基于代谢工程理论构建酵母菌株提高乙醇产量的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文依据基元模式分析预测结果,提出构建工程菌株的代谢途径修饰策略。本工作以工业菌株KAM-2(MATαura3)为出发菌株分别缺失基因FPS1、GPD1、GPD2和过量表达基因GLT1,依据酵母等位基因分离方法获得两基因工程菌株KAM-14(MATa ura3 fps1Δ::REPEAT gpd1Δ::REPEAT PpGK1-GLT1)和KAM-15( MATa ura3 fps1Δ::REPEAT gpd2Δ::REPEAT PpGK1-GLT1)。
     对KAM-14、KAM-15与KAM-2进行厌氧发酵实验,测定发酵菌株的OD值、葡萄糖消耗量、甘油、乙醇、乙酸和丙酮酸的生成量。实验结果表明,与KAM-2相比,KAM-14和KAM-15发酵的OD值和耗糖量差别不大。同时KAM-14和KAM-15的甘油生成量分别降低39.21%和37.02%,乙醇产量则分别提高12.65%和11.64%;乙酸和丙酮酸产量都显著降低。
     依据酵母代谢通量模型分别计算在厌氧批发酵条件下KAM-14和KAM-15与KAM-2的代谢通量分布,工程菌株的乙醇代谢通量都有所提高。结果表明,与对照菌KAM-2相比,KAM-14和KAM-15具有更优良的发酵性能,说明本研究提出的代谢途径修饰策略是正确的。
     本论文在工业菌株和实验室菌株上分别缺失SYM1和过量表达基因SYM1。实验结果表明,过量表达具有耐高温高乙醇的SYM1基因工程菌株未明显改善其生长表型。
In this investigation we brought forward the metabolic pathway modification strategies to construct engineering strains of the Saccharomyces cerevisiae based on the computational predication results of elementary flux mode analysis. In this work, fps1Δ, gpdΔand overexpression of GLT1 mutant strains were constructed based on the control industrial strain KAM-2(MATαura3),as a consequence by mating, sporulating and dissecting genetically modified haploid strains, two improved engineered strains KAM-14(MATa ura3 fps1Δ::REPEAT gpd1Δ::REPEAT PpGK1-GLT1) and KAM-15(MATa ura3 fps1Δ::REPEAT gpd2Δ::REPEAT PpGK1-GLT1) were constructed.
     Anaerobic batch fermentation experiments were carried out with KAM-14, KAM-15 and KAM-2, meanwhile their absorbance of the culture, consumption of glucose, production of glycerol, ethanol, acetate and pyruvate were monitored in time courses of the experiments. The experimental results showed that the OD and consumption of glucose in KAM-14 and KAM-15 were similar to KAM-2. Meanwhile, compared to KAM-2, there were 39.21% and 37.02% reduction in glycerol formation, ethanol production increased by 12.65% and 11.64% for KAM-14 and KAM-15, and dramatic reduction in the formations of acetate and pyruvate, respectively.
     According to metabolic flux model of Saccharomyces cerevisiae, the metabolic flux distributions of KAM-14, KAM-15 and KAM-2 under anaerobic fermentation conditions were calculated, respectively. The both increased ethanol metabolic flux of engineered strains had shown that they have better fermentation ability and the metabolic pathway modification strategies were rational.
     Sym1Δand overexpression of gene SYM1 mutant strains were constructed based on the corresponding engineered strains and laboratorial strains, respectively. The experimental results indicated that overexpression of SYM1 engineered strain has not brought about obviously improved growth phenotypes.
引文
[1] Nissen T L, Hamann C W, Kielland-Brandt M C, et al., Anaerobic and aerobic batch cultivations of Saccharomyces cerevisiae mutants impaired in glycerol synthesis, Yeast, 2000, 16: 463-474.
    [2] Lin Y, Tanaka S, Ethanol fermentation from biomass resources: current state and prospects, Appl. Microbiol. Biotechnol, 2005, New York: Springer-Verlag.
    [3] Kadar Z, Szengyel Z, Reczey K, Simultaneous saccharification and fermentation(SSF)of industrial wastes for the production of ethanol, Industrial Crops and Products, 2004, 20(1): 103-110.
    [4] Karin O, a Jari V, Matti S A, et al, High temperature enzymatic prehydrolysis prior to sim ultaneous saPcharification an d fermentation of steam pretreated corll stover for ethanol production. Enzyme and Microbial Technology, 2007, 40(4): 607-613.
