四种植物病原真菌对多菌灵的抗药性分子遗传机制及其检测技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苯并咪唑类杀菌剂作为一类高效、广谱内吸性杀菌剂在生产上应用,解决了保护性杀菌剂的环境毒性问题,同时也降低了对用药技术和用药时间的要求,提高了病害的防效。由于这类药剂的高度专化性,作用位点单一,加上施用频率高,使用2~3年后许多植物病原真菌很快会出现抗药性问题。苯并咪唑类杀菌剂是通过与病原菌β-微管蛋白结合,抑制微管的功能,阻止细胞的有丝分裂,抑制病原菌生长。病原菌抗药性的产生是因为细胞中β-微管蛋白由于控制该蛋白的基因发生突变,使蛋白三维构象改变,从而失去了与药剂分子的亲和性。近年来大量研究证明,除引起马铃薯储藏期干腐病的Gibberella pulicaris外,β-微管蛋白基因的198或200位氨基酸密码子的点突变是导致大多数病原菌产生抗药性的主要原因。
     核盘菌(Sclerotinia sclerotiorum)、禾谷镰孢霉(Fusarium graminearum)、炭疽菌(Colletotrichum gloeosporiodies)和葡萄孢霉(Botrytis cinerea)引起的多种作物炭疽病和灰霉病是中国常见的重要农作物和蔬菜病害。长期以来对这4种病害的防治主要采用苯并咪唑类或与不同作用机制药剂复配的杀菌剂。1987、1992和1996年在田间分别检测到B.cinerea、F.graminearum和S.sclerotiorum对多菌灵的抗药性菌株。
     通过室内菌落直径法测定这四种植物病原真菌对苯并咪唑类杀菌剂和乙霉威的敏感性。结果表明,小麦上F.graminearum的敏感菌株(MBC~S)对多菌灵(MBC)的EC_(50)值小于1μg/mL,无论是田间或诱导抗性菌株(MBC~R)的EC_(50)值均在10μg/mL左右,MBC~R菌株与乙霉威(NPC)间不存在负交互抗药性。2002年采集、分离获得江苏省通州市4乡镇油菜上的223个S.sclerotiorum菌株,对MBC和NPC的敏感性测定得到2种表型,其中143个菌株表现对多菌灵敏感而对乙霉威高抗(MBC~SNPC~(HR)),其余80个菌株表现对多菌灵高抗而对乙霉威敏感(MBC~(HR)NPC~S),且MBC~(HR)NPC~S菌株对7~28℃温度范围不敏感。2002年采集、分离获得江苏省江阴市番茄上的14个B.cinerea菌株,对MBC和NPC的敏感性测定得到2种表型,其中2个菌株表现MBC~SNPC~(HR),其余12个菌株表现MBC~(HR)NPC~S。2001年从江苏省盐城地区采集分离到辣椒上的17个C.
    
    摘要
    gloeosrorio苗e:菌株,其中l个、MBeH勺护es菌株、l个MBeL物PeR菌株和15
    个MBesNPeHR菌株.
     本研究通过根据其他相关真菌p一微管蛋白的保守序列合成的3对兼并性引
    物扩增获得F名7aminearum、s.:cleroriorum、丑.。inerea与抗多菌灵相关的卜微管
    蛋白全基因,通过其中的1对兼并性引物Bl和B3获得了c gloeosPoriodiesp-
    微管蛋白基因的部分序列。其中F graminearum的口一微管蛋白基因全长163lbp,
    包含3个内含子,编码447个氨基酸,与其他病原线状真菌除内元数目不同外,
    具有高度同源性一氮基酸同源性达95.120/to99.3o%.5:clerotiorum的卜微管蛋
    白基因全长1 685bp,包含4个内元,相应的编码447个氨基酸,氛基酸序列同源
    性达95.78协97.66%.B.einerea的p一微管蛋白基因全长1765bp,包含6个内元,
    相应的编码447个氛基酸,与s.:clerotio~和F graminearump一微管蛋白基因
    的氨基酸序列同源性分别为97.76%和%20%.c sloeosPoriodies已撒管蛋白基
    因的部分序列长586bp,包含1个内元(55bp),其位五与模式菌粗糙麦抱霉
    (Ne urosPora crassa)的内元6一致.与Hsl(MBCs黑色炭疽)相比,炭疽菌中
    的HGsZ(MBCs红色炭疽)、YCS(MBCLR)、YC41(MBCHR):禾谷镰抱菌zF2054
    (MBeR):核盘菌Tz25(MBeHR):灰葡萄抱eoyool(MBeHR)的同源性分别
    为100%、97.18%、98.31%、98.87%、96.61%、98.87%.
