中国近海典型海域溶解无机碳系统的生物地球化学特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为地球表面最大的碳库,海洋在全球碳循环中发挥着重要作用,并在一定程度上决定了全球气候变化与全球海洋生态系统的变化走势。海水中溶解无机碳占海水总碳的85%以上,其变化趋势对海洋碳循环有异常重要的影响,因此,系统研究海水中溶解无机碳的生物地球化学特征是揭示海洋碳循环关键过程的基础,海水中溶解无机碳的研究意义重大。
    本论文选择典型的陆架边缘海——长江口海域与南黄海海域,分别于 2003 年 5 月2004 年 8 月(长江口枯水与丰水季节)和 2004 年 10 月(南黄海的秋季)进行了海洋碳循环的专项调查研究,获得了包括水文、化学、生物在内的丰富样品和资料。以此为基础,比较系统地对长江口和南黄海海域水体中溶解无机碳的行为及生物地球化学特征进行了研究,确定了这两个海域作为大气二氧化碳的源/汇格局,并首次估算了长江口整个盐度梯度范围的海?气间二氧化碳通量,对这两个典型海域的无机碳化学有了一系列新的认识。
    1. 在枯水季节,长江口海域由低盐区大气二氧化碳的强源逐渐过渡到高盐区的弱汇,咸淡水的混合在一定程度上决定了该区域碳源汇的格局;二氧化碳源区,浮游植物的丰度低,浮游动物主要是纯河口类群和河口性海洋类群,而汇区,浮游植物的丰度高,浮游动物主要是广盐性海洋类群。长江口丰水季节为大气二氧化碳的净源,溶解无机碳体系基本呈现枯水季节淡水区-混合区的特征。
    调查期间,长江口淡水水团和混合水团西部水体混合均匀,属于均匀混合型;其他区域基本属于部分混合型。对水体 pH 值、总碱度(TA)、总二氧化碳(TCO_2)、二氧化碳分压(pCO_2)及 CO_2 体系各分量(HCO_3~(-)、CO_3~(2-)和 CO_(2(T))时空变化特征的研究表明,长江口区 CO_2体系各参数均表现出显著的时空变化特征,咸淡水的的物理混合作用是 TA、TCO_2和 HCO_3~(-)空间分布特征最主要的影响因素;而其他几个参数的空间分布,除了不同水团间的物理混合作用的影响,生物活动的影响也很显著。对于大多数参数,影响其随时间变化的主要因素因区域的不同而不同。pCO_2 的空间分布总体上呈由淡水向海水逐渐降低的趋势。长江口淡水和低盐水体具有很高的 pCO_2 值,表层水盐度<25的区域为大气CO_2的源。海-气间CO_2交换通量的变化范围为-5.8至531.5 mmol m~(-2) d~(-1_。徐六泾至口门的河口区调查过程中每天向大气中释放的 CO2的量为(7.0 ± 2.8) × 103 tC。
    浮游植物和浮游动物是能够显著影响水体中溶解无机碳生物因素,因此调查过程中也对它们进行了一些研究。结果表明,浮游植物丰度呈现出显著的空间差异性,总体上沿长江径流入海方向增加;优势种随盐度的变化而变化。浮游植物丰度和 PO43??P 浓度之间的关系进一步证实了长江口透明度较高的区域,磷是浮游植物生长的限制因子;和颗粒有机碳之间的关系进一步证实了陆源输入是长江口区颗粒有机物的主体。浮游动物生物量的时间变化与潮汐有关,总体上在涨潮和退潮过程中分别呈增加和降低的趋势。
As the biggest carbon reservoir on the earth surface, the oceans play a dominant role in the natural regulation of CO_2 in the atmosphere, thus exerting a powerful influence on the climate and marine ecosystem. Dissolved inorganic carbon (DIC) accounts for >85% of the total carbon in seawaters and its variability has significant influence on marine carbon cycling. So, to study DIC in seawaters systematiclly is the basis for a better understanding of the key processes of marine carbon cycling.
    Two typical marginal seas, namely the Changjiang Estuary and the southern Yellow Sea, were chosen as our study sites. Field observations were carried out in May 2003 and August 2004 in the Changjiang Estuary, and in October 2004 in the southern Yellow Sea. Abundant data of hydrography, chemistry and biology were gained, based on which the behaviour and biogeochemical characteristics of DIC in seawaters of these two areas were investigated. Carbon dioxide fluxes between air-sea interfaces were estimated for the first time throughout the entire salinity gradient in the Changjiang Estuary. Some new knowledge about inorganic carbon chemistry was acquired.
    1. In the dry season, the Changjiang Estuary changed gradually from a strong source for atmospheric carbon dioxide in low salinity area to a weak sink in high salinity area. The physical mixing of fresh and salty water had significant influence on this carbon sink/source pattern. In the CO_2 source area, phytoplankton abundance was low and zooplankton mainly belonged to true estuary and estuary marine communities; while in the CO_2 sink area, phytoplankton was high and zooplankton mainly belonged to euryhaline marine communities. In the raniy season, the Changjiang Estuary was a net source for atmospheric CO_2, and the distribution characteristics of parameters related to DIC system were similar to those in fresh and mixed water areas in the raniy season.
    During the field observation, the Changjiang fresh water mass and the western turbidity maximum were well mixed, while partly mixed in other parts. Spatio-temporal variation characteristics of parameters related to carbon dioxide, i.e. pH, total alkalinity (TA), total carbon dioxide (TCO_2), partial pressure of carbon dioxide (pCO_2) and each of carbon dioxide species (HCO_3~(-)、CO_3~(2-) and CO_(2(T)), were studied. The results indicated that physical mixing of different water masses was the most important factor influencing spatial distribution of TA, TCO_2 and HCO_3~(-); while for the other parameters, the influence of biological activities on their spatial distribution was also significant besides the influence of physical mixing of different water masses. For most of the parameters, the main factors that influence their temporal variations were different in different regions. As a whole, p CO_2 decreased from the fresh water to seawater. The region where surface water salinity was below 25 was a source for atmospheric carbon dioxide, while the other region was a sink. Carbon dioxide fluxes between air-sea interface varied from -5.8 to 531.5 mmol m~(-2) d~(-1). The area between Xuliujing and river mouth emitted (7.0 ± 2.8) × 103 tC per day.
