocatalytic activity, Journal of Alloys and Compounds, 2011, 509(5): 2588-2596.
    [107] Ai Z H, Huang Y, Lee S, etal., Monoclinicα-Bi_2O_3 photocatalyst for efficient removal of gaseous NO and HCHO under visible light irradiation, Journal of Alloys and Compounds, 2011, 509(5): 2044-2049.
    [108] Huang Q Q, Zhang S N, Cai C X, Zhou B,β- andα-Bi_2O_3 nanoparticles synthesized via microwave-assisted method and their photocatalytic activity towards the degradation of rhodamine B, Materials Letters, 2011, 65(6): 988-990.
    [109] Xie J M, Lu X M, Chen M, etal., The synthesis, characterization and photocatalytic activity of V(V), Pb(Ⅱ), Ag(Ⅰ) and Co(Ⅱ)-doped Bi_2O_3, Dyes and Pigments, 2008, 77(1): 43-47.
    [110] Song L M, Chen C, Zhang S J, Preparation and photocatalytic activity of visible light-sensitive selenium-doped bismuth sulfide, Powder Technology, 2011, 207 (1-3): 170-174.
    [111]涂海滨,张高科,铋系光催化剂研究进展,天津化工,2006,20(5):11-13.
    [112]李二军,陈浪,章强,等,铋系半导体光催化材料,化学进展,2010,22(12):2282-2289.
    [113] Bian Z F, Huo Y N, Zhang Y, etal., Aerosol-spay assisted assembly of Bi_2Ti2O7 crystals in uniform porous microspheres with enhanced photocatalytic activity, Applied Catalysis B: Environmental, 2009, 91(1-2): 247-253.
    [114] Hou J G, Jiao S Q, Zhu H M, etal., Bismuth titanate pyrochlore microspheres: Directed synthesis and their visible light photocatalytic activity, Journal of Solid State Chemistry, 2011, 184(1): 154-158.
    [115] Bian Z F, Ren J, Zhu J, etal., Self-assembly of Bi_xTi_(1-x)O_2 visible photocatalyst with core–shell structure and enhanced activity, Applied Catalysis B: Environmental, 2009, 89(3-4): 577-582.
    [116] Cheng H F, Huang B B, Dai Y, etal., Visible-light photocatalytic activity of the metastable Bi20TiO32 synthesized by a high-temperature quenching method, Journal of Solid State Chemistry, 2009, 182(8): 2274-2278.
    [117] Zhang H J, Chen G, Li X, Synthesis and visible light photocatalysis water splitting property of chromium-doped Bi_4Ti_3O_(12), Solid State Ionics, 2009, 180(36-39): 1599-1603.
    [118] Kudo A, Hijii S, H2 or O_2 evolution from aqueous solutions on layered oxide photocatalysts consisting of Bi~(3+) with 6s(2) configuration and d(0) transition metal ions, Chem. Lett., 1999, 28 (10): 1103-1104.
    [119] Wu J, Duan F, Zheng Y, Xie Y, Synthesis of Bi_2WO_6 Nanoplate-Built Hierarchical Nest-like Structures with Visible-Light-Induced Photocatalytic Activity, J. Phys. Chem. C, 2007, 111(34): 12866-12871.
    [120] Zhang L S, Wang W Z, Zhou L, et al. Bi_2WO_6 Nano- and Microstructures: Shape Control and Associated Visible- Light- Driven PhotocatalyticActivities, Small, 2007, 3(9): 1618-1625.
    [121] Shang M, Wang W Z, Xu H L, New Bi_2WO_6 Nanocages with High Visible- Light-Driven Photocatalytic Activities Prepared in Refluxing EG, Crystal Growth & Design, 2009, 9(2): 991-996.
    [122] Shang M, Wang W Z, Zhang L, etal, Bi_2WO_6 with significantly enhanced photocatalytic activities by nitrogen doping, Materials Chemistry and Physics, 2009, 120(1): 155-159.
    [123] Ren J, Wang W Z, Sun S M, etal., Enhanced photocatalytic activity of Bi_2WO_6 loaded with Ag nanoparticles under visible light irradiation, Applied Catalysis B: Environmental, 2009, 92(1-2): 50-55.
    [124] Xu J H, Wang W Z, Shang M, etal.,Efficient visible light induced degradation of organic contaminants by Bi_2WO_6 film on SiO_2 modified reticular substrate, Applied Catalysis B: Environmental, 2010, 93(3-4): 227-232.