     F graminearum的MBc”和MBc“菌株核普酸序列分析表明,MBC“菌株未
    发生任何位点的突变,说明F graminearum对多菌灵的抗药性机制并非像其他丝
    状真菌一样由口撒管蛋白198位氛基酸突变所致.5:clerotiorum、B.。inerea和
    C sloeosPortodies的p一微管蛋白基因编码的 198位氛基酸残基的GAG谷孰酸
    (Glu)突变为GCG丙氛酸(Ala)是导致上述病原菌产生对多菌灵高度杭药性
    的主要原因;突变位点和突变类型与其他杭多菌灵真菌一致,且与乙霉威之间存
    在明显负交互杭性.c sloeosPor勿die:的MBc咖Pc“菌株198位氛基酸未发生
    突变,尽管对四种病原真菌7个菌株的p撒管蛋白进行比较发现,除198位氛基
    酸外,其他位点也有所变化,那是属于菌株间的差异,但198位氮基酸的突变则
    是导致田间病原真菌产生高度抗药性的直接原因.
     为了快速、准确检测和监测s.sclero如~的田间杭药频率,根据MBCHR菌
    株的点突变设计了2个快速检测方法:第一种方法别民据MBcHR菌株197和198
    位密码子(GACGAG一GACGCG)形成八al酶切位点(3’CGCGS,),将BI瓜3
    的扩增产物s74bp片段酶切成193bp和6slbP片段,而MBeS菌株的PeR产物不
    被酶切;第二种方法用198位突变密码子作为3’末端碱基设计2对等位基因特
    异性寡核普酸引物(ASO)用于“nested" PCR或直接从菌丝基因组DNA扩增.
    引物对s一T侧55一1只能从MBcHR菌株中扩增出373饰的条带,而引物对s一Ts/ss一1
    只能从MBcs菌株中扩增出373bp的条带.通过PcR扩增和T
Benzimidazole fungicides, as a group of systemic fungicides with broad sprectrum of fungicidal activity, were widely used to control diseases caused by plant pathogenic fungi. The benzimidazoles envoid the harmless in the enviroment with protective fungicides, and reduce the requirment of application technique and time, further increase the control effect.
    Because benzimidazoles are characterized by high specificy, single action position, and high application frequency, many plant pathogenic fungi occurred resistance to these fungicides after 2-3 years' application. Benzimidazole fungicides bind to β -tubulin, inhibiting microtubulin function or disassembling microtubulin, further prevent cell's mitosis of fungi for growth. Mutations of pathogen's β-tubulin gene make three-dimensional configuration of P -tubulin protein change and lose affinity with fungicides, leading to resistance to carbendazim.
    Many benzimidazole-resistant mutations in a variety of fungi have been mapped to the structural P -tubulin gene and the mutant genes were cloned and sequenced. Although single base-pair point mutations leading to the substitution of the amino acid by another occurred at least 10 different sites within the P -tubulin gene, these mutations are confined to amino acid codons 198 and 200 in resistant field strains of plant pathogens. Except for the pathogen Gibberella pulicaris causing potato dry rot, in recent years resistance to benzimidazoles in fungal pathogens has been attributed to single amino acid changes in the P -tubulin subunit. The majority of these changes in field benzimidazoles-resistant isolates were located in amino acids 198 or/and 200.
    Wheat head blight(caused by Fusarium graminearuni), Rape sclerotiniose (caused by Sclerotinia sclerotiorum), Tomato Grey(caused by Botrytis cinerea) and Pepper anthracnose(caused by Colletotrichum gloeosporiodies) are important crop and invegetable diseases in China. These diseases have been controlled by benzimidazole fungicides or its mixture with other fungicides with different mechnisms for 30 years.
    
    
    Carbendazim-resistant B. cinerea, F. graminearum and S.sclerotiorum isolates were detected out in the field populations in 1987,1992 and 1996, respectively.
    Sensitivity of the four plant pathogenic fungi to carbendazim(MBC) and diethofencarb(NPC) was tested with mycelial growth test. The result showed EC50 of carbendazim-sensitive isolates(MBCs) from F.graminearum was less than 1μg/mL. EC50 of field and induced carbendazim-resistant isolates(MBCR) was about 10μg/mL. There didn't exist negative cross-resistance between carbendazim and diethofencarb in F. graminearum .
    223 S.sclerotiorum isolates were isolated from Tongzhou of Jiangsu Province in 2002. Two phenotypes were identified when these isolates were tested for sensitivity to carbendazim and diethofencarb. 143 of these isolates showed phenotype of carbendazim-sensitivity and diethofencarb-high-resistance (MBCsNPCHR and other 80 isolates showed carbendazim-high-resistance and diethofencarb-sensitivity (MBCHRNPCS). The MBCHRNPCS isolates were not sensitive to temperature Variation between 7℃ and 28℃. 14 isolates of Botrytis cinerea were isolated from Jiangyin of Jiangsu Province in 2002. Two phenotypes were identified when the isolates were tested for sensitivity to carbendazim and diethofencarb. 2 of the isolates showed phenotype of MBCSNPCHRand other 12 isolates showed MBCHRNPCS. 17 C.gloeosporiodies isolates were isolated from Yancheng of Jiangsu Province in 2001. Three phenotypes were identified when tested for sensitivity to carbendazim and
    diethofencarb. One of these isolates showed MBC NPC , another showed carbendazim-low-resistance and diethofencarb-resistance (MBCLRNPCR) and other 80 isolates showed MBCSNPCHR.
