离子膜耦合电化学反应氧化铈(Ⅲ)同时析出铜粉的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电解氧化是一种铈(Ⅲ)的廉价氧化方法,氧化过程中不使用化学氧化剂,制得的铈(Ⅳ)溶液中不引入外来杂质元素,因此人们一直在努力实现用电解方法氧化铈(Ⅲ)为铈(Ⅳ)的工业化。特别是近年来氧化铈产品价格的下跌,廉价的电解氧化生产铈产品的方法成为企业降低生产成本的一个焦点。虽然在硝酸介质中电解氧化已得到成功应用,但在硫酸介质中,由于存在硫酸稀土溶解度小、电流效率低、能耗较高以及电极材料昂贵等问题使许多尝试受挫。随着我国稀土事业的发展,硫酸介质中分离提取稀土元素已成为稀土生产的一种十分重要的工艺流程。开发一种在硫酸介质中不使用昂贵的铂材阳极及进口离子交换膜,又能保证高的电流效率和低能耗的电解氧化铈(Ⅲ)为铈(Ⅳ)的方法,既是现行工艺流程和我国稀土企业实际情况的要求,又是稀土市场日益发展成熟的必然结果。
     本文通过对电解槽参数的选择,得到了适于硫酸介质中电解氧化铈(Ⅲ)为铈(Ⅳ)的电解槽结构。首次使用本文选出的铅合金和铜板分别作阳极和阴极,以国产离子交换膜为隔膜进行了系统的铈(Ⅲ)的电解氧化研究。研究结果表明:本文选择的铅合金阳极和离子交换膜完全可以代替昂贵的铂阳极和进口离子交换膜,在硫酸介质中成功地将铈(Ⅲ)电解氧化为铈(Ⅳ),打破了使用铂阳极和进口离子交换膜带来的高投资瓶颈,为我国稀土企业实现硫酸介质中电解氧化铈(Ⅲ)工业化提供了一种现实的电极材料和膜材料。通过均匀设计的电解条件试验得出:电流密度、阳极液酸度和阳极液硫酸根浓度为影响电流效率、氧化率和槽电压的显著因素。发现阴离子膜电解体系可以在较大的阳极液酸度范围内进行铈(Ⅲ)的电解氧化,而阳离子膜电解体系则必须在[H~+]大于0.75mol/L的酸度条件下进行。在低铈(Ⅲ)浓度时采用阴离子交换膜为隔膜比阳离子交换膜有较高的电流效率。
     针对电流效率随电解时间的延续而下降,造成平均电流效率低下的问题,首次提出了变电流梯度电解氧化铈(Ⅲ)为铈(Ⅳ)的方法。在电解过程中,随阳极液中铈(Ⅲ)浓度的变化逐步调节电流密度,使阳极电流效率保证在80%以上,氧化率大于98%,比现有文献资料报道的电流效率和氧化率分别提高了15%和8%左右。通过变电流梯度电解使槽电压从恒电流电解的3.0V降低到2.2-2.5V,氧化铈的能耗从1.6KW·h/t下降到0.61KW·h/t。从理论上推导出极限电流密度与阳极液中铈(Ⅲ)浓度的线性关系和极限电流密度与电解时间的半对数关系,并通过试验验证了这些关系式的正确性。在实际电解过程中可以用这些关系式指导电流密度的控制,以维持较高的电流效率。
     在电解氧化铈(Ⅲ)为铈(Ⅳ)的过程中,阴极为析氢反应,阴极电流没有得到有效利用。为此首次提出:离子膜耦合电化学反应氧化铈(Ⅲ)及同时析出铜粉的电解方法,实现充分利用阴极电流的目的。为此,首次进行了离子交换膜电解制
    
    备铜粉的试验。虽然在电解中使用了离子交换膜,使槽电压增高,但由于有高的电
    流效率和成粉率,铜粉的直流电能耗与无隔膜电解相近。
     离子膜祸合电化学反应氧化饰(m)同时析出铜粉的电解方法不仅没有使电解
    体系复杂化,反而使槽电压得到进一步降低,降低幅度为0.2-0.5V,使变电流梯度电
    解的平均槽电压再次降低到2.0v,氧化饰的能耗降低到0.SKW·b吸g左右。这一电
    解体系和方法的最大优点在于:1)阴阳极电流同时得到充分利用,提高了电能利用
    率,降低了单独电解氧化饰(m)或单独电解制备铜粉时阴极析出氢气与阳极析出
    氧气夹带电解液造成的环境污染;2)在保证电流效率的同时,降低了槽电压:3)
    在阳极得到饰(IV)的同时,在阴极得到电解铜粉,增加了产品品种;4)使电解设
    备得到了最大程度的利用,大幅度降低了成本,提高了经济效益。放大试验表明,
    放大效果良好,小试结果具有很好的指导作用,
     氧化饰(m)为饰(W)的同时在阴极生产的铜粉是在既没有电解设备的投入,
    又没有电能消耗的条件下得到的,而且进一步降低电解氧化饰(班)为饰(W)的
    能耗。按现有电解铜粉的经济效益和本方法中铜粉节约的电能,在不计入电解设备
    投资利息、折旧、维修以及人工工资时,根据初步估算,每生产1吨氧化饰可以额
    外带来1000元的经济效益。
     提出了电解氧化饰(m)的表面络合物一放电的电极过程机理:在电解过程中饰
     (m)首先与经基化的电极表面形成表面络合物,然后饰(m)通过一O一失去电子生
    成饰(IV)。该机理可以解释电解氧化饰(m)过程中饰(m)浓度、酸度、硫酸根
    浓度等对电流效率和槽电压影响的变化规律,并可以解释阳离子膜电解体系在阳极
    液酸度低于0.75mol几时电极表面形成氢氧化饰(W)沉淀的现象。
     随氧化饰市场的变化,对氧化饰的形貌和粒径的要求越来越多,而且对粒度的
    分布要求越来越严格。针对这一市场变化,本文首次提出还原一沉淀反萃的方法,
