荧光光谱法测定生物大分子的研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白质和核酸是构成机体的两种重要的生物大分子。核酸是生物基本遗传物质,与生物生长、发育及癌变、突变等异常活动相关;蛋白质则负责各种生理功能,维持生物体新陈代谢活动,是生物性状直接表达者。它们是生物化学与生命科学中重要的两类生物大分子。因此研究机体分子结构、功能以及定性和定量分析,已成为当前生物分析化学研究的前沿热点之一。
     本文以荧光、共振散射技术为主要研究手段,建立快速灵敏的检测蛋白质与核酸新方法,同时应用TEM、吸收光谱技术等手段进行机理研究和探讨。
     本文共分为五部分,第一部分综述了生物大分子荧光探针以及纳米粒子作为光谱探针在生物分析中的研究进展及分析应用。
     在论文的第二部分,研究了桑色素–Al(III)–蛋白质体系的荧光增强效应,建立了蛋白质测定的新方法。本研究发现,BSA的加入可以显著增加桑色素–Al(III)的荧光强度,据此建立了一种检测蛋白质的快速、灵敏、简便的荧光光谱法。在最佳实验条件下体系的荧光强度与蛋白质的浓度在一定范围内呈良好的线性关系,检出限可达10-9g mL-1,并成功应用于实际样品的检测中。机理研究表明桑色素的羟基与Al(III)配位形成桑色素–Al(III)配合物,由于Al(III)的架桥作用,产生大的聚合体,导致体系荧光强度的增强,求得能量转移率E=0.75。
     在论文的第三部分,研究发现蛋白质可以显著增强槲皮素–Al(III)体系的荧光,从而建立了一个测定蛋白质的新体系。在最佳条件下,BSA与EA分别在1.0×10-8~3.0×10-7 g·ml-1和5.0×10-8~4.5×10-7 g·ml-1范围内与荧光强度呈良好的线性关系,检出限分别为2.3×10-9和1.0×10-8 g·mL-1,并且该体系稳定性好选择性高。研究了槲皮素、Al(III)与BSA的作用机理,发现槲皮素、Al(III)生成二元复合物,再与BSA结合,生成槲皮素–Al(III)–BSA聚集体。
     在论文的第四部分,研究了桑色素、nanoTiO2和核酸的相互作用。研究发现核酸可以显著增强nanoTiO2–桑色素的荧光强度,且体系的荧光强度与核酸的浓度在一定范围内呈良好的线性关系。据此建立了测定核酸的新方法。ctDNA和yRNA的线性范围分别为:2.0×10-8~2.2×10-7 g·mL-1和1.0×10-8~2.5×10-7 g·mL-1;检出限分别为4.8×10-9 g·mL-1和1.2×10-9 g·mL-1,并成功应用于实际样品酵母RNA的测定。
     在论文的第五部分,研究了核酸对Al(III)–nanoTiO2体系共振光散射强度的增强效应。研究发现,核酸的加入使得体系的共振光散射强度显著增强,在最佳条件下,体系的共振光散射强度增强程度和核酸的浓度在一定范围内呈良好的线性关系,检出限达到10-11 g·mL-1,并成功应用于实际样品酵母RNA的测定。机理研究表明Al(III)的吸附架桥作用,使得nanoTiO2、Al(III)与DNA三者之间形成网状聚集体,导致体系的共振光散射强度的增强。
Proteins and nucleic acids are the two kinds of biological macromolecules in our body. Nucleic acids are the basic genetic material of biological, it is related to the biological growth and development, cancer, mutation and other unusual activity. Proteins are the carriers of many physiological functions and are also the direct expresser of physiological characters. Proteins play an important role in the metabolism of human body, the most disease of human being is caused by abnormal of protein. They are two types of most important biological macromolecules in life scicence and biochemistry. Therefore study the molecular structure, qualitative and quantitative analysis of nucleic and protein has become the hot spots in bioanalytical chemistry.