    In this study, the whole β-tubulin genes were amplified from F.graminearum, S.sclerotiorum and B.cinerea using three pairs of chemic primers synthesized to conserved sequences of the P -tubulin gene derived from related fungi. Partical sequence of P -tubulin gene from C. gloeosporiod
引文
1 Bera L, Garber E D. A genetic study of resistance to thiabendazole and sodium N-phenylphenate in Penicillium italicum by the parasexual cycle. Bor.Gaz, 1980,141-204
    2 Brent K. Mornitoring fungicide resistance:purposes,procedures and progress, In Denholm I, et ah Resistance 91,Achievements and Development in Combating Pesticide Resistance, Elsevier Applied Science, 1992,1
    3 Borck K. The genetic analysis of resistance to benomyl in Neurospora crassa. J.Gen.Mic.,1974,85(1) :51-56
    4 Bollen G, Scholten J. Acquired resistance to benomyl and some other systemic fungicides in a strain of Botrytis cinerea in cyclamen. Netherland Journal of Plant Pathology, 1971,77:83-90
    5 Butters J A, Hollomon D W. Resistance to benzimidazole can be caused by changes in beta-tubulin isoforms. In: 9th International Congress of Pesticide Chemistry(IUPAC)-Pesticide Science.
    6 Butters J A, Kendall S J, Wheeler I E, Hollomon D W. Tubulins: lessons from existing products that can be amplified to target new antifungals. In: Dixon G K,et al: Antifungal Agents,Discovery and Mode of Action.1995,131-142,Bios Scientific Publishers.UK
    7 Bwher T L. Isolation, characterization and expression of a second β-tubulin gene encoding gene from Colletorichum gloeosporioides f.sp. aeschynomene. Applied and Enviromental microbiology. 1994,60(11) :4155-4159
    8 Cathala G A method for isolation of intact, translationally active ribonucleic acid. DNA, 1983,2:329-333
    9 Cooley R N, Caten C E. Cloning and characterization of the β-tubulin gene and determination of benomyl resistance in Septoria nodorum.. In: Nevalaninew H,et al: Proceeding EMBO Workshop on Molecular Biology of Filamentous Fungi, 1989,207-216
    10 Cooley, R.N. and Caten, C.E. (1993) Molecular analysis of the Septoria nodorumβ-tubulin gene and characterization of a benomyl-resistance mutation,Mol.Gen.Genet.,237,58.
    11 Cooley R N, Gorcom R F M, Hondel C V, et al. Isolation of a benomyl-resistant allele of the P-tubulin gene from Septoria nodorum and its use as a dominant selectable marker. Journal of General Microbiology, 1991,137:2085-2091
    12 Cooley R N, Shaw R K, Franklin FCH, CE (1988) Transformation of the phytopathogenic fungus Septoria nodorum to hygromycin B resistance. Curr. Genet. 13:383-389
    13 Davidse.L C. Benzimidazole fungicides: mechanism of action and biological impact. Ann. Rev. Phytopathol. 1986,24:43-65
    14 Davidse,L C. (1973) Antimitotic activity of methyl benzimidazole carbmate (MBC) in
    
    Aspergillus nidulans. Pesticide Biochemistry and Physiology, 3,317-325.
    15 Davidse,L C. and Flach,W. (1977) Differential binding of methyl benzimidazole-2-yl carbamate to fungal tubulin as a mechanism of resistance to this antimitotic agent in mutant strains of Aspergillus nidulans, J. Cefl. Biol. 72,174.
    16 Davidse,L.C.,Biochemical aspects of benzimidazole fungicides-action and resistance, in Modern Selective Fungicides-Properties, Applications. Mechanisms of Action, Lyr,H.,Ed.,Longman, London, 1987,245.
    17 Davidse,L.C.,Advances in understanding fungicidal modes of action and resistance, in Pesticide Science and Biorechnology, Greenhalgh, R. and Roberts, T.R.,Eds.,Blackwell Scientific, Oxford, 1987,169.
    18 Davidse,L.C.,Ishii H.(1995) Biochemical and molecular aspects of the mechanisms of action of benzimidazoles, N-phenylcarbamates and N-phenylformamadoxines and the mechanisms of resistance to these compounds in fungi. In: Modern Selective Fungicides.2nd edn.(Lyr H. ed).Gustav Fischer, Jena:305-322.