    Phytoplankton and zooplankton are biological factors that can significantly influence dissolved inorganic carbon in waters, so they were also studied during the investigation. Results indicated that phytoplankton abundance increased seaward, showing a distinct spatial difference, and the dominant species varied with salinity. Correlation between phosphorus and phytoplankton abundance further supported that phosphorus is the controlling factor in phytoplankton growth in the Changjiang Estuary where light is not; correlation between p articulate organic carbon and phytoplankton a bundance further
    
    proved the former results that a major fraction of particulate organic carbon in the Changjiang Estuary area was imported by Changjiang freshwater discharge from land. Variation characteristics in zooplankton biomass seemed to relate to tide cycles and in most cases increased during flood
引文
蔡德陵,Tan F C, Edmond J M, 1992. 长江口区有机碳同位素地球化学. 地球化学,3: 305-312.
    陈泮勤,2004. 地球系统碳循环. 北京: 科学出版社,p. 19.
    陈泮勤,马振华,王庚辰译. 1992. 地球系统科学. 北京: 地震出版社.
    戴民汉,翟惟东,鲁中明,蔡平和,蔡卫军,洪华生,2004. 中国区域碳循环研究进展与展望. 地球科学进展,19(1): 120-130.
    方精云,刘国华,徐嵩龄,1996. 中国陆地生态系统的碳循环及其全球意义. 见: 王庚晨、温璞玉主编,温室气体浓度和排放监测及相关过程. 北京: 中国环境科学出版社,pp. 129-139.
    高全洲,陶贞,2003. 河流有机碳的输出通量及性质研究进展. 应用生态学报,14(6): 1000–1002.
    郭卫东,章小明,杨逸萍,胡明辉,1998. 中国近岸海域潜在性富营养化程度的评价. 台湾海峡,17(1): 64-70.
    郭玉洁,杨则禹. 1992. 长江口区浮游植物的数量变动及生态分析. 海洋科学集刊,33: 167-189.
    韩舞鹰,林洪瑛,蔡艳雅,1997. 南海的碳通量研究. 海洋学报,19(1): 50-54.
    胡敦欣,韩舞鹰,章申,2001. 长江、珠江口及邻近海域陆海相互作用. 北京:海洋出版社,218 pp.
    胡敦欣,杨作升,2001. 东海海洋能量关键过程. 北京: 海洋出版社,204 pp.
    黄尚高,杨嘉东,暨卫东,杨绪林,陈国祥,1986. 长江口水体活性硅、氮、磷含量的时空变化及相互关系. 台湾海峡,5(2), 114-122.
    李晶莹,张经,2003. 中国主要河流的输沙量及其影响因素. 青岛海洋大学学报,33(4): 565-573.
    刘素美,张经,陈洪涛,2000. 黄海和东海生源要素的化学海洋学. 海洋环境科学,19(1): 68-74.
    刘子琳,宁修仁,1994. 杭州湾锋区浮游植物现存量和初级生产力. 东海海洋,12(4): 58-66.
    刘子琳,宁修仁,蔡昱明,2001. 杭州湾-舟山渔场秋季浮游植物现存量和初级生产力. 海洋学报,23(2): 93-99.
    刘子琳,越川海,宁修仁,史君贤,蔡昱明,2001. 长江冲淡水区细菌生产力研究. 海洋学报,23(4): 93-99.
    陆健健,2003. 河口生态学. 北京:海洋出版社,318 pp.
    蒲新明,吴玉霖,张永山,2000. 长江口区浮游植物营养限制因子的研究. I. 秋季的营养限制情况. 海洋学报,22(4): 60-66.
    蒲新明,吴玉霖,张永山,2001. 长江口区浮游植物营养限制因子的研究. II. 春季的营养限制情况. 海洋学报,23(3): 57-65.
    齐雨藻,2003. 中国沿海赤潮. 北京: 科学出版社,pp. 159–178.
    秦蕴珊,赵一阳,陈丽蓉,赵松龄,1989. 黄海地质,北京: 海洋出版社,pp. 1-7,22-32,65-81,97-98.
    任广法,1992. 长江口及其邻近海域溶解氧的分布变化. 海洋科学集刊,39: 139-151.
    沈国英,施并章. 2002. 海洋生态学(第二版). 北京:科学出版社,446 pp.
    沈焕庭, 2001. 长江河口物质通量. 北京:海洋出版社,176 pp.
    沈焕庭,胡辉,1988. 长江口门附近的水流与混合. 见:长江河口动力过程和地貌演变. 上海:上海科学技术出版社,pp. 131-144.
    沈焕庭,茅志昌,谷国传,1983. 南水北调对长江河口盐水入侵的影响. 见:远距离调水——中国南水北调和国际调水经验. 北京:科学出版社,pp. 211-216.
    沈焕庭,茅志昌,朱建荣,2003. 长江河口盐水入侵. 北京:海洋出版社,175 pp.
    沈焕庭,潘定安. 2001. 长江河口最大浑浊带. 北京:海洋出版社,194 pp.
    沈志良,刘群,张淑美,苗辉,张平,2001. 长江和长江口高含量无机氮的主要控制因素. 海洋与湖 沼,32:4 65-473 .
    
    沈志良,陆家平,刘兴俊,刁焕祥,1992 .长 江口营养盐的分布特征及三峡工程对其的影响. 海 洋科学集刊,33: 109–129 .
    宋金明,1997 . 中国近海沉积物-海水界面化学 .北 京: 海洋出版社,222p p .
    宋金明,2000a .海 洋沉积物中的生物种群在生源物质循环中的功能. 海洋科学,24(4): 22-26 .
    宋金明,2000b. 中国的海洋化学. 北京: 海洋出版社,210 pp .
    宋金明,2004 . 中国近海生物地球化学. 济南: 山东科技出版社,606 pp .
    宋金明,赵卫东,李鹏程,吕晓霞,2003 . 南沙珊瑚礁生态系的碳循环 . 海洋与湖沼,34(6):5 86-592 .
    谭敏,陈燕珍,1990. 渤黄海水体中的二氧化碳 .海 洋环境科学,9(1):3 5-40 .
    谭燕,张龙军,王凡,胡敦欣,2004 . 夏季东海西部表层海水中的 pCO2 及海-气界面通量. 海 洋与湖沼,35(3): 239–245 .