     This thesis focused on the development of new probes of proteins and nucleic acids, and to astablish sensitive method for the quantitative determination of them used the resonance light scattering(RLS) and fluorescence as the primary technique. The TEM, absorption techniques were also used to study the interaction mechanism.
     This paper is divided into five parts, the first overview the applications of nano–particles and drug molecules as a spectral probe in the analysis of biological macromolecules(nucleic acid and protein).
     In the second part of the paper, to study the fluorescence enhancement effect of Morin–Al (III)– protein system, and establishe a fast, sensitive and simple method for determination of protein with fluorescence spectroscopy. Under the optimum conditions, the fluorescence intensity and the concentration of protein within a certain range showed good linear relationship, the detection limit of up to 10-9g mL-1, and successfully applied to real samples. Mechanism of the system shown that the hydroxy of morin coordinate to formation of morin–Al (III)–association complex with Al (III), due to the bridging role of Al (III) in the protein binding, resulting in large aggregates and the fluorescence intensity increases, the rate of energy transfer obtained E = 0.75.
     In the third part of the paper, the study found the protein can significantly enhance the system of quercetin–Al (III) fluorescence, thereby establishing a new system for determination of protein. Under the optimum conditions, BSA and EA, respectively 1.0×10-8~3.0×10-7 g·ml-1 and 5.0×10-8~4.5×10-7 g·ml-1 within the range of fluorescence intensity showed good linearity The detection limits were 2.3×10-9 and 1.0×10-8 g·mL-1, and the high selectivity and good stability of the system. And studies the mechanism of quercetin, Al (III) and BSA can found that quercetin, Al (III) generates binary complex, and then combined with the BSA, while the quercetin–Al (III) by Al (III) binary system as a bridge combined with the BSA.
     In the fouth section, the Morin, nanoTiO2 and nucleic acid interactions was studied. The study found that the fluorescence of morin–nanoTiO2 significantly enhanced with nucleic acid adding, and the fluorescence intensity and the concentration of nucleic acid within a certain range showed good linearity. Based on the establishment of a new method for the determination of nucleic acids. The linear range of DNA and RNA, respectively: 2.0×10-8~2.2×10-7 g·mL-1 and 1.0×10-8~2.5×10-7 g·mL-1, detection limits were 4.8×10-9 g·mL-1 and 1.2×10-9 g·mL-1, and successfully applied to the determination of actual samples of yeast RNA.
     In the fifth section, we developed nucleic acids can largery enhance the intensity of resonance light scattering of Al (III)–nanoTiO2 system, under optimum conditions, There is a better linear correlation between the enhancing extent of fluorescence intensity and the concentration of nucleic acids and the detection limit of protein is found to be 10-11 g·mL-1, and successfully applied to the determination of actual samples of yeast RNA. Mechanism of studies have shown that owing to the bridging fuction of Al (III), nanoTiO2, Al (III) and DNA form a network aggregates, resulting in the system enhancement of resonance light scattering intensity.
引文
[1] D P PossP, S Subramania . Thermodynamics of Protein Association Reactions Forces Contributing to Stability. Biochemistry,1981,20(11):3096–3102.
    [2]郭灿城,李和平,张晓兵,等.meso–5,10,15,20–四[4–(N–吡咯烷基)苯基]卟啉的合成及对牛血清白蛋白的作用.高校化学学报,2003,24(2):282–287.
    [3]张红霞,刘建业,李青山.四苯苯卟啉锰配合物与牛血清白蛋白相互作用的研究.山西医科大学学报,2001,32(2):138–140.
    [4]魏晓芳,刘会洲.Triton X–100与血清白蛋白的相互作用.分析化学,2000,28(6):699–701.
    [5] M M Bradford. Arapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein–Dye Binding. Anal Biochem,1976,72:248.
    [6]王多宁,赵雁武,田芙蓉.考马斯亮蓝微盘比色法测定蛋白质含量.第四军医大学学报,2001,22(6):528–529.