    19 Delp C I. Benzimidazole and related fungicides. In: Modern Selective Fungicides. 2nd edn.(Lyr H ed). Gustav Fischer.Jena, 1998,291-303,APS press
    20 Edelmann S E, Staben C. A statistical analysis of features within genes from Neurospora crassa. Experiment Mycology, 1994,18:70-81
    21 Faretra F, Pollastro S. Genetic basis of resistance to benzimidazole and dicarboximide fungicides in Botryotinia fuckeliana(Botrytis cinerea). Mycol.Res.1991,95(8) :943-951
    22 FRAC. FRAC methods for monitoring fungicide resistance. Bulletin OEPP/EPPO Bulletin. 1991,21:291-354
    23 Fujimura M. Mode of action of diethofencarb to benzimidazole-resistance strains in Neurospora crassa. J.Pesticide Sci.,1994,19:333-334
    24 Fujimura M, Kamakura T, Inoue H, et al. Sensitivity of Neurospora crassa to benzimidazoles and N-phenylcarbamates: effect of amino acid substitutions at position 198 in β-tubulin. Restic.Biochem.Physiol., 1992,44:165-173
    25 Fujimura M, Kamakura T, and Yamaguchi, I., Action mechanism of diethofencarb to a benzimidazole-resistant mutant in Neurospora crassa, J. Pestic.Sci., 17,237,1992.
    26 Fujimura M, Oeda K. A single amino acid substitution in the beta-tubulin gene of Neurospora crassa confers both carbendazim resistance and diethofencarb sentivity. Curr.Genet.,1992,21(399-404)
    27 Gasztonyi, M.,Josepovits, G,Molnar, A., and Homok, L., Biochemical background of resistance to benomyl in genetically different strains of Fusarium oxysporum, Pestic. Biochem.
    
    Physiol., 29,17,1987.
    28 Gasztonyi, M.,Josepovits, G, and Vegh, A. 1986. Cross-resistance relationships between the benzimidazole fungicides, N-phenyl carbamates and other related compounds. In: Prop.Crop Prot.Conf.Pests Dis., 1986,547-554
    29 Gessler C, Sozzi D, Kern H. Benzimidazole fungicides: mode of action and problems(in German),Ber.Schweiz.Bot.Ges., 1980,90
    30 Groves J D, Fox R T V, Baldwin B C. Modes of action of barbendazim and ethyl N-(3,5-dichlorphenyl)carbamate on field isolates of Botrytia cinerea. In:Proceedings of the British Crop Protection Conference-Pests and Diseases,Vol.1,1988a,BCPC Publications,Surrey,p397-402
    31 Groves J D, Fox R T V, Baldwin B C. Tubulin from Botrytia cinerea, and the potential for development of an immunodiagnostic for benzimidazole resistance. In: Proceedings of the British Crop Protection Conference-Pests and Diseases, Vol.1,1988b,BCPC Publications,Surrey,p415-420
    32 Gurr S J, Unkles S E, Kingdom J R. The structure and organization of nuclear genes of filamentous fungi. In: Kingdom J R(ed.), Gene structure in eukaryotic microbes, vol.22. IRL Press,Oxford, 1987,93-139
    33 Hayashi K. PCR-SSCP:一种检测突变的方法, 国外医学卫生学分册,1994, 21 (4) : 204-205
    34 Herd G W, Phillips A J L. Control of seed-borne Sclerotinia sclerotiorum by fungicidal treatment of sunflower seed. Plant Pathology, 1988,37:202-205
    35 Hollomon D W, Butters J A. Understanding pesticide resistance through molecular biology, BCPC Mono.No.48,Molecular Biology-Crop Protection, 1991
    36 Hollomon D W, Butters J A. New approaches to detecting fungicide resistance. Agro-Food Industry Hi-Tech, 1992,p20
    37 Hollomon D W, Butters J A. Molecular determinants for resistance to crop protection chemicals. In: Marshall G, et al (ed.):Molecular Biology in Crop Protection.London.United Kingdom,1994,p98-110
    38 Hollomon D W, Butters J A, Barker H, et al. Fungal beta-tubulin, expressed as a fusion protein, binds benzimidazole and phenylcarbamate fungicidea. Antimicrobial Agents and Chemotherapy. 1998,42(9) :2171-2173