    王保栋,1998 .长 江冲淡水的扩展及其营养盐的输运 .黄 渤海海洋,16(2):4 1-47 .
    王峰,张龙军,张经,2002 .南 黄海夏季表层海水中 pCO2分布的初步探讨 . 青岛海洋大学学报,32: 1007-1011 .
    王金辉,2002 .长 江口3 个 不同生态系的浮游植物群落 .青 岛海洋大学学报,32:4 22-428 .
    王跃思,2004 . 碳交换的箱法测定 . 见: 陈泮勤主编,地球系统碳循环 . 北京: 科学出版社,pp .130-145 .
    徐永福,2004 .近 海生态系统碳循环模型 .见 : 陈泮勤主编,地球系统碳循环. 北京: 科学出版社,pp .491-519 .
    徐永健,钱鲁闽,2004. 海水网箱殖对环境的影响. 应 用生态学报,15(3):5 32-536 .
    徐兆礼,王云龙,白雪梅,陈亚瞿,1999. 长江口浮游动物生态研究 . 中国水产研究,6(5): 55-58 .
    徐兆礼,王云龙,陈亚瞿,沈焕庭,1995 .长 江口最大浑浊带区浮游动物的生态研究 .中 国水产研究,2(1): 39-48 .
    杨世伦,徐海根,1994. 长江口、横沙岛潮滩沉积特征及其影响机制. 地 理学报,49:4 49-456 .
    杨宇峰,费修绠,2003. 大 型海藻对富营养化海水养殖区生物修复的研究与展望 .青 岛海洋大学学报,33(1): 53-57 .
    于贵瑞,孙晓敏,温学发,2004 .碳 通量的微气象法测定 .见 : 陈泮勤主编,地球系统碳循环. 北 京: 科学出版社,pp. 103-129 .
    张龙军,王彬宇,张经,1999 . 东海东夏两季表层海水的二氧化碳分压 . 青岛海洋大学学报,29: 149-153 .
    张远辉,黄自强,马黎明,乔然,张滨,1997 . 东海表层水二氧化碳体系及其海气通量 . 台湾海峡,16:3 7-42 .
    赵保仁,1993 . 长江口外的上升流现象. 海洋学报,15(2):1 08-114 .
    赵保仁,乐肯堂,朱兰部,1992 . 长江口调查区温、盐度分布的基本特征和上升流现象 . 海洋科学集刊,33:1 5-26 .
    赵继胜,姬泓巍,郭志刚,2003 .冬 季东海典型海域颗粒有机碳的垂直分布. 海 洋科学,27(6): 59-63
    周毅,杨红生,何义朝,2001 .四 十里湾栉孔扇贝生物沉积的模拟测定 .见 : 中国贝类学会编 .贝 类学论文集I X. 北京: 海洋出版社,pp .99-111 .
    Abril G ,EtcheberH , DelilleB ,FrankignoulleM , BorgesA V , 2003 .Carbonated issolutioni nt het urbida nd eutrophicL oiree stuary .MarineE cologyP rogressS eries ,259: 129-138 .
    Almgren T ,Dyrssen D, Fonselius S, 1983. Determination of alkalinity and total carbonate .In: Methods of SeawaterA nalysis ,GrasshoffM EK ,KremlingK (Eds.) ,Verlag-Chemie ,pp. 99-123 .
    Alvarez M ,Ríos A F, Rosón G ,2002 .Spatio-temporal variability of air-sea fluxes of carbon dioxide and oxygen int heB ransfield and Gerlache Straits duringA ustral summer 1995-96 .Deep-SeaR esearch II , 49: 643-662.
    
    Anderson L G, Olsson K, Chierici M, 1998. A carbon budget for the Arctic Ocean, 12: 455-465.
    Azeiteiro U M, Marques J C, 2003. Intrtoducing “plankton responses to environmental variability”. Acta Oecologica, 24: S1.
    Bali-o B M, Fasham M J R, Bowles M C, 2001. IGBP Science No. 2. Ocean Biogeochemistry and Global Change: JGOFS Research Highlights 1988-2000. 32 pp.
    Balloch D, Davies C E, Jones F H, 1976. Biological assessment of water quality in three British rivers: the North Esk (Scotland), the Ivel (England) and the Taff (Wales). Water Pollution Control, 75: 92-114.
    Barnola J M, Anklin M, Porcheron J, Raynaud D, Schwander J, Stauffer B, 1995. CO2 evolution during the last millennium as recorded from by Antarctic and Greenland ice. Tellus, 47B: 264-272.
    Borges A V, 2005. Do we have enough pieces of the jigsaw to integrate CO2 fluxes in the coastal ocean- Estuaries, 28: 3-27.
    Broecker W S, Ledwell J R, Takahashi T, Weiss R F, Merlivat L, Memery L, Peng T-H, Jahne B, Munnich K O, 1986. Isotopic versus micrometeorologic ocean CO2 fluxes: a serious conflict. Journal of Geophysical Research, 91: 10517-10527.
    Broecker W S, Peng T-H, 1982. Tracers in the Sea. New York: Eldigio Press, 690 pp.
    Byrne R H Jr, Kester D R, 1974. Inorganic speciation of boron in seawater. Journal of Marine Research, 32: 119–127.
    Cai W-J, Pomeroy L R, Moran M A, Wang Y, 1999. Oxygen and carbon dioxide mass balance for the estuarine-intertidal marsh complex of five rivers in the southeastern U.S. Limnology and Oceanography, 44(3): 639-649.
    Cai W-J, Wang Y, 1998. The chemistry, fluxes, and sources of carbon dioxide in the estuarine waters of the Satilla and Altamaha Rivers, Georgia. Limnology and Oceanography, 43(4): 657-668.
    Chen C T A, 1993. The oceanic anthropogenic CO2 sink. Chemosphere, 27: 1041-1064.
    Chen C T A, 2000. The Three Gorges Dam: reducing the upwelling and thus productivity in the East China Sea. Geophysical Research Letters, 27(3): 381-383.
    Chen C T A, Tsunogai S, 1998. Carbon and nutrients in the ocean. In: Galloway J, Melillo J, eds. Asian Change in the Context of Global Climate Change. Cambridge: Cambridge University Press, 271-307.