    从P204和P507萃取体系负载饰(W)的有机相中直接制备出能够形成不同形貌和粒
    径氧化饰的前驱体。该方法省去了原有工艺过程的还原反萃、反萃液酸度调节以及
    草酸沉淀等工序,减少了化工原辅材料的种类和用量,实现了反萃工序的闭路循环,
    使反萃成为稀土生产中的绿色工序。由于在反萃过程中没
Industrialization of electro-oxidizing Cerium(III) to Cerium(IV) has been a important project for long time because of its low cost, no chemical oxidation agents used and no pollution to rare earths productions. Many factories focus on this method to reduce the process cost to deal with the price drop of cerium products special for recent years. The oxidation of Cerium(III) to Cerium(IV) had been unsuccessfully used in sulfuric acid solution in spite of nitric acid media for low solubility of rare earths sulfate, low current efficient, high consume of electric energy and expensive electrode material of platinum. The separation of rare earth in sulfuric acid media had been a major process with development of Chinese rare earth industry. It is requirements of present process and current situation of Chinese rare earth factories, also result of increasingly ripe for rare earth market to invent a way of electro-oxidizing Cerium(III) to Cerium(IV) in sulfuric acid media at lower cost.
    Structural design suitable to electro-oxidizing Cerium(IH) to Cerium(IV) in sulfuric acid had been achieved by selection of electrolysis parameters. Systematic studies of electro-oxidizing Cerium(III) to Cerium(IV) had been carried out by employed firstly lead alloy and copper as anode and cathode respectively, and with ion-exchange membranes as cell diaphragms. The results that platinum anode and ion-exchange membrane made in overseas can be replaced by lead alloy and domestic membranes broke the limit of high investment caused by platinum anode and membrane. Current density, anolyte acid and concentration of SO42" in anolyte are notable factors influencing the current efficiency, oxidation rate and cell potential. The electro-oxidation in anion exchange membrane system can be carried out in larger range of anolyte acid but cation exchange membrane system only for over 0.75mol/L. At dilute Cerium(III) solution, the anion exchange membrane system has higher current efficiency than cation exchange membrane sy
    stem.