    [7] Y T Wang, F L Zhao, K A Li. A novel protein assay with an azo dye using Rayleigh light scattering technique. Analytical letters,2000,33(1):221–235.
    [8]胡庆红,刘绍璞,罗红群.变色酸2B分光光度法测定蛋白质.西南师范大学学报(自然科学版),2001,26(5):594–598.
    [9]胡庆红,刘绍璞,罗红群.偶氮羧Ⅰ分光光度法测定蛋白质.分析科学学报,2002,18(2):115–119.
    [10]胡庆红,刘绍璞,范莉.蛋白质对铬蓝SE的褪色反应及其分析应用.分析化学,2002,30(1):42–45.
    [11]刘保生,张红医,王甫丽,等.溴酚蓝测定血清白蛋白质的研究.光谱学与光谱分析,2003,23(5):999–1001.
    [12]崔凤灵,闫迎华,张强斋,等.巯嘌呤分子探针同步荧光法测定蛋白质的研究.化学试剂,2008,30(8):584–586.
    [13]吴霖,俞英.牛血清自蛋自与碱性品红的结合反应[硕士学位论文].广州:华南师范大学,2004.
    [14] C Q Ma, K Li, S Y Tong. Determination of Proteins by Fluorescence Quenching of Erythrosin B. Anal Chime Acta,1996,333(1–2):83–88.
    [15]李改仙,李建晴,魏玉霞.四碘荧光素与牛血清白蛋白相互作用的荧光光谱研究.光谱学与光谱分析,2005,25(8):1277–1280.
    [16]陈鸿琪,夏闽.荧光染料吖啶红作测定蛋白质的生物探针–蛋白质的染料分析法新进展.理化检验–化学分册,2001,37(2):53–58.
    [17]王春风,王京芳,李全民,等.偶氮胂羧与蛋白质作用的光谱性质及其分析应用研究.化学试剂,2005,27(9):541–544.
    [18]曹秋娥,李祖碧,王加林,等.偶氮胭脂红B与血清蛋白质相互作用的光度法研究及其分析应用.分析化学,2002,30(2):222–226.
    [19]张永花,胡秋娈.变色酸2B光度法测定血清蛋白质的研究.洛阳师范学院学报,2005,(2): 55–58.
    [20] X S Zhu, J Sun, Y Y Hu. Determination of protein by hydroxypropyl–Β–cyclodextrin sensitized fluorescence quenching method with erythrosine sodium as a fluorescence probe. Analytica Chimica Acta,2007,596(2):298–302.
    [21] W W Qin, Y J Bao, G Q Gong, et al. Fluorescence Quenching Method for the Determination of Proteins by Alizarin. Journal of Lanzhou University(Natural Sciences),2000,36(3):105–110.
    [22]刘毓芳.邻氯酚红与牛血清白蛋白相互作用的荧光光谱研究.晋中学院学报,2008,25(3):65–69.
    [23]马萍,迟燕华,庄稼,等.人血清白蛋白与酸性铬兰K相互作用机理的光谱学.应用化学,2008,25(9):1032–1036.
    [24]安道利,李建晴,智慧.灿烂绿与牛血清白蛋白相互作用的研究.分析科学学报,2008,24(3):311–314.
    [25]李来生,李艳平,黄志兵,等.用荧光法研究对–二甲氨甲基杯[8]芳烃与牛血清白蛋白的相互作用.分析科学学报,2006,22(5):505–509.
    [26]石燕,叶反帝,郑为完.麦塔喇红与蛋白质相互作用的光谱研究.光谱学与光谱分析,2006,26(7):1314–1317.
    [27]邓世星,杨季冬.荧光法研究酚藏花红与牛血清白蛋白的相互作用.分析测试学报,2007,26(3):360–364.
    [28]廖卫平,司芝坤.荧光光谱法研究槲皮素与牛血清白蛋白的相互作用.烟台大学学报(自然科学与工程版),2006,19(1):20–25.