    39 Hollomon. Mechansim of resistance to fungicides.
    40 Hollom D W, Zhou M, Wang J, et al. Selection for carbendazim resistance in Fusarium species on wheat and rice in China. In: Brighton Crop Protection Conference: Pests & Diseases, British Crop Protection Council. Fownharm, UK, 1996,707-712
    
    
    41 Ishii H. Genetic of fungicide resistance. In Abstract 4rd Inr.Mycol.Congr., 1990,p285
    42 Ishii H, Iwasaki S, Sato Z, Inoue I. Binding of cellular protein from Venturia nashicola isolates to carbendazim. Its relationship with sensitivity to N-phenylcarbamates, N-phenylformamidoximes and Rhizoxin. In: Green M B,et al(ed):Managing Resistance to Agrochemical:From Fundamental Research to Practical Strategies,ACS Symposium Series 421, Washing DC,1990,p237-248
    43 Ishii H. Target sites of tubulin-binding fungicides. In: Koller W(ed):Target Sites of Fungicide Action, CBC Press Inc.,Boca Raton, 1992,p43-52
    44 Ishii H. Monitoring of fungicides resistance in fungi: biological to biotechnological approaches. In: CRC Hand book of Pest Management in Agriculture. Boca Raton: CRC Press. 1995, 679-684
    45 Ishii H. DNA-based approaches for diagnosis of fungicide resistance, in: Clark J M & Yamaguchi I. Agrochemical Resistance Extent, Mechanism and Detection. Washington DC: American Chemical Society, 2002, 242-259
    46 Ishii H. Target sites of tubulin-binding fungicides. In: Wolfram Koller.Target sites of fungicide action, CRC press
    47 Ishii H, Raak M V. Inherence of increased sentivity to N-phenylcarbamates in benzimidazole-resistant Ventwia nashicola. Phytopathology,1988,78:695-698
    48 Ishii H. Takeda H. Differential binding a N-phenylformamidoxime compound in cell-free extracts of benzimidazole-resistant and-senticitive isolates of Venturia nashicola, Botrytis cinerea and Gibberella fujikurol. Neth.J.PL.Path.,1989,Supplement 1:99-108
    49 Ishii H, Josepovits G, Gasztonyi M, Miura T. Further studies in increased sentivity to N-phenylanilines in benzimidazole-resistant strains of Botrytis cinerea and Venturia nashicola. Pesticide Science, 1995,43:189-193
    50 Jone E S, Shauna C S. Sequence of the Erysiphe graminis f.sp. hordei gene encodingβ-tubulin. Nucleic Acid Research, 1990,18(4) : 1052
    51 Jung M K, May G S, Oaklay B R. Mitosis in wild-type and beta-tubulin mutant strains of Aspergillus nidulans. Fungal Genetics and Biology, 1998,24(1-2) :146-160
    52 Jung M K, Oakly B R. Identification of an amino acid substitution in benA, β-tubulin gene of Aspergillus nidulans that confers thiabendazole resistance and benomyl supersensixity. Cell Motility and the Cytoskeleton. 1990,17(2) :87-94
    53 Jung M K. Amino acid alterations in the benA gene of Aspergillus nidulans that confer benomyl resistance.Cell Motility and Cytoskeleton, 1992,22:170-174
    54 Katan T, Shabi E, Gilpatrick J D. Genetics of resistance to benomyl in Ventwia inaequalis isolates from Isrand and New York. Phytopathology, 1983,73:600-603
    
    
    55 Katan T, Elad Y, Yunis H. Resistance to diethofencarb(NPC) in benomyl-resistant field isolates of Botrytis cinerea. Plant Pathol., 1989,38:86-92
    56 Kato T. Negative cross-resistance activity of MDPC and diethofencarb against benzimidazole-resistant fungi. In: Delp C J(ed):Fungicide Resistance in North America, APS Press,p40
    57 Kawchuk L M, Hutchison L J, Verhaegh C A.Lynch D R, Bains P S, Holley J D. Isolation of theβ-tubulin gene and characterization of thiabendazole resistance in Gibberella pulicaris. Can.J.Plant Pathol.,2002,24:233-238
    58 Kay G J, Cooke L R. A PCR-based method to characterize and identify benzimidazole resistance in Helminthosporium solani. FEMS Microbiology letters,1997,152:371-378
    59 Kendall S J, Butters J A, Hollomon D W. Development of DNA-based diagnostic techniques for detection of benzimidazole resistance.
    60 Kendall S. Characterization of benzimidazole-resistant strains of Rhynchosporium secalis. Pesti.Sci., 1994,40:175-181
    61 Kendall S J, Hollomon D W. Fungicide resistance, In: Huston D H(ed): Fungicidal Activity, 1998,p87-108
    62 Kistler H C, Benny U K. Genetic transformation of the fungal plant wilt pathogen, Fusarium oxysporum. Current Genetics, 1988,13:145-149