    [5] Bro C, Regenberg B, Forster J, In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production, MeTab. Eng., 2006, 8(2):102-111.
    [6] Nissen T L, Kielland-Brandt M C, Nielsen J, et al, Optimization of ethanol production in Saccharomyces cerevisiae by metabolic engineering of the ammonium assimilation, MeTab. Eng., 2000, 2: 69-77.
    [7] Nissen T L, Schulze U, Nielsen J, et al, Flux distributions in anaerobic, glucose-limited continuous cultures of Saccharomyces cerevisiae, Microbiology, 1997, 143: 203-218.
    [8] Larsson C, Pahlman I, Ansell R, et al, The Importance of the glycerol 3-phosphate shuttle during aerobic growth of Saccharomyces cerevisia, Yeast, 1998, 14: 347-357.
    [9] Tama′s M J, Luyten K, Sutherland F C W, et al, Fps1p controls the accumulation and release of the compatible solute glycerol in yeast osmoregulation, Molecular Microbiology, 1999, 31(4): 1087-1104.
    [10] Toh T H, Kayingo G, Implications of FPS1 deletion and membrane ergosterol content for glycerol efflux from Saccharomyces cerevisiae, FEMS Yeast Research, 2001, 1: 205-211.
    [11] Oliveira R, Lages F, Lucas M SG, et al, Fps1p channel is the mediator of the major part of glycerol passive diffusion in Saccharomyces cerevisiae: artifacts and re-definitions, Biochimica et Biophysica Acta, 2003, 1613: 57-71.
    [12] Santos M M dos, Thygesen G, K?tter P, et al., Aerobic physiology of redox-engineered Saccharomyces cerevisiae strains modified in the ammonium assimilation for increased NADPH availability,FEMS Yeast Research, 2003, 4: 59-68.
    [13] Hohmann S, Osmotic stress signaling and osmoadaptation in yeasts, Microbiology and Molecular Biology Reviews, 2002, 66: 300–372.
    [14] Engel A, Walz T, Agre P, The aquaporin family of membrane water channels, Curr. Opin. Struct. Biol., 1994, 4: 545-553.
    [15] Chrispeels M J, Agre P, Aquaporins: water channel proteins of plant and animal cells, Biochemical Science, 1994, 19: 421-519.
    [16] Martin H, Arroyo J, Sanchez M, et al, Activity of the yeast MAP kinase homologue Slt2 is critically required for cell integrity at 37°C, Molecular and general genetics, 1993, 241: 177-184.
    [17] Sutherland F C W, Lages F, Lucas C, et al, Characteristics of Fps1p-dependent and–independent glycerol transport in Saccharomyces cerevisiae, Journal of Bacteriology, 1997, 179: 7790-7795.
    [18] Valadi H, Larsson C, Gustafsson L, Improved ethanol production by glycerol-3-phosphate dehydrogenase mutants of Saccharomyces cerevisiae, Appl. Microbiol. Biotechnol., 1998, 50 (4): 434-439.
    [19] Ansell R, Adler L, The effect of iron limitation on glycerol production and expression of the isogenes for NAD-dependent glycerol 3-phosphate dehydrogenase in Saccharomyces cerevisiae, FEBS Letters, 1999, 461: 173-177.
    [20] Oliveira R, Lages F, Lucas M SG, et al, Fps1p channel is the mediator of the major part of glycerol passive diffusion in Saccharomyces cerevisiae: artifacts and re-definitions,Biochimica et Biophysica Acta, 2003, 1613: 57-71.
    [21] Remize F, Barnavon L, Dequin S, Glycerol export and glycerol-3-phosphate dehydrogenase, but not glycerol phosphatase, are rate limiting for glycerol production in Saccharomyces cerevisiae, MeTab. Eng., 2001, 3: 301-312.
    [22] Eriksson P, Andre L, Ansell R, et al, Cloning and characterization of GPD2, a second gene encoding sn-glycerol-3-phosphate dehydrogenase (NAD+) in Saccharomyces cerevisiae, and its comparison with GPD1, Molecular Microbiology, 1995, 17(1): 95-107.
    [23] Albertyn J, Hohmann S, Thevelein J M, et al, GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway, Molecular and Cellular Biology, 1994, 14: 4135-4144.
    [24] Yang X X, Kick C T, Maurer M M, et al, The molecular chaperone Hsp90 is required for high osmotic stress response in Saccharomyces cerevisiae, FEMS Yeast Research, 2006, 6: 195-204.