    [125] Zhu S, Xu T, Fu H, etal., Synergetic Effect of Bi_2WO_6 Photocatalyst with C60 and Enhanced Photoactivity under Visible Irradiation, Environ. Sci. Technol, 2007, 41(17): 6234-6239.
    [126] Fu H, Zhang S, Xu T, etal., Photocatalytic Degradation of RhB by Fluorinated Bi_2WO_6 and Distributions of the Intermediate Products, Environ. Sci. Technol, 2008, 42(6): 2085-2091.
    [127] Dong F, Wu Q, Ma J, etal., Mild oxide-hydrothermal synthesis of different aspect ratios of monoclinic BiVO4 nanorods tuned by temperature, Phys. Status Solidi A, 2009, 206(1): 59-63.
    [128] Yin W, Wang W, Shang M, etal., BiVO_4 Hollow Nanospheres: Anchoring Synthesis, Growth Mechanism, and Their Application in Photocatalysis, European Journal of Inorganic Chemistry, 2009, 2009(29-30): 4379-4384.
    [129] Sun S, Wang W, Zhou L, etal., Efficient Methylene Blue Removal over Hydrothermally Synthesized Starlike BiVO_4, Ind. Eng. Chem. Res., 2009, 48(4): 1735-1739.
    [130] Xu H, Li H, Wu C, etal., Preparation, characterization and photocatalytic activity of transition metal-loaded BiVO_4, Materials Science and Engineering B, 2008, 147(1): 52-56.
    [131] Xu H, Wu C, Li H, etal., Synthesis, characterization and photocatalytic activities of rare earth-loaded BiVO_4 catalysts, Applied Surface Science, 2009, 256(3): 597-602.
    [132] Zhang A, Zhang J, Characterization and photocatalytic properties of Au/BiVO_4 composites, Journal of Alloys and Compounds, 2010, 491(1-2): 631-635.
    [133] Long M, Cai W, Cai J, etal., Efficient Photocatalytic Degradation of Phenol over Co3O_4/BiVO_4 Composite under Visible Light Irradiation, J. Phys. Chem. B, 2006, 110(41): 20211-20216.
    [134]李红花,李坤威,王浩,α-Bi2Mo3O12和γ-Bi_2MoO_6的水热合成及可见光催化性能,无机化学学报,25(3):512-516.
    [135] Xie L J, Ma J F, Xu G J, Preparation of a novel Bi_2MoO_6 flake-like nanophotocatalyst by molten salt method and evaluation for photocatalytic decomposition of rhodamine B, Materials Chemistry and Physics, 2008, 110 (2-3): 197-200.
    [136] Bi J H, Wu L, Li J, etal., Simple solvothermal routes to synthesize nanocrystalline Bi_2MoO_6 photocatalysts with different morphologies, Acta Materialia, 2007, 55(14): 4699-4705.
    [137] Cruz A, Alfaro S, Synthesis and characterization ofγ-Bi_2MoO_6 prepared by co- precipitation: Photoassisted degradation of organic dyes under vis-irradiation, Journal of Molecular Catalysis A: Chemical, 2010, 320(1-2): 85-91.
    [138] Yu J Q, KudoA. Hydrothermal Synthesis and Photocatalytic Property of 2- Dimensional Bismuth Molybdate Nanoplates, ChemistryLetters, 2005, 34(11): 1528- 1529.
    [139] Li H H, Liu C Y, Li K W, etal., Preparation, characterization and photocatalytic properties of nanoplate Bi_2MoO_6 catalysts, Journal of Materials Science, 2008, 43(2): 7026-7034.
    [140] Yin W Z, Wang W Z, Sun S M, Photocatalytic degradation of phenol over cage-like Bi_2MoO_6 hollow spheres under visible-light irradiation, Catalysis Communications, 2010, 11(7): 647-650.
    [141] Huang, W. L.; Zhu, Q, DFT calculations on the electronic structures of BiOX (X = F, Cl, Br, I) photocatalysts with and without semicore Bi 5dstates, J. Comput. Chem. 2009, 30(2): 183-190.
    [142]魏平玉,杨青林,郭林,卤氧化铋化合物光催化剂,化学进展,2009,21(9):1734-1741.