    63 Koeneaadt H, Jones A L. Resistance to benomyl conferred by mutations in codon 198 or 200 in the beta-tubulin gene of Neurospora crassa and sensitivity to diethofencarb conferred by codon 198. Photopathology, 1993, 83:850-854
    64 Koenraadt H, Somerville S C, Jones A J. Characterization of mutations in the beta-tubulin gene of benomyl-resistant field strains of Venturia inacequalis and other plant pathogenic fungi. Phytopathology, 1992,82:1348-1354
    65 Koenraadt H, Somerville S C, Jones A J. Molecular characterization of the beta-tubulin gene from benomyl sensitive and benomyl resistant field strains of Ventwia inaequalis. Abstracts of the American Chemical Society,1991,p87
    66 Koenrradt H, Jones A L. The use of allele-specific oligonucleotide probes to characterize resistance to benomyl in field stains of Ventwia inaequalis. Phytopathology, 1992,82:1354-1359
    67 Kohn L M. Restriction fragment length polymorphism(RFLP) in nuclear and mitochondrial DNA of Sclerotinia Species. Phytopathology, 1988,78:1047-1051
    68 Leroux P, Gredt M. Negatively correlated cross resistance between benzimidazole fungicides and N-phenylcarbamate herbicides, In: Lyr H,et al(ed):Systemic Fungicide and Antifungal Verbindungen. 6th Int. Symp.,Berlin, 1982,p297
    
    
    69 Leroux P, Gredt M. Negative cross resistance of benzimidazole-resistant strains of Botrytis cinerea, Fusarium nivale and Pseudocercosporella herpotrichoides to various pesticides. Neth.J.PlantPathol., 1989,95(suppl. 1) : 121-127
    70 Liu Y S, Robert J S T, Phillips W A. Single-step direct PCR amplification from solid tissues. Nucleic Acids Research, 1995, 23(9) :1640-1641
    71 Lubega G W, Geary T G, Klein R D, Prichard R K. Expression of cloned P-tubulin gene of Haemonchus contortus in E.coli: interaction of recombinant β-tubulin gene with native tubulin and mebendazole. Molecular and Biochemical Parasitology, 1993,62:281-292
    72 Luck J E, Gillings M R. Rapid identification of benomyl resistant strains of Botrytis cinerea using the polymerase chain reaction. Mycological Research, 1995,99(12) : 1483-1488
    73 Lyr H. Advances in fungicide mode of action and resistance research, In Frehse(ed): Pesticide Chemistn,Advances in International Research,Development,and Legislation. Weinheim.Germany, 1991 ,p 161
    74 Martin L A, Fox R T V, Baldwin B C. Rapid method for detection of MBC resistance in fungi: Immunological approach. Proceedings of 10th International Reinhardsbrunn Symposium, 1992
    75 Martin L A, Fox R T V, Baldwin B C et al. Use of polymerase chain reaction for the diagnosis of MBC resistance in Botrytis cinerea. In: 1992 Brighton Crop Protection Conference-Pests and Diseases. Surry:BCPC publications,1992,207-214
    76 May G S, Tsang M L, Smith H, Fiedel S, Morris N R. Aspergillus nidulus β-tubulin genes are usually divergent. Gene, 1987, 55:231-243
    77 McKay G J, Cooke L R. A PCR-based to characterize and identify benzimidazole resistance in Helminthosporium solani. FEMS Microbiology Letters, 1997,152:371-378
    78 Moller E M, Bahney G, Sandermann H.et al. A simple and efficient protocal for isolation of high molecular weight DNA from filamentous fungi,fruit bodies and infected plant tissues. Nucleic Acids Research,1992,20(22) :6115-6116
    79 Molner A, Hornok L, Pesti M. The high level of benomyl tolerance in Fusarium oxysporum is determined by the synergistic interaction of two genes,Exp.Mycol., 1985,9:326
    80 Nakata A, Sano S, Hashimoto S, Hayakawa K, Nishikawa H, Yasuda Y. Negatively correlated cross-resistance to N-phenylformamidoximes in benzimidazole-resistant phytopathogenic fungi, Ann.Phytopathol.Soc.Jpn., 1987,53:659
    81 Oakley B R, Morris N R. A beta-tubulin mutation in Aspergillus nidulans that blocks microtubulin function without blocking assembly. Cell,1981,24:837-845
    82 Orbach M J, Porro E B, Yanofsky C. Cloning and characterization of the gene for &-tubulin from a benomyl-resistant mutant of Neurospora crassa and its use as a dominant selectable marker. Mol.Cell.Biol, 1986,6:2452-2461
    
    
    83 Orita M, Suzuki Y, Sekiya T, et al. Rapid and sensitive detection of point mutations and DNA polymorphisms using polymerase chain reaction. Genomics, 1989,5:874-879
    84 Ouellet, Seifert. Genetic characterization of Fusarium graminerearum strains using RAPD and PCR amplification. Phytopathology, 1993,83:1003-1007