    Chen C T A, Wang S L, 1999. Carbon, alkalinity and nutrient budgets on the East China Sea continental shelf. Journal of Geophysical Research, 104(C9): 20675-20686.
    Chen C, Zhu J, Beardsley R C, Franks P J S, 2003. Physical-biological sources for dense algal blooms near the Changjiang River. Geophysical Research Letters, 30(10): 1515–1518.
    Chen J Y, Zhu H F, Dong Y F, Sun J M, 1985. Development of the Changjiang estuary and its submerged delta. Continental Shelf Research, 4(1/2): 47-56.
    Chen J, Li D, Chen B, Hu F, Zhu H, Liu C, 1999. The processes of dynamic sedimentation in the Changjiang Estuary. Journal of Sea Research, 41: 129-140.
    Chen Z, Li J, Shen H, Wang Z, 2001. Yangtze River of China: historical analysis of discharge variability and sediment flux. Geomorphology, 41: 77-91.
    Chu S P, 1942. The influence of the mineral composition of the medium on the growth of planktonic algae. I. Method and culture media. Journal of Ecology, 30: 284-352.
    Cloern J E, Cole B E, Wong R L J, Alpine A E, 1985. Temporal dynamics of estuarine phytoplankton: a case study of San Francisco Bay. Hydrobiologia, 129: 153-176.
    Coantic M, 1986. A model of gas transfer across air-water interfaces with capillary waves. Journal of Geophysical Research, 91: 3925-3943.
    
    Collins N R, Williams R, 1981. Zooplankton of the Bristol Channel and Severn Estuary. The distribution of four copepods in relation to salinity. Marine Biology, 64: 273-283.
    Collins N R, Williams R, 1982. Zooplankton communities in the Bristol Channel and Severn Estuary. Marine Ecology Progress Series, 9: 1-11.
    Committee on Global Change, 1988. Toward an Understanding of Global Change. Washington, DC: National Academy Press, p. 56.
    Conley D J, Johnstone R W, 1995. Biogeochemistry of N, P and Si in Baltic Sea sediments: response to a simulated deposition of a spring diatom bloom. Marine Ecology Progress Series, 122: 265-276.
    de Haas H, van Weering T C E, de Stigter H, 2002. Organic carbon in shelf seas: sinks or sources, processes and products. Continental Shelf Research, 22: 691-717.
    De Mora S J, 1983. The distribution of alkalinity and pH in the Fraser Estuary. Environmental Technology Letter, 4: 35-46.
    Dickson A G, 1981. An exact definition of total alkalinity and a procedure for the estimation of alkalinity and total inorganic carbon from titration data. Deep-Sea Research, 28A: 609-623.
    Dickson A G, 1990. Thermodynamics of the dissociation of boric acid in synthetic seawater from 273.15 to 318.15 K. Deep-Sea Research, 37: 755–766.
    Eatherall A, Naden P S, Cooper D M, 1998. Simulating carbon flux to the estuary: the first step. The Science of the Total Environment, 210/211: 519-533.
    Edmond J M, Spivack A, Grant B C, Hu M-H, Chen Z, Chen S, Zeng X, 1985. Chemical dynamics of the Changjiang estuary. Continental Shelf Research, 4: 17-36.
    Etheridge D M, Pearman G I, Silva F, 1988. Atmospheric trace-gas variations as revealed by air trapped in an ice core from Law Dome, Antarctic. Annals of Glaciology, 10: 28-33.
    Etheridge D M, Steel L P, Langenfelds R L, Francey, R J, 1996. Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn. Journal of Geophysical Research, 101: 4115-4128.
    Falkowski P, Scholes R J, Boyle E, Canadell J, Canfield D, Elser J, Gruber N, Hibbard K, Hogberg P, Linder S, Mackenzie F T, Moore III B, Pedersen T, Rosenthal T Y, Seitzinger S, Smetacek V, Steffan W, 2000. The global carbon cycle: a test of our knowledge of earth as a system. Science, 290: 291-296.
    Fasham M J R, Bali-o B M, Bowles C M, 2001. A new vision of ocean biogeochemistry after a decade of the Joint Global Ocean Flux Study (JGOFS). Ambio special report, No 10, May 2001, 30 pp.
    Feely R A, Sabine C L, Takahashi T, Wanninkhof R, 2001. Uptake and storage of carbon dioxide in the ocean: the global CO2 survey. Oceanography, 14(4): 18-32.
    Fisher T R, Harding Jr L W, Stanley D W, Ward L G, 1988. Phytoplankton, nutrients and turbidity in the Chesapeake, Delaware, and Hudson Estuaries. Estuarine, Coastal and Shelf Science, 27: 61-93.
    Flindt M R, Pardal M -, Lilleb- A I, Martins I, Marques J C, 1999. Nutrient cycling and plant dynamics in estuaries: a brief review. Acta Oecologica, 20: 237-248.
    Frankignoulle M, Abril G, Borges A, Bourge I, Canon C, Delille B, Libert E, Théate J-M, 1998. Carbon dioxide emission from European estuaries. Science, 282: 434-436.
    Frankignoulle M, Borges A, 2001. European continental shelf as a significant sink for atmospheric carbon dioxide. Global Biogeochemical Cycles, 15: 569-576.
    Frankignoulle M, Bourge I, Wollast R, 1996. Atmospheric CO2 fluxes in a highly polluted estuary (The Scheldt). Limnology and Oceanography, 41: 365-369.
    Garsteckl T, Wickham S A, Arndt H, 2002. Effects of experimental sediment resuspension on a coastal planktonic microbial food web. Estuarine, Coastal and Shelf Science, 55: 751–762.
    
    Gruber N, 1998. Anthropogenic CO2 in the Atlantic Ocean. Global Biogeochemical Cycles, 12: 165-191. Hansson I. 1973. A new set of acidity constants for carbonic acid and boric acid in sea water. Deep-Sea Research, 20: 461–478.
    Harrison P J, Clifford P J, Cochlan W P, 1991. Nutrient and phytoplankton dynamics in the Fraser river plume, Strait of Georgia, British Columbia. Marine Ecology Progress Series, 70: 291-304.