    Aimed at the decrease of current efficiency with the procedure of electrolysis, the method of variable current density electrolysis was put forward firstly. The oxidation rate and anode current efficiency can be kept over 98% and 80% which are higher about 8% and 15% than the values reported in the papers by variation of current density according to concentration of Cerium(III) in this electrolysis process. By the varying current density, the cell potential decreases from 3.0V for constant current electrolysis to 2.2-2.5V, consume of electric energy for CeO2 decrease from 1.6KWh/t to 0.61KWh/t. The relation between current density and electrolysis time had been induced and its correctness had been verified with the test dates.
    Cathode-current is wasted for deposition of H2 in the process of electro-oxidizing Cerium(III) to Cerium (IV) in the available ways. For purpose of the using electric energy, the method of electro-oxidizing Cerium(III) to Cerium(IV) on anode and simultaneous reducing Cu(II) on cathode to produce copper powder was represented firstly. So the deposition of copper powder in the membrane electrolysis system was processed firstly. The consumption of electric energy of copper powder approached to the ones without cell diaphragms because of high current efficiency and powder yield rate. Electro-oxidizing Cerium(III) to Cerium(IV) on anode and simultaneous reducing Cu( II)
    
    
    on cathode to produce copper powder does not make the electrolysis complicated, but reduces the cell voltage about 0.2-0.5V further. The cell voltage and energy consumption of cerium dioxide decrease to 2.0V and 0.5KWh/kg respectively.
    Copper powder is made without investment and consume of energy in this method. According to profit of copper powder made by available process and the decrease of energy cost, the extra profit for It CeO2 brought by copper powder is about 1000yuan RMB without counting investment interest, depreciation of equipments, service cost and worker's salary.
    The surface complex-discharging kinetics and mechanism of the
引文
[1] 徐光宪主编.稀土(第二版,上卷).北京:冶金工业出版社,1995.361
    [2] James Frederick Spencer. The Metal of The Rare Earths. London: Longmans, Green and Co., 1919. 168~176
    [3] J. W. Mellor, D. Sc., F. R. S. Inorganic and Theoretical Chemistry. Volume Ⅴ. Longmans, Green and Co., 1956. 653~655
    [4] J. C. Bailar, H. J. Emelelus, F. R. S., et al. Comprehensive Inorganic Chemistry. Volum 4, Pergamon Press, 1973. 386~391