    85 Panaccio M, Georgesz M, Hollywell C. Direct PCR from solid tissues without DNA extraction. Nucleic Acid Research, 1993,21(19) :46-56
    86 Payne A C, Grosjean M C, Hollomon D W. Transformation of the phytopathogen Mycosphaerella graminicola to carbendazim and hygromycin B resistance. Curr.Genet.,1998,34(2) :100-104
    87 Pollastro S, Faretra F. Genetic characterization of Botryorinia fuckeliana(Botryris cinerea) field isolates coupling high resistance to benzimidazole to insentivity toward the N-phenylcarbamate diethofencarb. Phytopathol.Mediterr., 1992,31:148-153
    88 Raeder U A, Broda P. Rapid preparation of DNA from filamentous fungi. Letters in Applified Microbiology, 1985,1:17-20
    89 Schroeder W T, Prowidenti R. Resistance to benomyl in powdery mildew of cucubits. Plant Disease Reporter, 1969,53:271-275
    90 Seip E R, Woloshuk C P, Payne D A,et al. Isolation and sequence analysis of aβ-tubulin gene from Aspergillus flaws and its use as a selectable marker. Applied and Environmental Microbiology, 56(12) :3686-3692
    91 Shabi E, Katan T, Martin K. Inheritance of resistance to benomyl in isolates of Venturia inaequlis from Israel. Plant Pathol.,1983,32:207-212
    92 Shabi E, Koenraadt H, Dekker J. Negatively correlated cross-resistance to phenylcarbamate fungicides in benomyl-resistant Venturia inaequalis and V.pirina. Neth.J.Plant Pathol.,1987,93:33-41
    93 Sheir-Neiss G Identification of a gene for β-tubulin gene in Aspergillus nidulus. Cell, 1978,15:639-647
    94 Sheir-Neiss G, Nardi R V, Gealt M A, Morris N R. Tubulin like protein from Aspergillus nidulans. Biochemical and Biophysical Research Communicarions, 1976,69:285-290
    95 Sherwood J E, Somerville S C. Squence of the Erysiphe graminis f.sp. hordei gene encoding β-tubulin. Nucleic Acids Res., 1990,18:1052
    96 Smith C M. History of benzimidazole use and resistance, In: Delp C J(ed):Fungicide Resistance in North America. APS Press, 1988,p23
    97 Staina V F, Jones A L. Genetics of benomyl resistance in Venturia inaequalis from North and South America, Europe and New Zealand. Can.J.Plant Pathol.,1984,6:283-290
    98 Stainer J J, Poklemba C J, Fjellstrom R G A rapid one-tube genomic DNA extraction process
    
    for PCR and RAPD analyses. Nucleic Acids Research, 1995,23(13):2569~2570
    99 Tripathi R K, Schlosser E. The mechanism of resistance of Botrytis cinerea to methyl benzimidazole carbamate(MBC). 1982,89:151
    100 Wheeler I E, Kendall S I, Butters J et al.. Using allete-specific digonucleotide probes to characterize benzimidazole resiatance in Rhynchosporium secalis. Pestic Sci, 1995,43:201~209
    101 Yan K, Dickman M B. Isolation of a β -tubulin gene from Fusarium moniliforme that confers cold-sensitive benomyl resistance. Applied and Enviromental Microbilogy , 1996,62(8):3053~3056
    102 Yarden O, Katan T. Mutations leading to substitutions at amino acids 198 and 200 of beta-tubulin that correlate with benomyl-resistance phenotypes of field strains of Botrytis cinerea. Phytopathology, 1993,83.1478~1483
    103 Yashida M, Narusaka Y, Minami E. et al. Expression of Neurospora crassa beta-tubulin, target protein of benzimidazole fungicides, in Escherichia coli. In: 9th International Congress of Pesticide Chemistry(IUPAC)-Pesticide Science. 1999,55(4):501~503
    104 Yourman L F. Jeffer S N, Dean R A. Genetic analysis of isolates of Botrytis cinerea sensitivity and resistant to benzimidazole and dicarboximide fungicides. Phytopathology, 90:815~85
    105 Zhou M G. Wang J X, Lu Y J. Resistance of Gibberella zeae(wheat scab) to carbendazim. Proceedings of Eighth International Congress of Pesticide Chemistry, Washington, 1994
    106 奥斯伯 F,布伦特 R,金斯顿 R E等.精编分子生物学实验指南.北京:科学出版社,1998
    107 陈碧云,周乐聪,陆致平.绿色木霉发酵配方与防治油菜菌核病的研究.中国生物防治,2001,17(2):67~70
    108 董承良.基因突变检测技术进展.黄牛杂志,1998,24(3):49~52
    109 董金皋,2001.农业植物病理学(北方本).北京:中国农业出版社.183~185
    110 胡伟群,陈杰.灰霉病的化学防治.现代农药,2002,4:8~11
    111 乐晓萍,杜鹏,张钦宪等.聚丙烯酰胺凝胶银染技术改良.河南医科大学学报,2001,36(4):395~396
    112 李方球,官春云.油菜菌核病抗性鉴定、抗性机理及抗性遗传育种研究进展.作物研究,2001,3:85~91
    113 李红霞,周明国,陆悦健.应用PCR方法检测油菜菌核病菌对多菌灵的抗药性,菌物系统,2002,21(3):370~374
    114 李红霞,陆悦健,王建新,周明国.四种不同植物病原真菌与多菌灵抗药性相关基因突变的比较,南京农业大学学报,2002,25(3):41~44
    115 李丽丽.油菜作物病害及其防治.上海:上海科学技术出版社,1983
    116 林含新,魏太云,吴祖建等.应用PCR-SSCP技术快速检测我国水稻条纹病毒的分子变异.