    [25] Nevoigt E, Stahl U, Osmoregulation and glycerol metabolism in the yeast Saccharomyces cerevisiae, FEMS Microbiology Reviews, 1997, 21: 231-241.
    [26] Wojda I, Alonso-Monge R, Bebelman J P, et al, Response to high osmotic conditions and elevated temperature in Saccharomyces cerevisiae is controlled by intracellular glycerol and involves coordinate activity of MAP kinase pathways, Microbiology, 2003, 149: 1193-1204.
    [27] Ansell R, Granath K, Homann S, et al, The two isoenzymes for yeast NAD+-dependent glycerol-3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation, EMBO J, 1997, 16: 2179-2187.
    [28]张爱利,利用基因工程技术限制酿酒酵母甘油生物合成提高乙醇发酵效率,[硕士学位论文],天津;天津大学,2005年。
    [29] Anderlund M, Radstrom P, Hahn-Hagerdal B, Expression of bifunctional enzymes with xylose reductase and xylose dehydrogenase activity in Saccharomyces cerevisiae alters product formation during xylose fermentation, MeTab Eng, 2001, 3(3): 226-235.
    [30] Aristidou A, Penttila M, Metabolic engineering applications to renewable resource utilization, Current Opinion in Biotechnology, 2000, 11: 187-198.
    [31] Bailey J E, Toward a science of metabolic engineering, Scicence, 1991, 252: 1668-1675.
    [32] Bakker B M, OverKAMp K M, Antonius J A van Maris, et al, Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae, FEMS Microbiology Reviews, 2001, 25: 15-37.
    [33] Nissen T L, Hamann C W, Kielland-Brandt M C, et al, Anaerobic and aerobic batch cultivations of Saccharomyces cerevisiae mutants impaired in glycerol synthesis,Yeast, 2000, 16: 463-474.
    [34] Roca C, Nielsen J, Olsson L, Metabolic engineering of ammonium assimilation in xylose-fermenting Saccharomyces cerevisiae improves ethanol production, Applied and Environmental Microbiology, 2003, 69(8): 4732-4736.
    [35] Riego L, Avendano A, DeLuna A, GDH1 expression is regulated by GLN3,GCN4, and HAP4 under respiratory growth, Biochemical and Biophysical Research Communications, 2002, 293: 79-85.
    [36] Schure E G ter, Riel N A W van, Verrips C T, The role of ammonia metabolism in nitrogen catabolite repression in Saccharomyces cerevisiae, FEMS Microbiology Review, 2000, 24: 67-83.
    [37] Trott A, Morano K A, SYM1 Is the Stress-Induced Saccharomyces cerevisiae Ortholog of the Mammalian Kidney Disease Gene Mpv17 and Is Required for Ethanol Metabolism and Tolerance during Heat Shock Eukaryotic, Cell, 2004, 3: 620-631.
    [38] Trotter E W, Kao C M, Berenfeld L, et al., Misfolded proteins are competent to mediate a subset of the responses to heat shock in Saccharomyces cerevisiae, J. Biol. Chem., 2002, 277: 44817–44825.
    [39] Aguilera A, Benitez T, Ethanol-sensitive mutants of Saccharomyces cerevisiae. Arch. Microbiol., 1986, 143: 337-344.
    [40] Costa V, Reis E, Quintanilha A, et al., Acquisition of ethanol tolerance in Saccharomyces cerevisiae: the key role of the mitochondrial superoxide dismutase, Arch. Biochem. Biophys., 1993, 300: 608-614.
    [41] Bailey J E, Toward a science ofmetabolic engineering, Science, 1991, 252: 1668-1674.
    [42] Cameron D c, Tong I-T, Cellular and metabolic engineering, Applied Biochemistry and Biotechnology, 1993, 38: 105-140.
    [43] Stephanopoulos G N,Aristidou A A, Nielsen J, Metabolic Enginering: Principles and Methodologies, San Diego: Academic Press, 1998.
    [44]赵学明,王靖宇,陈涛等,后基因组时代的代谢工程:机遇与挑战。生物加工过程,2004,2:1-7。
    [45] Chotani G, The commercial production of chemicals using pathway engineering, Biochimica et Biophysica Acta (BBA), 2000, 1543: 434-455.
    [46] Zhang M, Eddy C, Deanda K, et a1., Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis, Science, l995, 267: 240-243.