    [5] J. W. Mellor, D. Sc., F. R. S. Inorganic and Theoretical Chemistry, Volume Ⅴ. Longmans, Green and Co., 1956. 495~500
    [6] J. C. Bailar, H. J. Emelelus, F. R. S., et al. Comprehensive Inorganic Chemistry. Volum 4, Pergamon Press, 1973.97~102
    [7] E. Wadsworth, F. R. Duke, C. A. Goetz. Anal. Chem., 1957, 29: 1824~1834
    [8] F. Albert Cotton, Geoffrey Willinson. Advanced Inorganic Chemistry. Interscience Publishers, 1972. 1067~1073
    [9] 李良才.稀土氢氧化物中铈的空气氧化.稀土,1980,1:27~32
    [10] 牛春吉.稀土在动物体内的代谢和毒性.稀土,1987,51(5):53~55
    [11] 董福柱,韩学印.高纯氧化铈的提取工艺研究.稀土,1997,18(1):70
    [12] 石凤.稀土生物无机化学(Ⅱ).稀土,1986,45(4):44~52
    [13] 刘泽正,周昆呤,路茂才.氯气氧化法制取富铈氢氧化稀土的工业规模试生产.稀土,1980,1:41~44
    [14] 焦瑞安,李发金.氧化铈制备方法.中国专利,CN1048239A,1991-01-2
    [15] 任秀莲,魏琦峰.选择性氧化还原法制备二氧化铈.内蒙古师范大学学报(自然科学版),1993,2:42~44
    [16] 金古次雄,佐佐木秀,石川文矢等.氢氧化铈生产方法.中国专利,CN87100620A,1987-08-26
    [17] 魏琦峰.氢氧化铈的生产方法.中国专利,92100744.2,1993-08-11
    [18] 杨汝栋,杨英.从混合稀土中分离二氧化铈的新方法.中国专利,CN1047110A,1990-11-21~24
    [19] J. W. Mellor, D. Sc., F. R. S. Inorganic and Theoretical Chemistry, Volume Ⅴ. Longmans, Green and Co., 1956. 574~578
    [20] 苏锵著.稀土化学.郑州:河南科学技术出版社,1993.86~88
    [21] 徐光宪主编.稀土(第二版,上卷).北京:冶金工业出版社,1995.786~792
    [22] 周静,严纯华,廖春生.冕宁氟碳铈矿除氟萃取Ce(Ⅳ)工艺研究.稀土,1998,
    
    19(3):9~16
    [23] Yang Xianwan, Chen Qiyan, He Aiping. Hydrometallurgy. International Academic Publishers, 1998.10, 452~459
    [24] 1957. 9: 2111~2113
    [25] 徐光宪主编.稀土(第二版,上卷).北京:冶金工业出版社,1995.469~593
    [26] 易宪武,黄春辉,王慰,刘余九,吴瑾光.钪稀土元素.北京:科学出版社,1998.431~442
    [27] 陆九芳,李总成,包铁编著.分离过程化学.北京:清华大学出版社,1993.41~44
    [28] 董福柱,韩学印.高纯氧化铈的提取工艺研究.稀土,1997,18(1):70~73
    [29] 徐光宪,袁成业等著.稀土的溶剂萃取.北京:科学出版社,1987.353~358
    [30] 李德谦等.中国稀土学报.1984,2(2):9~12
    [31] 徐光宪,王文清,吴瑾光等著.萃取化学原理.上海:上海科学技术出版社,1984.136-142
    [32] 蒋维钧主编.新型传质分离技术.北京:化学工业出版社,1995.53~55
    [33] 李思芽,锗莹,严忠.液膜法提取高浓度含铬废水的研究.膜科学与技术,1995,15(2):21~25
    [34] 郁建涵,王世柱,姜长印等.乳状液型液膜法提取稀土.稀土,1987,1:1~7
    [35] 张秀娟,黄平瑜.液膜分离中同步迁移概念的建立.化工学报.1988,39(5):570~577
    [36] 黄万抚,王淀佐.液膜技术提取稀土的试验研究.膜科学与技术,1998,18(6):19~21
    [37] 方建章,王向德,万印华等.氧化还原乳状液膜法自轻稀土中分离铈的研究.膜科学与技术,1997,17(5):52~58
    [38] Ying—Chu Hoh, Tsong—Yang Wei, Yuh—Yuan Wang, et al.. Electro~reduction Stripping of Cerium in The TBP—HNO_3 Two—Phase System. Hydrometallurgy, 1987, 19: 202~225
    [39] Syouhei Nishihama, Takayuki Hirai, Isao Komasawa. Advanced Liguid~Liguid Extraction System Using Photochemical Reduction for Metals. ISCE, 2002.467~473
    [40] 吴丙乾主编.稀土冶金学.长沙:中南大学出版社,1997.105~112