    
    中国病毒学,2001,16(2):166~169
    117 刘上峰,傅俊江.变性梯度凝胶电泳的原理、应用及其进展.国外医学遗传学分册,2002.25(2):74~76
    118 路光远,杨光圣,博廷栋.应用于油菜研究的简便银染AFLP标记技术的构建.华中农业大学学报,2001,20(5):413~415
    119 陆悦健.博士学位论文,南京农业大学学位论文,1999
    120 陆悦健,周明国,叶钟音等.水稻恶苗病菌对苯并咪唑类杀菌剂抗药性分子机理研究初探.菌物系统,1996,16(3):235~240
    121 陆悦健,周明国,叶钟音,等.抗苯并咪唑的小麦赤霉病菌β-tubulin基因序列分析与特性研究.植物病理学报,2000,30(1):30~34
    122 陆维忠,程顺和,王裕中.小麦赤霉病研究.2001,北京:科学出版社
    123 陆致平,梅金泉,徐兆忠,夏宪文 新杀菌剂菌核光防治油菜菌核病的试验研究 植保技术与推广,1999,19(6):41~42
    124 潘以楼,刘福海,徐志平,丁蓝蓝,倪寿坤,杨敬辉,朱桂梅 油菜菌核病菌对多菌灵的抗药性及其治理初报 江苏农业科学,2000,3:39~40
    125 潘以楼,汪智渊,吴汉章 油菜菌核病菌(Sclerotinia sclerotiorum)对多菌灵的抗药性及其稳定性.江苏农业学报,1997,13(1):32~35
    126 潘以楼,汪智渊,吴汉章 油菜菌核病菌对多菌灵的抗药性 中国油料,1997,19(3):67~68
    127 潘以楼,吴汉章,杨敬辉,汪智渊,杨红福 油菜菌核病菌(Sclerotinia sclerotiorum)抗多菌灵菌株的检测方法及其在江苏的分布 江苏农业学报,1998,14(3):159~163
    128 彭涛,黎乐群,林进令等.对非同位素PCR-SSCP检测基因突变方法的探讨.广西医科大大学学报,1998,15(1):31~34.
    129 王东,史景泉,罗元辉等.银染单链构象多态性分析——一种快速检测基因点突变的新方法.第二军医大学学报,1995,17(2):150~151
    130 王建新.硕士学位论文,南京农业大学学位论文,2000
    131 王婷,吴健胜,王金生.草酸降解菌的筛选及其对油菜菌核病的生物防治作用.南京农业大学学报,2001,24(4):29~32
    132 王朝辉.硕士学位论文,南京农业大学学位论文,2001
    133 王振荣,高同春,胡宏云,万咏声,王义平,王梅油菜菌核病的防治适期 安徽农业科学,2002,30(3):333~334
    134 萨姆布鲁克 J,弗里奇 E F,曼尼阿蒂斯T.分子克隆实验指南(第二版).北京:科学出版社,2002
    135 石志琦,周明国,叶钟音油菜菌核病菌对多菌灵、菌核净抗约性菌株性质研究.中国油料作物学报,2000,22(4):54~57
    
    
    136 石志琦,周明国,叶钟音,史建荣,陈怀谷,王裕中.油菜菌核病菌对多菌灵的抗药性监测.江苏农业学报,2000,16(4):226~229
    137 孙国才,季明东,陆长婴,李沛元 多菌灵与三唑酮复配对油菜菌核病的协同作用.江苏农业科学,2000,6:42~45
    138 汤宁.基因突变检测方法进展.国外医学卫生学分册,1994,21(4):200~203
    139 魏太云,林含新,吴祖建等.PCR-SSCP技术在植物病毒学上的应用.福建农业大学学报,2000,29(2):181~186
    140 巫永春.硕士学位论文,南京农业大学学位论文,1998
    141 杨安钢,毛积芳,药立波.生物化学与分子生物学实验技术.北京:高等教育出版社
    142 杨荣明,叶钟音.现代生物技术在杀菌剂抗药性监测中的应用.南京农业大学学报,1996,19(增刊):150~154
    143 叶静晓.硕士学位论文,南京农业大学学位论文,2001
    144 张立海,廖金铃,冯志新.松材线虫rDNA的测序和PCR-SSCP分析.植物病理学报,2001,31(1):84~89
    145 张舒亚.硕士学位论文,南京农业大学学位论文,2002
    146 张夕林,张谷丰,孙雪梅,王东华,朱明华防治抗性油菜菌核病新药剂筛选 江苏农业科学,1999,2:43~44
    147 周明国.苯并咪唑类杀菌剂抗药性问题.见:彭于发,王慧敏,彭友良主编:植物病理学研究.北京:中国农业科技出版社.71~76
    148 周明国,叶钟音.植物病原菌对苯并咪唑类及相关杀菌剂的抗药性.植物保护,1987,13(2):31~33
    149 周明国,叶钟音,刘经芬.杀菌剂抗药性研究进展.南京农业大学学报,1994,17(3):33~41
    150 周明国,王建新.禾谷镰孢菌对多菌灵的敏感性基线及抗药性菌株生物学性质研究.植物病理学报,2001,3l(4):365~370
    151 朱衡,瞿峰,朱立煌.利用氯化苄提取适于分子生物学分析的真菌DNA.真菌学报,1994,13:34~40
    152 朱月春,汪宁,徐葵.PCR-SSCP银染法在基因突变分析中的应用.昆明医学院学报,1999.20(2):43~46

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700