    Harrison P J, Hu M H, Yang Y P, Lu X, 1990. Phosphate limitation in estuarine and coastal waters of China. Journal of Experimental Marine Biology and Ecology, 140: 79-87.
    Hellings L, Dehairs F, Damme S V, Baeyens W, 2001. Dissolved inorganic carbon in a highly polluted estuary (the Scheldt). Limnology and Oceanography, 46: 1406-1414.
    Hendley N I, 1977. The species diversity index of some in-shore diatoms communities and its use in assessing the degree of pollution insult on parts of the North Coast of Cornwall. In: Cramme J (Ed.), Fourth Symposium on Recent and Fossil Marine Diatoms, pp. 355-378.
    Hershey J P, Fernandez M, Milne P J, Millero F J, 1986. The ionization of boric acid in NaCl, Na-Ca-Cl and Na-Mg-Cl solutions at 25°C. Geochimica et Cosmochimica Acta, 50: 143–148.
    Hill A E, 1991a. A mechanism for horizontal zooplankton transport by vertical migration in tidal currents. Marine Biology, 111: 485–492.
    Hill A E, 1991b. Advection-diffusion-mortality solutions for investigating pelagic larval dispersal. Marine Ecology Progress Series, 70: 117–128.
    Hill A E, 1991c. Vertical migration in tidal currents. Marine Ecology Progress Series, 75: 39–54. Hill A E, 1995. The kinematical principles governing horizontal transport induced by vertical migration in tidal flows. Journal of the Marine Biological Association of the United Kingdom, 75: 3–13.
    Hope D, Billet M F, Cresser M S, 1994. A review of the export of carbon in river water: fluxes and processes. Environmental Pollution, 84: 301-324.
    Hoppema M, 2004. Weddell Sea turned from source to sink for atmospheric CO2 between pre-industrial time and present. Global and Planetary Change, 40: 219–231.
    Howland R J M, Tappin A D, Uncles R J, Plummer D H, Bloomer N J, 2000. Distributions and seasonal variability of pH and alkalinity in the Tweed Estuary, UK. The Science of the Total Environment, 251/252: 125-138.
    Hung J J, Lin P L, Liu K K, 2000. Dissolved and particulate organic carbon in the southern East China Sea. Continental Shelf Research, 20: 545-569.
    Ichikawa H, Beardsley R C, 2002. The current system in the Yellow and East China Seas. Journal of Oceanography, 58: 77-92.
    IGBP, IHDP, WCRP, 2001. The carbon challenge: An IGBP-IHDP-WCRP Joint Project. Stockholm: International Geosphere and Biospere Program, pp. 3-12.
    IPCC, 1990. Climate Change: The IPCC Scientific Assessment. Cambridge: Cambridge University Press. Iseki K, Okamura K, Kiyomoto Y, 2003. Seasonality and composition of downward particulate fluxes at the continental shelf and Okinawa Trough in the East China Sea. Deep-Sea Research II, 50: 457-473.
    Jahnke R A, 1996. The global ocean of flux of particulate organic carbon: a real distribution and magnitude. Global Biogeochemical Cycles, 10: 71-88.
    Jiufa L Chen Z, 1998. Sediment resuspension and implications for turbidity maximum in the Changjiang Estuary. Marine Geology, 148: 117-124.
    Kao S J, Lin F J, Liu, K K, 2003. Organic carbon and nitrogen contents and their isotopic compositions in surficial sediments from the East China Sea shelf and the southern Okinawa Trough. Deep-sea Research II, 50: 1203-1217.
    
    Keeling R F, Piper S C, Heimann M, 1996. Global and hemispheric CO2 sinks deduced from changes in atmospheric O2 concentration. Nature, 381: 218-221.
    Kim K R, 1999. Air-sea exchange of the CO2 in the Yellow sea. The 2nd Korea-China Symposium on the Yellow Sea Research.
    Krumme U, Liang T-H, 2004. Tidal-induced changes in a copepod-dominated zooplankton community in a macrotidal mangrove channel in northern Brazil. Zoological Studies, 43: 404–414.
    Lal R, 1999. World soils and the greenhouse effect. IGBP Newsletter, 37: 4-5.
    Langenfelds R L, Francey R J, Steele L P, 1999. Partitioning of the global fossil CO2 sink using a 19-year trend in atmospheric O2. Geophysical Research Letter, 26: 1897-1900.
    Li D, Zhang J, Huang D, Wu Y, Liang J, 2002. Oxygen depletion off the Changjiang (Yangtze River) Estuary. Science in China (Series D), 45: 1137-1146.
    Li Xuegang, Li Ning, Gao Xuelu, Song Jinming, 2004. Dissolved inorganic carbon and CO2 fluxes across Jiaozhou Bay air-water interface. Acta Oceanologica Sinica, 23(2): 279-285.
    Likens G E, Bormann F H, Johnson N M, 1981. Interactions between major biogeochemical cycles in terrestrial ecosystems. In: Likens G E (Ed.), Some Perspectives of the Major Biogeochemical Cycles, SCOPE.
    Lin S, Huang K M, Chen S K, 2000. Organic carbon deposition and its control on iron sulfide formation of the southern East China Sea continental shelf sediments. Continental Shelf Research, 20: 619-635.
    Liss P S, Merlivat L, 1986. Air-sea gas exchange rates: Introduction and synthesis. In: Buat-Ménard P (Ed.), The Role of Air-sea Exchange in Geochemical Cycling. Dordrecht: D. Reidel Publishing Company, pp. 113–127.
    Liss P S, Slater P G, 1974. Flux of gases across the air-sea interface. Nature, 247: 181-184.
    Liu K K, Iseki K, Chao S Y, 2000. Continental marine carbon fluxes. In: Hanson R B, Ducklow H W, Field J G (Eds.), The Changing Ocean Carbon Cycle. Cambridge: Cambridge University Press, pp. 187-239.
    Liu S M, Zhang J, Chen SZ, Chen H T, Hong G H, Wei H, Wu Q M, 2003. Inventory of nutrient compounds in the Yellow Sea. Continental Shelf Research, 23: 1161-1174.
    Ludwig W, Probst J L, Kempe S, 1996. Predicting the oceanic input of organic carbon by continental erosion. Global Biogeochemical Cycles, 10: 23-41.