    [143] Shan Z C, Wang W D, Lin X P, etal., Photocatalytic degradation of organic dyes on visible-light responsive photocatalyst PbBiO_2Br, Journal of Solid State Chemistry, 2008, 181(6): 1361-1366.
    [144] Shan Z C, Lin X P, Liu M L, etal., A Bi-based oxychloride PbBiO_2Cl as a novel efficient photocatalyst, Solid State Sciences, 2009, 11(6): 1163-1169.
    [145] Sun S M, Wang W Z, Zhang L, etal., Visible Light-Induced Efficient Contaminant Removal by Bi5O7I, Environ.Sci.Technol, 2009,43(6):2005-2010.
    [146] Qin Z Z, Liu Z L, Liu Y B, etal., Synthesis of BiYO3 for degradation of organic compounds under visible-light irradiation, Catalysis Communications, 2009, 10(12): 1604-1608.
    [147]丁建军,可见光响应型光催化剂的制备、结构和性能研究,博士学位论文,中国科学技术大学,2009.
    [148] Zhong X H, Feng Y Y, Knoll W, etal., Alloyed Zn_xCd_(1-x)S Nanocrystals with Highly Narrow Luminescence Spectral Width, J. Amer. Chem. Soc, 2003, 125 (44): 13559-13563.
    [149] Liu H J, ZhuY C, Synthesis and characterization of ternary chalcogenide ZnCdS 1D nanostructures, Mater. Lett, 2008, 62 (2): 255-257.
    [150] Wang L Z, Jiang Y, WangC, etal., Composition-controllable synthesis and optical properties of non-integral stoichiometry compound Zn_xCd_(1-x)S nanorods, J.Alloys Compd, 2008,454 (1-2):255-260.
    [151] Li Y C, Ye M F, YangC H, etal., Composition- and Shape- Controlled Synthesis and Optical Properties of Zn_xCd_(1-x)S Alloyed Nanocrystals, Adv. Funct. Mater, 2005, 15 (3): 433-441.
    [152] Wang W Z, Germanenko I, El-Shall M S, Room-Temperature Synthesis and Characterization of Nanocrystalline CdS, ZnS, and Zn_xCd_(1-x)S, Chem. Mater. 2002,14 (7): 3028-3033.
    [153] Wada Y, Niinobe D, Kaneko M, etal., Synthesis of Zn_xCd_(1-x)S Nanoparticles in Porous Vycol Glass by Reaction of Single-source Precursors, Chem. Lett, 2006,35 (1): 62-63.
    [154] Jin C Q, Zhong W, Zhang X, etal., Synthesis and Wavelength-Tunable Luminescence Property of Wurtzite Zn_xCd_(1-x)S Nanostructures, Cryst. Growth Des, 2009, 9 (11): 4602-4606.
    [155] Liu Y, Zapien J A, Shan Y Y, etal.,Wavelength–Controlled Lasing in Zn_xCd_(1-x)S Single-Crystal Nanoribbons, Adv. Mater, 2005,17(11):1372-1377.
    [156] Zhai T Y, Gu Z J, Yang W S, etal., Fabrication, structural characterization and photoluminescence of single-crystal Zn_xCd_(1-x)S zigzag nanowires, Nanotechnology, 2006, 17(18): 4644-4649.
    [157] Issei T, Hideki K, Hisayoshi K, etal., Photocatalytic H_2 evolution reaction from aqueous solutions over band structure controlled (AgIn)xZn2(_(1-x))S2 solid solution photocatalysts with visible-light response and their surface nanostructures, J. Amer. Chem. Soc, 2004,126 (41):13406–13413.
    [158] Nien Y T, Chen P W, Chen I G, Synthesis and characterization of Zn_xCd_(1-x)S: Cu, Cl red electroluminescent phosphor powders, J. Alloys Compd, 2008, 462 (1-2): 398–403.
    [159] Kudo A, Sekizawa M, Photocatalytic H_2 evolution under visible light irradiation on Ni-doped ZnS photocatalyst, Chem. Commun, 2000,1371-1372.
    [160] Kudo A, Sekizawa M, Photocatalytic H_2 evolution under visible light irradiation on Zn_(1-x)Cu+xS solid solution , Catal.Lett, 1999,58(4):241-243.