    [29]商志才,易平贵,俞庆森,等.环丙沙星与牛血清白蛋白的结合反应.物理化学学报,2001,17(1):48–52.
    [30]赵利霞,李保新,章竹君.诺氟沙星与牛血清白蛋白结合作用研究.陕西师范大学学报(自然科学版),2002,30(2):73–75.
    [31]易平贵,俞庆森,商志才,等.牛血清白蛋白与金霉素结合反应的机制研究.化学物理学报,2003,16(5):420–424.
    [32]刘保生,刘智超,高静.红霉素与牛血清白蛋白的相互作用机制.河北大学学报(自然科学版),2005,25(4):380–382.
    [33] L W Zhang, K Wang, X X Zhang. Study of the interactions between fluoroquinolones and human serum albumin by affinity capillary electrophoresis and fluorescence method. Analytica Chimica Acta,2007,603(1):101–110.
    [34]陈晓波,康栋国,李崧,等.利福平与人血清白蛋白作用的荧光光谱.光谱学与光谱分析,2006,26(4):674–677.
    [35]阿娟,刘惠民,张霞.钼(IV)–水杨基荧光酮(SAF)配合物光谱探针测定蛋白质.内蒙古农业大学学报,2007,28(4):88–90.
    [36]高建华,翟海云,陈彬.杯[8]芳烃与铈III形成的斓系超分子作荧光探针测定蛋白质.分析化学,2002,30(3):295–297.
    [37] F S Yu , L Li , F Chen. Determination of adenosine disodium triphosphate using prulifloxacin–terbium(III) as a fluorescence probe by spectrofluorimetry. Analytica Chimica Acta,2008,610:257–262.
    [38]李妙平,梁宏,宋才生,等.金III与血清白蛋白的结合及其后续效应研究.江西师范大学学报(自然科学版),2006,30(6):517–524.
    [39]唐世华.汞II与明胶蛋白质相互作用的荧光光谱研究.明胶科学与技术,2006,26(2):517–524.
    [40]唐世华.同步荧光光谱法研究明胶蛋白质与铜(Ⅱ)的相互作用.感光科学与光化学,2005,23(2):102–108.
    [41] S F Liu, J H Yang, X Wu, F Wang, et al. Study on the interaction between protein and Eu(III)–chlorotetracycline complex and the determination of protein using the fluorimetric method. luminescence,2004,19(6):352–357.
    [42] W E Schy, Plewa, Michaev. Differential staining of DNA and RNA in intact cells and isolated cell nuclei with acridine orange. Anal Biochem,1989,180(2):314–318.
    [43] Z Darzynkiewicz. DNA–dye fluorescence enhancement basedshifting the dimmer–monomer equilibrium of fluorescent dye. Methods cell Biol,2000,332(1):85–98.
    [44] Y Cao, X W He, Z Gao, et al. Fluorescence energy transfer between Acridine Orange and Safranine T and its application in the determination of DNA. Talanta,1999,49(2):377–383.
    [45]苏界殊,陈小明,罗和安,等.甲基紫6B共振光散射法测定脱氧核糖核酸.化学分析计量,2004,13(5):12–15.
    [46] S E Morozkin, P P Laktionov, Y E Rykova, et al. Fluorometric quantification of RNA and DNA in solutions containing both nucleic acids. Analytical Biochemistry,2003,322(2):48–50.
    [47]林旭聪,谢增鸿,郭良洽,等.核酸–甲基青莲6B分子作用体系的研究与应用.光谱学与光谱分析,2004,24(2):169–172.
    [48]郭良洽,叶芳贵,林旭聪,等.甲苯胺蓝荧光猝灭法测定核酸.光谱学与光谱分析,2006,26(1):121–124.
    [49]胡敏,张镇西,沈国励,等.近红外荧光探针天青A检测DNA.分析化学,2007,35(6):890–892.