    Lyman J, 1956. Buffer mechanisms of seawater. Ph.D. Thesis, University of California, Los Angeles. Mantoura R F C, Martin J-M, Wollast R (Eds.), 1991. Ocean Margin Processes in Global Change. Chichester: Wiley, 469 pp.
    Marcus N, 2004. An overview of the impacts of eutrophication and chemical pollutions on copepods of the coastal zone. Zoological Studies, 43(2): 211-217.
    Margalef D R, 1967. Some concepts relative to the organization of plankton. Oceanography and Marine Biology Annual Review, 5: 257-289.
    Margalef D R, 1968. Perspectives in Ecological Theory. Chicago: The University of Chicago Press, 111 pp.
    McGillis W R, Edson J B, Hare J E, Fairall C W, 2001a. Direct covariance of air-sea CO2 fluxes. Journal of Geophysical Research, 106: 16729-16745.
    McGillis W R, Edson J B, Ware J D, Dacey J W H, Jeffrey E H, Fairall C W, Wanninkhof R, 2001b. Carbon dioxide flux techniques performed during GasEx-98. Marine Chemistry, 75: 267– 280.
    Mehrbach C, Culberson C H, Hawley J E, Pytkowicz R M, 1973. Measurement of the apparent dissociation constants o f c arbonic a cid i n seawater a t atmospheric pressure. L imnology a nd Oceanography, 1 8: 897-907.
    
    Melillo J M, Callaghan T V, Woodward F I, Salati E, Sinha S K, 1990. Effects on ecosystems. In Houghton J T, Jenkins G J, Ephraums J J (Eds.), Climate Change: The IPCC Scientific Assessment. Cambridge: Cambridge University Press. pp. 283-310.
    Mellero F J, 1995. Thermodynamics of the carbon dioxide system in the oceans. Geochimica et Cosmochimica Acta, 59: 661-677.
    Mellero F J, Zhang J-Z, Lee K, Campbell D M, 1993. Titration alkalinity of seawater. Marine Chemistry, 44: 153-166.
    Metzl N, Tilbrook B, Poisson A, 1999. The annual fCO2 cycle and the air-sea fluxes in the sub-Antarctic Ocean. Tellus, 51B: 849-861.
    Millero F J, Thermodynamics of the carbon dioxide system in the oceans. Geochimica et Cosmochimica Acta, 59: 661-677.
    Milliman J D, Syvitski J P M, 1994. Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers. In: National Research Council (Ed.), Material Fluxes on the Surface of the Earth. Washington: National Academy Press, pp. 74-85.
    Milliman J D, Xie Q, Yang Z, 1984. Transfer of particulate organic carbon and nitrogen from the Yangtze River to the ocean. American Journal of Science, 284: 824-834.
    Mook W G, Koene B K S, 1975. Chemistry of dissolved inorganic carbon in estuarine and coastal brackish waters. Estuarine Coastal Marine Science, 3: 325-336.
    Morgado F, Queiroga H, Melo F, Sorbe J, 2003. Zooplankton abundance in a coastal station off the Ria de Aveiro inlet (north-western Portugal): relations with tidal and day/night cycles. Acta Oecologica, 24: S175–S181.
    Morris A W, Mantoura R F C, Bale A J, Howland R J M, 1978. Very low salinity regions of estuaries: important sites for chemical and biological reactions. Nature, 274: 678-680.
    National Research Council, 1986. Global Change in the Geosphere-Biosphere. Washington, DC: National Academy Press, p. 33.
    Nelson N B, Bates N R, Siegel D A, Michaels A F, 2001. Spatial variability of the CO2 sink in the Sargasso Sea. Deep-Sea Research II, 48: 1801-1821.
    Nightingale P D, Malin G, Law C S, Watson A J, Liss P S, Liddicoat M I, Boutin J, Upstill-Goddard R C, 2000. In situ evaluation of air-sea gas exchange parameterizations using novel conservative and volatile tracers. Global Biogeochemical Cycles, 14: 373–387.
    Oguri K, Matsumoto E, Yamada M, Saito Y, Iseki K, 2003. Sediment accumulation rates and budgets of deposting particles of the East China Sea. Deep-Sea Research II, 50: 513-528.
    Orgeta T, Ponce R, Forja J, Gómez-Parra A, 2004. Fluxes of dissolved inorganic carbon in three estuarine systems of the Cantabrian Sea (north of Spain). Journal of Marine Systems, 53: 125-142.
    Orive E, Iriarte A, De Madariaga I, Revilla M, 1998. Phytoplankton blooms in the Urdaibai estuary during summer: physicochemical conditions and taxa involved. Oceanologica Acta, 21(2): 293-305.
    Owen B B , King E J, 1 943. T he effect o f s odium chloride upon the ionizaton of b oric a cid at v arious temperatures. Journal of the American Chemical Society, 65: 1612–1620.
    Park P K, 1969. Oceanic CO2 system: An evaluation of ten methods of investigation. Limnology and Oceanography, 2: 179-186.
    Park P K, Hager W, Cissell M C, 1969. Carbon dioxide partial pressure in the Columbia River. Science, 166: 867-868.
    Park Y C, Choi J K, 1993. Oceanographical consideration on waste disposal in the marine environment.Journal of the Korean Society of Oceanography, 28: 142-152.
    
    Pelletier E, Lebel J. 1979. Hydrochenistry of dissolved inorganic carbon in the St. Lawrence Estuary (Canada). Estuarine Coastal Marine Science, 9: 785-795.
    Peng T-H, Wanninkhof R, Bullister J L, Feely R A, Takahashi T, 1998. Quantification of decadal anthropogenic CO2 uptake in the ocean based on dissolved inorganic carbon measurements. Nature, 396: 560-563.
    Pielou E C, 1966. Sepcies-diversity and pattern-diversity in the study of ecological succession. Journal of Theoretical Biology, 10: 370–383.
    Pipko I I, Semiletov I P, Tishchenko P Ya, Pugach S P, Christensen J P, 2002. Carbonate chemistry dynamics in Bering Strait and the Chukchi Sea. Progress in Oceanography, 55: 77-94.
    Prentice I C, Farquhar G D, Fasham M J R, Goulden M L, Heimann M, Jaramillo V J, Kheshgi H S, Quéré C L, Scholes R J, Wallace D W R, 2001. The carbon cycle and atmospheric CO2. In: Houghton J T, Yihui D (Eds.), The Intergovernmental Panel on Climate Change (IPCC). Third Assessment Report. Cambridge: Cambridge University Press.