    [161] Liu G J, Zhao L, Ma L J, etal., Photocatalytic H_2 evolution under visible light irradiation on a novel CdxCuyZn _(1-x-y)S catalyst, Catal.Commun, 2008, 9(1): 126-130.
    [162] Xing C J, Zhang Y J, Yan W, etal., Band structure-controlled solid solution of Cd_(1-x) Zn_xS photocatalyst for hydrogen production by water Splitting, Int.J. Hydrogen Energy, 2006, 31(14): 2018-2024.
    [163] Wu T X, Liu G M, Zhao J C, etal., Photoassisted Degradation of Dye Pollutants. V. Self-Photosensitized Oxidative Transformation of Rhodamine B under Visible Light Irradiation in Aqueous TiO_2 Dispersions, J. Phys. Chem. B, 1998, 102(30): 5845-5851.
    [164] Tsunoda Y, Sugimoto W, Sugahara Y, Intercalation Behavior of n-Alkylamines into a Protonated Form of a Layered Perovskite Derived from Aurivillius Phase Bi2SrTa2O9, Chem. Mater, 2003,15(3):632-635.
    [165] Xia J X, Li H M, Luo Z J, etal., Self-assembly and enhanced optical absorption of Bi2WO6 nests via ionic liquid-assisted hydrothermal method, Materials Chemistry and Physics, 2010,121(1-2):6-9.
    [166] Hartmanova M, Le M T, Driessche I,etal., Phase Composition and Charge Transport in Bismuth Molybdates, Russian Journal of Electrochemistry, 2005,41(5):455-460.
    [167] Murugan R.Investigation on ionic conductivity and Raman spectra ofγ-Bi_2MoO_6, Physica B: Condensed Matter,2004,352(1-4):227-232.
    [168] Sim L T, Lee C K, West A R. High oxide ion conductivity in Bi_2MoO_6 oxidation catalyst, J. Mater. Chem,2002,12:17-19.
    [169] Jung J C, Kim H, Kim Y S,etal., Catalytic performance of bismuth molybdate catalysts in the oxidative dehydrogenation of C4 raffinate-3 to 1,3- Butadiene, Applied Catalysis A: General,2007,317(2):244-249.
    [170]Ma D K, Huang S M, Chen W X, etal., Self-Assembled Three-Dimensional Hierarchical Umbilicate Bi2WO6 Microspheres from Nanoplates: Controlled Synthesis, Photocatalytic Activities, and Wettability, J. Phys. Chem. C,2009, 113(11):4369-4374.
    [171] Zhang L, Xu T, Zhao X, etal., Controllable synthesis of Bi2MoO6 and effect of morphology and variation in local structure on photocatalytic activities, Applied Catalysis B: Environmental, 2010, 98(3-4): 138-146.
    [172] Shimodaira Y, Kato H, Kobayashi H, etal., Photophysical Properties and Photocatalytic Activities of Bismuth Molybdates under Visible Light Irradiation, J. Phys. Chem. B, 2006, 110(36):17790-17797.
    [173]Yu J G, Xiong J F, Cheng B, etal., Hydrothermal preparation and visible-light photocatalytic activity of Bi2WO6 powders, Journal of Solid State Chemistry, 2005,178(6):1968-1972.
    [174]Xu C, Wei X, Guo Y, etal., Surfactant-free synthesis of Bi2WO6 multilayered disks with visible-light-induced photocatalytic activity, Materials Research Bulletin, 2009, 44(8): 1635-1641.
    [175]An H Z, Du Y, Wang T M, etal., Photocatalytic properties of BiOX (X = Cl, Br, and I), Rare Metals, 2008, 27(3): 243-250.
    [176] Chang X, Huang J, Cheng C,etal., BiOX (X=Cl, Br, I) photocatalysts prepared using NaBiO_3 as the Bi source: Characterization and catalytic performance, Catalysis Communications, 2010, 11(5): 460-464.
    [177] Shang M, Wang W, Zhang L, Preparation of BiOBr lamellar structure with high photocatalytic activity by CTAB as Br source and template, Journal of Hazardous Materials, 2009, 167(1-3): 803-809.
    [178] Zhang L, Cao X F, Chen X T, etal. BiOBr hierarchical microspheres: Microwave-assisted solvothermal synthesis, strong adsorption and excellent photocatalytic properties, Journal of Colloid and Interface Science, 2011, 354(2): 630-636.