    [41] G. F. Smith, G. Frank, A. E. Kott. Cerate Oxidimetry, Electrolytic Oxidation of Cerium Without Use of a Diaphragm Cell. Ind. Eng. Chem., Anal. Ed., 1940, 12: 268~269
    [42] 苏锵著.稀土化学.郑州:河南科学技术出版社,1993.88~90
    [43] A. James Fenton, Jr., N. Howell Furman. Ferrous and Ceric Ions as Dual Intermediates in Coulometric Titrimetry, Effect of Current Density on Titration Efficiency
    
    of Electrically Generated Ceric Ions. Anal. Chem., 1957, 29(2): 221~223
    [44] R. Ramaswamy, M. S. Venkatachalapthy, H. V. K. Udupa. Electrolytically Regenerated Ceric Sulfate for The Oxidation of Organic Compounds I. Oxidation of P-Xylene to P-Tolualdehyde. Bull. Chem. Soc. Jon., 1962, 35: 1751~1755
    [45] H. Wendt, H. Schneider. Reaction Kinetics and Reaction Techniques for Mediated Oxidation of Methylarenes to Aromatic Ketones. J. Appl. Electrochem. 1986, 16: 134~146
    [46] G. Kreysa, H. Medin. Indirect Electrosynthesis of P-methoxybenzaldehyde. J. Appl. Electrochem., 1986, 16: 757~767
    [47] I. M. Dalrymple, J. P. Millington. An Indirect Electrochemical Process for the Production of Naphthaquinone. J. Appl. Electrochem., 1986, 16: 885~893
    [48] 曾跃,姚素薇.邻硝基苯甲醛的成对电合成.化学工业与工程,1994,4:21~23
    [49] K. Scott. Membrane Reactors for Electrochemical Synthesis Processes. J. Memb. Sci., 1994, 90: 161~172
    [50] Michel Martin, Alain Rollat, Electrolytic Separation of Cerium/Rare Earth Values.[P]. U. S. P. 4676957, 1987, 1, 30
    [51] Horhez, Dominique. Procédé d'oxydation électrochimque du cérium 3~+ en cérium 4~+, en emulsion.[P]. E. P. 0332512, 1989-03-03
    [52] Derek Pletcher, Erika M. Valdes. Studies of The Ce(Ⅲ)/Ce(Ⅳ) Couple in Multiphase Systems Containing Reagent-Ⅰ. Condition for The Extraction of Ce(Ⅳ) and Electrode Kinetics. Electrochimica Acta., 1988, 33(4): 499~507
    [53] D. Horbez, A. Storck. Coupling Between Electrolysis and Liquid-Liquid Extraction in An Undivided Electrochemical Reactor: Applied to The Oxidation of Ce3+ to Ce~(4+) in An Emulsion. Part Ⅰ. Experimental. J. Appl. Electrochim., 1991, 21: 915~921
    [54] Horhez, Dominique. Nouvelle d'électrolyse et ensemble d'electrolyse pour sa mise en oeuvre.[P]. E. P. 0359631, 1989-09-07
    [55] 杨桂林,罗勇,周敬民等.电解氧化—P_(570)(煤油)萃取法制备超高纯氧化铈的研究.稀土,1995,16(5):55~58
    [56] 张绍绮,邓定机.铈(Ⅲ)的电解氧化和0.3MHDEHP—0.2MTBP-煤油萃取分离铈和钷.核化学与放射化学,1982,4(4):243~248
    [57] 徐光宪主编.稀土(第二版,上卷).北京:冶金工业出版社,1995.791~792
    [58] 刘建刚,宋洪芳,王文联.硫酸介质中铈的电解氧化研究.稀土,1993,14(4):24~30
    [59] 郑重,李德谦.电解萃取分离稀土装置.中国专利,CN2292806Y,1998-09-30
    [60] 小松立美,沼田繁明,日冲克彦等.硫酸第一电解法.特许公开,昭
    