    Prieto F J M, Millero F J, 2002. The values of pK1 + pK2 for the dissociation of carbonic acid in seawater. Geochimica et Cosmochimica Acta, 66: 2529-2540.
    Pritchard D W, 1967. What is an estuary: physical viewpoint. In: Lanff G H (Ed.), Estuaries. Washington D C: AAAS Publ., 83: 3-5.
    Rabalais N, Turner R E, (2001). Hypoxia in the northern Gulf of Mexico: description, causes and change. In: Rabalais N, Turner R E (Eds.), Coastal Hypoxia: Consequences for Living Resources and Ecosystems. Washington, D C: American Geophysical Union, pp. 1-36.
    Raymond P A, Bauer J E, Cole J J, 2000. Atmospheric CO2 evasion, dissolved inorganic carbon production, and net heterotrophy in the York River estuary. Limnology and Oceanography, 45: 1707-1717.
    Raymond P A , Caraco N F, Cole J J, 1997. Carbon dioxide concentration and atmospheric flux in the Hudson River. Estuaries, 20: 381-390.
    Raymond P A, Cole J J, 2001. Gas exchange in rivers and estuaries: choosing a gas transfer velocity. Esturies, 24: 321-317.
    Raynaud D, Barnola J M, 1985. An Antarctic ice core reveals atmospheric CO2 variations over the past few centuries. Nature, 315: 309-311.
    Redfield A C, Ketchum B H, Richards F A, 1963. The influence of organisms on the composition of sea water. In: Hill M N. (Ed.), The Sea, vol. 2. Interscience, New York, pp. 26-77.
    Reed C, 1978. Species diversity in aquatic micro-ecosystems. Ecology, 59: 481-488.
    Rehder G, Suess E, 2001. Methane and pCO2 in the Kuroshio and the South China Sea during maximum summer surface temperatures. Marine Chemistry, 75: 89-108.
    Riebesell U, Zondervan I, Rost B, Tortell P D, Zeebe R E, Morel F M M, 2000. Reduced calcification in marine plankton in response to increased atmospheric CO2. Nature, 407: 364-367.
    Ríos A F, Pérez F F, álvarez M, Mintrop L, González-Dávila M, Santana Casiano J M, Lefèvre N, Watson A J, 2005. Seasonal sea-surface carbon dioxide in the Azores area. Marine Chemistry, in press.
    Robertson A I, Dixon P, Daniel P A, 1988. Zooplankton dynamics in mangrove and other nearshore habitats in tropical Australia. Marine Ecology Progress Series, 43: 139–150.
    Rosenberg D M, Berkes F, Bodaly R A, Hecky R E, Kelly C A, Rudd J W M, 1997. Large-scale impacts of hydroelectric development. Environmental Review, 5: 27–54.
    Ross S W, Dalton D A, Kramer S, Christensen B L, 2001. Physiological (antioxidant) responses of estuarine fishes to variability in dissolved oxygen. Comparative Biochemistry and Physiology Part C, 130: 289-303.
    
    Roy R N, Roy L N, Vogel K M, Moore C P, Pearson T, Good C E, Miller F J, 1993. Thermodynamics of the dissociation of boric acid in seawater. Marine Chemistry, 44: 243–248.
    Sabine C L, Key R M, Johnson K M, Millero F J, Poisson A, Sarmiento J L, Wallace D W R, Winn C D, 1999. Anthropogenic CO2 inventory of the Indian Ocean. Global Biogeochemical Cycles, 13: 179-198.
    Santana-Casiano J M, Gonzalez-Davila M, Laglera L M, 2002. The carbon dioxide system in the Strait of Gibraltar. Deep-Sea Research II, 49: 4145-4161.
    Sanyal A, Nugent M, Reeder R J, Bijma J, 2000. Seawater pH control on the boron isotopic composition of calcite: evidence from inorganic calcite precipitation experiments. Geochimica et Cosmochimica Acta, 64: 1551–1555.
    Schindler D W, 1981. Interrelationships between the cycles of elements in freshwater ecosystems. In: Likens G E (Ed.), Some Perspectives of the Major Biogeochemical Cycles, SCOPE.
    Schlesinger W H, 1991. Biochemistry: An Analysis of Global Change. San Diego: Academic Press, pp. 2-7.
    Selberg C D, Eby L A, Crowder L B, 2001. Hypoxia in the Neuse River Estuary: responses of blue crabs and crabbers. North American Journal of Fisheries Management, 21: 358-366.
    Shannon C E, Wiener W, 1949. The Mathematical Theory of Communication. Urbana: University of Illinois Press, 125 pp.
    Shiah F K, Liu K K, Kao S J, Gong G C, 2000. The coupling of bacterial production and hydrography in the southern East China Sea. Continental Shelf Research, 20: 459-477.
    Siegenthaler U, Friedli H, Loetscher H, Moor E, Neftel A, Oeschger H, and Stauffer B, 1988. Stable isotope ratios and concentration of CO2 in air from polar ice cores. Annals of Glaciology, 10: 151-156.
    Smith S D, Jones E P, 1986. Isotopic and micrometeorological ocean CO2 fluxes: different time and space scales. Journal of Geophysical Research, 91(C9): 10529-10532.
    Smith S V, Hollibaugh J T, 1993. Coastal metabolism and the oceanic organic-carbon balance. Reviews of Geophysics, 31: 75-89.
    Song Jinming, Ma Hongbo, Lü Xiaoxa, 2002. Nitrogen forms and decomposition of organic carbon in the south Bohai Sea core sediments. Acta Oceanologica Sinica, 21(1): 125-133.
    Stirling G, Wilsey B, 2001. Empirical relationships between species richness, evenness, and proportional diversity. The American Naturalist, 158 (3): 286-299.
    Takahashi T, Feely R A, Weiss R F, Wanninkhof R H, Chipman D W, 1997. Global air-sea flux of CO2: an estimate based on measurements of sea-air fCO2 difference. Proceedings of the National Academy of Sciences of the United States of American, 94: 8292-8299.