    [50]王斌,李原芳,黄承志.双苯甲亚胺与DNA作用的共振光散射特征及其分析应用.西南大学学报(自然科学版),2008,30(5):62–66.
    [51] W Y Li, K Miao, H L Wu, et al. Fluorimetric determination of nucleic acids with quinaldine red. Microchimica Acta,2003,143(1):33– 37.
    [52] Z Q Jiang, Y H Chi, J Zhuang, et al. Fluorinetric Studies on the Interaction Mechanis, of Deoxyribonucleic A cid with 2–(4–(Dinethyamino) phenyl) azo)–benzoic acid . Chinese Joumal of Analytical Chemistry,2006,34:s49–s53.
    [53] H B Li, X Y Zhang, X M Wang, et al. Study on the Interaction between Calcein and Herring Sperm DNA by Spectrometry. Journal of Natural Science of Hunan Normal University,2007,30(1):47–51.
    [54] Q Y Lin, X H Lu, J R Chen, et al. Synthesis and DNA Binding Properties of Three Compouds Containing Pyridinecarboxamide. Spectroscopy and Spectral Analysis,2008,28(6):1359–1363.
    [55]费丹,王兴明,黎泓波,等.亚甲基蓝与鲱鱼精DNA相互作用的光谱法研究.化学学报,2008,66(4):443–448.
    [56]刘雪平,冯素玲,潘自红,等.溴化乙锭探针研究劳氏青莲与脱氧核糖核酸的相互作用.光谱学与光谱分析,2006,26(10):1895–1898.
    [57]高峰,章丽,卞桂荣,等.光谱法研究灿烂甲酚蓝与DNA的相互作用.光谱学与光谱分析,2005,25(11):1843–1845.
    [58] M C McManus. Mechanisms of bacterial resistance to antimicrobial agents. American journal of health–system pharmacy,1997,54(12):1420–1433.
    [59] X J Liu, Y Z Li, Y X Ci. Time–resolved fluorescence studies of the interaction of the Eu(III) complexes of tetracycline analogues with DNA. Anal chim acta,1997,345(1–3):213–217.
    [60] Y X Ci, Y Z Li, X J Liu. Determination of DNA by Its Enhancement Effect on the Fluorescence of the Eu(III)–Tetracycline Complex. Anal Chem,1995,67(11):1785–1788.
    [61] Y M Hu, X M Wang, D Fei, et al. Study on the Interaction between Riboflavin and Herring Sperm DNA by Fluorescence Spectrometry. Acta Chimica Sinica,2008,66(10):1245–1251.
    [62]王兴明,黎泓波,胡亚敏,等.苏木素与DNA相互作用的光谱研究.化学学报,2007,65(2):140–146.
    [63] J X He, C Q Jiang, M X Gao. Study on the Interaction between Berberine Hydrochloride and DNA. Spectroscopy and Spectral Analysis,2005,27(1):755–758.
    [64]何瑜,蔡朝霞,宋功武.光谱法研究诺氟沙星与DNA的作用.湖北大学学报(自然科学版),2004,26(3):232–236.
    [65]张立金,闵顺耕,赵慈,等.光谱法研究甲萘威与DNA的相互作用.环境化学,2004,23(5):520–524.
    [66] L Wang, Q Y Yan, Y He, et al. Spectrofluorometric detemination of DNA with the ternary system of quercetin Co(II) and DNA . Journal of Hubei University (Natural Science Edition),2005,27(3):264–267.
    [67] L S Ling, Z K He, G W Song, et al. Study on the Interaction between Ru(phen)2(dppx)2+ and DNA . Microchemical Acta,2000,134(1/2):57–62.
    [68] L S Ling, Z K He, G W Song, et al. Study on the Interaction between Ru(bipy)2(dppx)2+ and DNA by Fluorescence Spectrometry. Microchemical Journal,1999,63(3):356–364.