    [47] Dien B S, Cotta M A, Jefries T W, Bacteria engineered for fuel ethanol production: current status, Appl. Microbiol. Biotechnol., 2003, 63: 258-266.
    [48] Steyn A J C, Pretotions I S, Co-expression of a Saccharomyces diastaticus glucoamylase-encoding gene and B Bacillus amyloliquefaciens alpha-amylase-encoding gene in Saccharomyces cerevisiae, 1991, 100: 85-93.
    [49] Shigeehi H, Koh J, Fujita Y, et a1., Direct production of ethanol from raw corn starch via fermentation by use of a novel surfaceengineered yeast strain codisplaying glucoamylase and alpha-amylase, Appl. Environ. Microbiol., 2004, 70: 5037-5040.
    [50] Papin J A, Stelling J, Price N D, et al., Comparison of network-based pathway analysis methods, TRENDS in Biotechnology, 2004, 22: 400-405.
    [51] Hong S H, Kim J S, Lee S Y, et al., The genome sequence of the capnophilic rumen bacterium Mannheimia succiniciproducens, Nature biotechnology, 2004, 20: 1275-1281.
    [52] Schilling C H, Letscher D, Palsson B O, Theory for the systemic definition of metabolic pathways and their use in interpreting metabolic function from a pathway-oriented perspective, Journal of Theoretical Biology, 2000, 203: 229-248.
    [53]何锋,马红武,赵学明等,生物信息学用于代谢网络研究的进展与展望,化工学报,2004,10:1-9。
    [54] Fell D A, Metabolic control analysis: a survey of its theoretical and experimental development, Biochemical Journal, 1992, 286: 313-330.
    [55] Schilling C H, Palsson B O, Assessment of the metabolic capabilities of Haemophilus influenzae Rd through a genome-scale pathway analysis, Journal of Theoretical Biology, 2000, 203: 249-283.
    [56] Schilling C H, Covert, Famili I, et al., Genome-scale metabolic model of Helicobacter pylori 26695, Journal of Bacteriology, 2002, 184: 4582-4593.
    [57] Papin J A, Price N D, Wiback S J, Metabolic pathways in the post-genome era, Trends in Biochemical Sciences, 2003, 28 (5): 250-258.
    [58] Pfeiffer T, Sanchez-Valdenebro I, Nufio J C, et al., METATooL: for Studying Metabolic Networks, Bioinformatics, 1999, 15: 251-257.
    [59] Price N D, Papin J A, Palsson B O, Determination of redundancy and systems properties of Helicobacter pylori’s metabolic network using genome-scale extreme pathway analysis, Genome Research, 2002, 12: 760-769.
    [60] Carlson R, Fell D, Sriene F, Metabolic Pathway Analysis of Recombinant Yeast for Rational Strain Development, Biotechno1. Bioeng., 2002, 79: 121-134.
    [61] Klamt S, Gilles E D, Minimal cut sets in biochemical reaction networks, Bioinformatics, 2004, 20 (2): 226-234.
    [62] Liao J C, Hou S Y, Chao Y P, Pathway Analysis, Engineering, and Physiological Consideration for Redirecting Central Metabolism, Biotechno1. Bioeng., 1996, 52: 129-140.
    [63] Stelling J, Klamt S, Bettenbrok K, et al., Metabolic Network Structure Determines Key Aspects of Functionality and Regulation, Nature, 2002, 420: 190-193.
    [64] Forster J, Gombert A K, Nielsen J, A Functional Genomics Approach Using Metabolomics and in Silico Pathway Analysis, Biotechno1. Bioeng., 2002, 79: 703-712.
    [65]蒋达,王永华,李燕等,基元通量模式预测酵母生长现象,高等学校化学学报,2006,9:1683-1685。
    [66] Bonarius H P J, Timmerarends B, Metabolic flux distributions in corynebacterium glutmicum during growth and lysine overproduction, Biotechnology and Bioengineering, 1996, 50: 299.
    [67] Kleijn R J, Geertman J M, Nfor B K, et al., Metabolic flux analysis of a glycerol-overproducing Saccharomyces cerevisiae strain based on GC-MS, LC-MS and NMR-derived 13C-labelling data, FEMS Yeast Research, 2007, 7: 216-231.