    Tans P P, Fung I Y, Takahashi T, 1990. Observational constraints on the global atmospheric CO2 budget. Science, 247: 1431-1438.
    Telesh I V, 2004. Plankton of the Baltic estuarine ecosystems with emphasis on Neva Estuary: a review of present knowledge and research perspectives. Marine Pollution Bulletin, 49: 206-219.
    Tipping E, Lofts S, Lawlor A, 1998. Modelling the chemical speciation of trace metals in the surface waters of the Humber system. The Science of the Total Environment, 210/211: 63-77.
    Tsunogai S, Watanabe S, Sato T, 1999. Is there a ‘‘continental shelf pump’’ for the absorption of atmospheric CO2- Tellus, 51 B: 701–712.
    Tsurushima N, Nojiri Y, Imai K, Watanabe S, 2002. Seasonal variations of carbon dioxide system and nutrients in the surface mixed layer at station KNOT (44°N, 155°E) in the subarctic western North Pacific. Deep-Sea Research II, 49: 5377-5394.
    
    Turner R E, Qureshi N A, Rabalais N N, Dortch Q, Justic D, Shaw R, Cope J, 1998. Fluctuating silicate:nitrate ratios and coastal plankton food webs. Proceedings of the National Academy of Sciences of the United States of America, 95: 13048–13051.
    Ver L M B, Mackenzie F T, Lerman A, 1999. Carbon cycle in the coastal zone: effects of global perturbations and change in the past three centuries. Chemical Geology, 159: 283-304.
    Wahlen M, Allen D, Deck B, Herchenroder A, 1991. Initial measurements of CO2 concentriations (1530-1940 AD) in air occluded in the GISP2 ice core from Central Greenland. Geophysical Research Letter, 18: 1457-1460.
    Wallace D W R, 2001. Introduction to special section: ocean measurements and models of carbon sources and sinks. Global Biogeochemical Cycles, 15: 3-10.
    Wang S L, Chen C T A, Hong G H, Chung C S, 2000. Carbon dioxide and related parameters in the East China Sea. Continental Shelf Research, 20: 525–544.
    Wang Z, Thiébaut E, Dauvin J C, 1995. Short-term variations of zooplankton in a megatidal estuary (Seine, eastern English Channel). Journal de Recherche Océanographique, 20: 152.
    Wanninkhof R, 1992. Relationship between wind speed and gas exchange over the ocean. Journal of Geophysical Research, 97(C5): 7373-7382.
    Wanninkhof R, Lewis E, Feely R A, Millero F J, 1999. The optimal carbonate dissociation constants for determining surface w ater pCO2 from alkalinity a nd total i norganic carbon. M arine C hemistry, 6 5: 291-301.
    Wanninkhof R, McGills W R, 1999. A cubic relationship between air-sea CO2 exchange and wind speed. Geophysical Research Letters, 26(13): 1889-1892.
    Watson R T, Noble I R, 2001. Carbon and the science-policy nexus: the Kyoto challenge. In: Steffen W, Jager J, Carson D, Bredshaw C (Eds.), Challenges of a Changing Earth. Proceedings of the Global Change Open Science Conference. Berlin: Springer, pp. 57-64.
    Weiss R F, 1970. The solubility of nitrogen, oxygen and argon in water and seawater. Deep-Sea Research, 17: 721-735.
    Weiss R F, 1974. Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Marine Chemistry, 2: 203–215.
    Whitfield A K, Wooldridge T H, 1988. Changes in freshwater supplies to southern African estuaries: some theoretical and practical considerations. In: Dyer K R, Orth R J (Ed.), Changes in Fluxes in Estuaries. Denmark: Olsen & Olsen, pp. 41–49.
    Wollast R, Billen G, Duinker J C, 1979. Behaviour of manganese in the Rhine and Scheldt estuaries: I. Physicochemical aspects. Estuarine Coastal Shelf Science, 9: 161-169.
    Wong G T F, 1979. Alkalinity and pH in the southern Chesapeake Bay and the James river estuary. Limnology and Oceanography, 24: 970-977.
    Wooldridge T, 1999. Estuarine zooplankton community structure and dynamics. In: Allanson B R, Baird D (Eds.), Estuaries of South Africa. Cambridge, United Kingdom: Cambridge University Press, pp. 141–166.
    Wu J T, 1984. Phytoplankton as bioindicator for water quality in Taipei. Botany Bulletin of Academia Sinica, 25: 205-214.
    Wu R S S, 1999. Eutrophication, water borne pathogens and xenobiotic compounds: environmental risks and challenges. Marine Pollution Bulletin, 39: 11-22.
    Yang S L, 1999. A study of coastal morphodynamics on the Muddy Islands in the Changjiang River estuary. Journal of Coastal Rsearch, 15: 32-44.
    
    Yang S L, Belkin I M, Belkina A I, Zhao Q Y, Zhu J, Ding P X, 2003. Delta response to decline in sediment supply from the Yangtze River: evidence of the recent four decades and expectations for the next half-century. Estuarine, Coastal and Shelf Science, 57: 689-699.
    Yang S, Ding P, Chen S, 2001. Changes in progradation rate of the tidal flats at the mouth of the Changjiang (Yangtze) River, China. Geomorphology, 38: 167-180.
    Yang S, Ding P, Zhu J, Zhao Q, Mao Z, 2000. Tidal flat morphodynamic processes of the Yangtze estuary and their engineering implications. China Ocean Engineering, 14(3): 307-320.
    Zeebe R E, Wolf-Gladrow D, 2001. CO2 in Seawater: Equilibrium, Kinetics, Isotopes. Netherlands, Amsterdam: Elsevier Oceanography Book Series, 65: 346 pp.
    Zhai W, Dai M, Cai W-J, Wang Y, Wang Z, 2005. High partial pressure of CO2 and its maintaining mechanism in a subtropical estuary: the Peal River estuary, China. Marine Chemistry, 93: 21-32.
    Zhang J, 2002. Biogeochemistry of Chinese estuarine and coastal waters: Nutrients, trace metals and biomarkers. Regional Environental Change, 3: 65–76.
    Zhang J, Yu Z G, Raabe T, Liu S M, Starke A, Zou L, Gao HW, Brockmann U, 2004. Dynamics of inorganic nutrient species in the Bohai seawaters. Journal of Marine Systems, 44: 189-212.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700