    [69] C G Lin, G L Zhang, J H Yang. Fluorimetric determination of nucleic acids with terbium and lutetium. Microchemical Journal,2002,71(1):9–14.
    [70]姚武,高峰,章丽,等.洛美沙星–铜(II)–DNA三元络合物的荧光性质研究.分析实验室,2004,23(1):70–73.
    [71]杨周生,于俊生,陈洪渊.四环素–Al(III)配合物与DNA的相互作用研究.高等学校化学学报,2002,23(8):457–461.
    [72]李菲,李怡,曹秋娥.荧光法研究苯甲酸氮芥铕配合物与DNA的相互作用.云南大学学报(自然科学版),2004,26(5):438–441.
    [73]余燕影,李华,胡昕,等.染料木素铬(III)配合物与DNA相互作用的研究.光谱学与光谱分析,2008,28(7):1587–1591.
    [74]朱展才,汪静,朱红斌.铌–桑色素荧光探针猝灭法测定核酸.分析化学,2002,30(11):1319–1321.
    [75]巩雄,郭永,杨宏秀,陈文驹.纳米材料及其光学特性.化学通报,1998,3(1):19–21.
    [76]沈星灿,何锡文,梁宏.纳米粒子特性与生物分析.分析化学评述与进展,2003,31(7):880–885.
    [77]王楠,徐淑坤,王文星.纳米金生物探针及其应用.化学进展,2007,19(2/3):408–413.
    [78] J J Storhoff, A A Lazarides, C A Mirkin, et al .What controls the optical properties of DNA–linked gold nanoparticle assemblies. J Am Chem Soc,2000,122(19):4640–4650.
    [79] R Jin, G Wu, Z Li, et al. What controls the melting properties of DNA–linked gold nanoparticle assemblies. J Am Chem Soc,2003,125:1643–1654.
    [80] A K R Lytton–Jean, C A A Mirkin. Thermodynamic Investigation into the Binding Properties of DNA–Functionalized Gold Nanoparticle Probes and Molecular Fluorophore Probes . J Am Chem Soc,2005, 127(37):12754–12755.
    [81] J H Sarah, A K R Lytton–Jean, C A Mirkin. Maximizing DNA Loading on a Range of Gold Nanoparticle Sizes. Anal Chem,2006,78(24):8313–8318.
    [82] P Bao, A G Frutos, C Greef, et al. High–sensitivity detection of DNA hybridization on microarrays using resonance light scattering. Anal Chem,2002,74(8):1792–1797.
    [83] H P Zho, X Wu, J H Yang. Study on the interaction of nucleic acids with silver nanoparticles–Al(III) by resonance light scattering technique and its analytical application. Talanta,2009,78(3):809–813.
    [84] M Y Song, D K Kim, K J Ihm. Elect rospun TiO2 Elect rodes for Dye2Sensitized Solar Cells. Nanotechnology,2004,15(8):1861–1865.
    [85]朱永华,王书亮,姚敬华,等.纳米TiO2改性丙烯酸涂层的抗紫外光作用.功能材料,2005,36(10):1607–1609.
    [86]邓桦,李秀明,肖长发.TiO2纳米晶的低温制备及其抗紫外线性能.东华大学学报(自然科学版),2009,35(1):69–73.
    [87] A Kathiravan, S Anandan, R Renganathan. Interaction of colloidal TiO2 with human serum albumin:A fluorescence quenching study. Colloids and Surfaces A: Physicochem Eng Aspects,2009,333(1–3):91–95.
    [88] V I Klimov, A A Mikhailovsky, S Xu, et al. Optical gain and stimulated emission in nanocrystal quantum dots. Science, 000,290(5490):314–317.
    [89] M J Bruchez, M M Moronne, P Gin, et al. Semiconductor nanocrystals as flourencent biological labels. Science,1998,281(5385):2013–2016.
    [90] W C W Chan, S M Nie. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science,1998,2811(5385):2016–2018.