    [179] Ai Z, Ho W, Lee S, etal., Efficient Photocatalytic Removal of NO in Indoor Air with Hierarchical Bismuth Oxybromide Nanoplate Microspheres under Visible Light, Environ Sci Technol, 2009, 43(11): 4143-4150.
    [180] Zhou J K, Zou Z G, Ray A K, etal., Preparation and characterization of polycrystalline bismuth titanate Bi_(12)TiO_(20) and its photocatalytic properties under visible light irradiation, Ind. Eng. Chem. Res, 2007, 46(3): 745-749.
    [181] Qin Z Z, Liu Z L, Liu Y B, etal., Synthesis of BiYO_3 for degradation of organic compounds under visible-light irradiation, Catal. Commun, 2009, 10(12): 1604-1608.
    [182]Zhang K, Liu C, Huang F, etal., Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst, Appl. Catal. B, 2006, 68(3-4): 125-129.
    [183] Zhang J, Shi F J, Lin J, etal., Self-assembled 3-D architectures of BiOBr as a visible light-driven photocatalyst, Chem Mater, 2008, 20(9): 2937-2941.
    [184]Villoria J A, Yerga R M N, Al-Zahrani S M, etal., Photocatalytic Hydrogen Production on Cd1-xZnxS Solid Solutions under Visible Light: Influence of Thermal Treatment, Ind. Eng. Chem. Res, 2010, 49(15): 6854-6861.
    [185] Zhang X, Ai Z H, Jia F L, etal., Generalized one-pot synthesis, characterization, and photocatalytic activity of hierarchical BiOX (X = Cl, Br, I) nanoplate microspheres, J Phys Chem C, 2008, 112(3): 747-753.
    [186]Yu J, Liu, S, Yu H, Microstructures and photoactivity of mesoporous anatase hollow microspheres fabricated by fluoride-mediated self-transformation, J. Catal, 2007, 249(1): 59-66.
    [187]Tang J, Ye J, Photocatalytic and photophysical properties of visible-light-driven photocatalyst ZnBi_(12)O_20, Chem. Phys. Let,. 2005, 410(1-3): 104-107.
    [188]Huang Y, Ai Z H, Ho W K, etal., Ultrasonic Spray Pyrolysis Synthesis of Porous Bi_2WO_6 Microspheres and Their Visible-Light-Induced Photocatalytic Removal of NO, J. Phys. Chem C, 2010, 114(14): 6342-6349.
    [189]Shang M, Wang W, Xu H, New Bi_2WO_6 Nanocages with High Visible-Light-Driven Photocatalytic Activities Prepared in Refluxing EG, Cryst. Growth Des, 2009, 9(2): 991-996.
    [190]Fu H, Pan C, Yao W, etal., Visible-Light-Induced Degradation of Rhodamine B by Nanosized Bi_2WO_6, J. Phys. Chem. B, 2005, 109(47): 22432-22439.
    [191]Inoue T, Fujishima A, Konishi S, Honda K, Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powers, Nature,1979, 277, 637-638.
    [192]Kaneco S, Kurimoto H, Ohta K, etal., Photocatalytic reduction of CO_2 using TiO_2 powders in liquid medium, Journal of Photochemistry and Photobiology A: Chemistry, 1997,109(1): 59-63.
    [193]Tennakone K, Photoreduction of carbonic acid by mercury coated n-titanium dioxide, Sol. Energy. Mater. 1984, 10(2): 235-238.
    [194]Ishitani O, Inoue C, Suzuki Y, etal., Photocatalytic reduction of carbon dioxide to methane and acetic acid by an aqueous suspension of metal-deposited TiO_2, J.Photochem. Photobiol. A: Chem, 1993, 72(3): 269-271.
    [195]Anpo M, Yamashita H, Ichinashi Y, etal., Photocatalytic reduction of CO_2 with H_2O on various titanium oxide catalysts. Journal of Electroanalytical Chemistry,1995,396(1-2): 21-26.
    [196]Tseng I H, Chang W C, Wu J C S, Photoreduction of CO_2 using sol-gel derived titania and titania-supported copper catalysts, Appl. Catal. B: EnViron, 2002, 37(1): 37-48.
    [197] Tseng I H, Wu J C S, Chou H Y, Effects of sol-gel procedures on the photocatalysis of Cu/TiO_2 in CO_2 photoreduction. J. Catal., 2004, 221(2): 432-480.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700