    [68]陈涛,王靖宇,周世奇等,基因组改组及代谢通量分析在产核黄素Bacillus subtilis性能改进中的应用,化工学报,2004,11:1842-1848。
    [69]徐世民,李鑫钢,代海霞等,代谢通量分析优化米根霉R1021发酵生产L(+)-乳酸过程,无锡轻工大学学报,2002,6:554-558。
    [70]孙乃霞,董庆霖,赵学明,高产虾青素红法夫酵母的选育及代谢通量分析,生物加工过程,2006,1:54-60。
    [71]卫功元,李寅,堵国成等,产朊假丝酵母分批发酵生产谷胱甘肽的代谢通量分析,化工学报,2006,57:1410-1415。
    [72] Allen J, Davey H M, Broadhurst D, et al., High-throughput characterisation of yeast mutants for functional genomics using metabolic footprinting, Nat. Biotechnol., 2003, 2: 692.
    [73] Stephanopoulos G, Alper H, Moxley J, Exploiting biological complexity for strain improvement through systems biology, Nat. Biotechnol., 2004, 22: 1261-1267.
    [74] Schuster S, Dandekar T, Fell D A, Detection of elementary flux modes in biochemical networks: a promising tool for pathway analysis and metabolic engineering, Trends Biotechnol, 1999, 17: 53-60.
    [75] Cakir T, Kirdar B, Ulgen K O, Metabolic pathway analysis of yeast strengthens the bridge between transcriptomics and metabolic networks, Biotechnol. Bioeng., 2004, 86: 251-60.
    [76] Klamt S, Stelling J, Ginkel M, et al, Flux analyzer: Exploring structure, pathways and flux distributions in metabolic networks on interactive flux maps, Bioinformatics, 2003, 19: 261-269.
    [77] Palsson B O, Price N D, Papin J A, Development of network-based pathway definitions: the need to analyze real metabolic networks, Trends Biotechnol., 2003, 21: 195-198.
    [78] Schuster S, Fell D, Dandekar T A, general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks, Nat. Biotechnol., 2000, 18: 326-332.
    [79] Price N D, Reed J L, Palsson B O, Genome-scale models of microbial cells: evaluating the consequences of constraints, Nat. Rev. Microbiol., 2004, 2: 886-897.
    [80] Gombert A K, Dos Santos M M, Christensen B, et al., Network identification and flux quantification in the central metabolism of Saccharomyces cerevisiae under different conditions of glucose repression, J. Bacteriol., 2001, 183: 1141-1451.
    [81] Stückrath I, Lange H C, K?tter P, et al., Characterization of null mutants of the glyoxylate cycle and gluconeogenic enzymes in S. cerevisiae through metabolic network modeling verified by chemostat cultivation, Biotechnol. Bioeng., 2002, 77: 61-72.
    [82] Hedfalk K, Bill R M, Jonathan G L, et al., A regulatory domain in the C-terminal extension of the yeast glycerol channel Fps1p, J. Biol. Chem., 2004, 158: 14954-14960.
    [83] Ferreira C, van Voorst F, Martins A, et al., A member of the sugar transporter family, Stlp is the glycerol/H+ symporter in Saccharomyces cerevisiae, Mol. Biol. Cell, 2005, 16: 2068-2076.
    [84] Karlgren S, Pettersson N, Nordlander B, et al., Conditional osmotic stress in yeast: a system to study transport through aquaglyceroporins and osmostress signaling, J. Biol. Chem., 2005, 280: 7186-7193.
    [85] Jin Y S, Jeffries T W, Stoichiometric network constraints on xylose metabolism by recombinant Saccharomyces cerevisiae, MeTab Eng., 2004, 6: 229-238.
    [86] Meaden P G, Dickinson F M, Mifsud A, et al., The ALD6 gene of Saccharomyces cerevisiae encodes a cytosolic, Mg2+ activated acetaldehyde dehydrogenase, Yeast, 1997, 13: 1319-1327.
    [87] Forster J, Famili I, Fu P, et al., Genomescale reconstruction of the Saccharomyces cerevisiae metabolic network, Genome Res., 2003, 13: 244–253.
    [88]孔庆学,酿酒酵母遗传操作降低甘油合成提高乙醇产量的研究,[博士学位论文],天津;天津大学,2006年。
    [89] Sambrook J, Fritsch E F, Maniatis T, Molecular Cloning: a Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor., NY, 1989.
    [90] Markus J, Tamás K, Luyten F, et al., Fps1p chatrols the accumulation and release of the compatible solute glycerol in yeast osmoregulation, Molecular Microbiology, 1999, 31 (4): 1087-1104.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700