    [91] Y M Azhniuk, V M Dzhagan, A E Raevskaya. Optical studies of CdSe/HgSe and CdSe/Ag2Se core/shell nanoparticles embedded in gelatin. Journal of Physics Condensed Matter,2008,20(45):455203–1–455203–9.
    [92] H Zhu, M Sun, X R Yang. A simple selenium source to synthesize CdSe via the two–phase thermal approach. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2008,320(1–3):74–77.
    [93] N V Hullavarad, S S Hullavarad, P C Karulkar. Cadmium Sulphide (CdS) Nanotechnology: Synthesis and Applications. Journal of Nanoscience and Nanotechnology,2008,8(7):3272–3299.
    [94] P Mandal, R S Srinivasa, S S Talwar. Cds/zns Core–shell Nanoparticles In Arachidic Acid Lb Films. Applied Surface Science,2008,254(16):5028–5033.
    [95] E R Goldman, A R Clapp, G P Anderson, et al. Multiplexed toxin analysis using four colors of quantum dot fluororeagents. Anal Chem,2004,76(3):684–688.
    [96] T Torimoto, M Yamashita, S Kuwabata, et al. Fabrication of CdS Nanoparticle Chains along DNA Double Strands. J Phys Chem B,1999,103(42),8799–8803.
    [97]徐海燕,孔桦.纳米材料的研究进展及其在生物医学中的应用.基础医学与临床,2002,22(2):97–102.
    [98]夏生,王琪.聚合物纳米材料研究进展Ⅱ—聚合物/无机纳米复合材料.化学研究与应用,2002,14(2):127–132.
    [99] L Wang, G R Bian, L Y Wang, et al. Fluorescence determination of DNA with 1–pyrenebutyric acid nanoparticles coated withβ–cyclodextrin as a fluorescence probe. Spectrochimica Acta PartA,2005,61(6):1201–1205.
    [100] K Eugenii, W Itamar. Integrated Nanoparticle–Biomolecule Hybrid Systems: Synthesis, Properties and Applications. Angewandte Chemie International Edition,2004,43(45):6042–6108.
    [101] J Zhang, S Song, L Zhang, et al. Sequence–specific detection of femtomolar DNA via a chronocoulometric DNA sensor (CDS): effects of nanoparticle–mediated amplification and nanoscale control of DNA assembly at electrodes. J Am Chem Soc,2006,128(26):8575–8580.
    [102] A M Chad, L L Robert, C M Robert, et al. A DNA–based method for rationally assembling nanoparticles into macroscopic materials. Nature,1996,382:607–609.
    [103] J J Storhoff, A A Lazarides, R C Mucic, et al. What controls the optical properties of DNA–linked gold nanoparticle assemblies. J Am Chem Soc,2000,122(19):4640–4650.
    [104] J Li, S P Song, X F Liu, et al. Enzyme–Based Multi–Component Optical Nanoprobes for Sequence–Specific Detection of DNA Hybridization. Advanced Materials,2008,20:497–500.
    [105]王健康,董晓莉.蛋白质荧光标记技术应用.空军总医院学报,2007,23(3):160–164.
    [106]高炅杨,陶慧林,刘峥,等.紫外光度法研究邻香草醛缩苯丙氨酸席夫碱与牛血清白蛋白的相互作用.化学与生物工程,2009,26(2):45–48.
    [107] F S Yu , L Li , F Chen. Determination of adenosine disodium triphosphate using prulifloxacin–terbium(III) as a fluorescence probe by spectrofluorimetry. Anal Chim Acta,2008,610(2):257–262.
    [108]黄钰婷,任祥祥,刘海峰,等.邻菲咯啉合铜配合物与牛血清白蛋白的相互作用.化学研究,2009,20(2):37–40.
    [109] S Mahanta, R B Singh, N Guchhait. Study of protein–probe interaction and protective action of surfactant sodium dodecyl sulphate in urea–denatured HSA using charge transfer fluorescence probe methyl ester of N,N–dimethylamino naphthyl acrylic acid. J Fluoresc,2009,19(2):291–302.
    [110]白海鑫,李聪,刘小花,等.牛血清白蛋白与Indo–1相互作用时构象变化的荧光光谱法分析.河南农业大学学报,2008,42(5):570–574.
    [111] X Diaz, E Abuin, E Lissi. Quenching of BSA intrinsic fluorescence by alkylpyridinium cations: its relationship to surfactant–protein association. J Photochem Photobiol A , 2003 ,155(1–3):157–162.
    [112]玄光善,吴效楠,李玉平.荧光光谱法研究乙酰水杨酸和牛血清蛋白的相互作用.光谱实验室,2005,22(4):861–864.
    [113] R Carlheinz, P Matthia, F Zang, et al. Ulrich nienhaus a quantitative fluorescence study of protein monolayer formation on colloidal nanoparticles. Nat Nanotech,2009,4(9):577–580.
    [114] M L Zhang, G P Sheng, H Q Yu. Determination of proteins and carbohydrates in the effluents from wastewater treatment bioreactors using resonance light–scattering method. Water Res,2008,42(13):3464–3472.
    [115] S S Singh, J Mehta. Measurement of drug–protein binding by immobilized human serum albumin–HPLC and comparison with ultrafiltration. J Chromatogr B,2006,(1/2):108–116.
    [116]厉红,屈锋,徐建栋,等.毛细管电泳应用于测定牛血清白蛋白与脂质体的相互作用.色谱,2008,26(4):473–477.
    [117]张琳,邵晟宇,温红宇.黄酮类化合物与DNA作用的热力学研究.生命科学仪器,2008,6(2):28–31.
    [118]董念,曹淑红,陈晓青,等.不同取代羟基黄酮类化合物与血清白蛋白的相互作用分析.分析测试学报,2009,28(1):49–54.
    [119]林旭聪,谢增鸿,郭良洽,等.核酸–桑色素–铝(III)三元荧光体系的研究.光谱学与光谱分析,2004,24(10):1230–1234.
    [120]郭灿城,李和平,张晓兵,等.meso–5,10,15,20–四[4–(N–吡咯烷基)苯基]卟啉的合成及对牛血清白蛋白的作用.高校化学学报,2003,24(2):282–287.
    [121]林天乐,严宝珍,胡高飞.Al(III)–槲皮素配合物的光谱分析.分析化学研究简报,2006,34(8):1125–1128.
    [122] J P Cornard, J C Merlin. Spectroscopic and structural study of complexes of quercetin with Al(III). J Inorg Biochem,2002,2(1):19–27.
    [123] F Wang, J H Yang, X Wu, et al. The interaction mechanism and fluorescence enhancement in morin–Al(III)–sodium dodecyl benzene sulfonate–protein system. Chemical Physics Letters,2005,409:14–22.
    [124] U Kragh–Hansen. Molecular aspects of ligand binding to serum albumin. Pharmacol Rev,1981,33(1):17–53.
    [125]张晓威,赵凤林,李克安.环丙沙星与牛血清白蛋白相互作用的研究.高等学校化学学报,1999,20(7):1063–1067.
    [126] Y T Wang, F L Zhao, et al. Microde termination of Proteins by Enhanced Ray leigh LightScattering Spectroscopy with Morin. Journal of Analytical Chemistry,1999,364(6):560–562.
    [127]姚明明,杨平,卢萍.TiO2胶体的制备研究.固原师专学报(自然科学版),1999,20(6):14–17.
    [128]陈小泉,沈文浩.纳米TiO2晶体胶体在居室净化中的应用研究.环境科学与技术,2008,31(10):132–134.
    [129] W B Bu, Z L Hua, H R Chen, et a1.Hydrothermal Synthesis of Ultraviolet–emitting Cerium Phosphate Single––crystal Nanowires. Chem Lett,2004,33(5):612–613.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700