    60—13087, 1985-01-23
    [61] Z.Galus, Ralph N. Adams. The Investigation of The Kinetics of Moderately Rapid Electrode Reactions Using Rotating Disk Electrodes. J. Phys. Chem., 1963, 67: 866~871
    [62] Terence H. Randle, A. T. Kuhn. Kinetics and Mechanism of The Cerium(Ⅳ)/Cerium(Ⅲ) Redox Reaction on A Platinum Electrode. J. Chem. Soc. Faraday Trans. Ⅰ, 1983, 79: 1741~1756
    [63] J. M. Herbelin, T. N. Andersen, H. Eyring. Kinetu Parameters by The Method of Mixed Potentials. Elactrochimica Acta., 1970, 15: 1455~1496
    [64] S. Shibata. Conductance Measurment of Thin Oxide Films on A Platinum Anode. Elactrochimica Acta., 1977, 22: 175~179
    [65] J. P. Hoare. Effect of Dermasorbed Oxygen on The Catalytic Activity of Platinum Indicator Electrodes. Elactrochimica Acta., 1972, 17: 1907~1919
    [66] A. T. Kuhn, Terry H. Randle. Effect of Oxide Thickness on The Rates of Some Redox Reactions on A Platinum Electrode. J. Chem. Soc. Faraday Trans. Ⅰ, 1985, 81: 403~419
    [67] D. Matic, P. M. Robertson, N. Ibl. Properties and Applications of Electrodes Covered With A Porous Diaphragm-1. Mass Transfer Investigation. Elactrochimica Acta., 1980, 25: 487~495
    [68] Harrison, Stephen, Clarke, L. Robert, Scannell, Robert, et al. Modified Surface Bipolar Electrode, [P]. EP 0780493A1, 1997-06-25
    [69] A. T. Kuhn, Terry H. Randle. Kinetic Study of The Eletrolytic Oxidation of Manganese (Ⅱ) to Manganese (Ⅲ) in Sulphuric Acid. J. Chem. Soc. Faraday Trans. Ⅰ, 1983, 79: 417~430
    [70] 金世雄,温青.硫酸溶液中Ce~(3+)离子在PbO_2电极上阳极氧化过程动力学.高等学校化学学报,1995,16(7):1109~1113
    [71] 金世雄,温青.硫酸溶液中Ce~(3+)离子在铂电极上阳极氧化过程动力学.物理化学学报,1995,11(8):688~692
    [72] 金世雄,孙丰.C_0(Ⅲ)离子在二氧化铅电极上的阳极形成.物理化学学报,1993,9(4):538~540
    [73] 金世雄,马克勤,周文峰.Mn~(3+)离子阳极形成动力学与机理.南开大学学报(自然科学),1991,3:41~46
    [74] 林河成.氧化铈产品的生产应用及市场.有色冶炼,2002,5:22~36
    [75] 王志慧.近年来我国氧化铈的生产及应用.内蒙古石油化工,2002,21:40~43
    [76] 刘余九.中国稀土产业技术发展战略的研究.稀土,2002,23(4):69~71
    [77] Derek Pletcher, Frank C. Walsh. Industrial Electrochemistry. Chapman and Hall. 1990, 67~75
    [78] 高从增.电渗析,反渗透和相关技术简介.全国首届膜分离技术在冶金中的应用
    
    研讨会论文集,1999.1~21
    [79] 张启修,张传福.液体膜分离技术在冶金过程中的应用.全国首届膜分离技术在冶金中的应用研讨会论文集,1999.5~22
    [80] 李国民,刘金山,刘诚.浅谈膜分离技术在有色工业中的应用前景.全国首届膜分离技术在冶金中的应用研讨会论文集,1999.82~85
    [81] 肖连生,王玮,张启修.钨酸钠溶液膜电解体系的阳极选择研究.全国首届膜分离技术在冶金中的应用研讨会论文集,1999.92~95
    [82] 肖连生,张启修,张贵清,钨酸钠溶液离子膜电解槽结构研究.全国首届膜分离技术在冶金中的应用研讨会论文集,1999.96~98
    [83] 莫剑雄,诸爱士.CO-Ni离子的电反萃实验.全国首届膜分离技术在冶金中的应用研讨会论文集,1999.102~107
    [84] 罗爱平,张启修.电渗析法脱除钨酸钠中游离碱.全国首届膜分离技术在冶金中的应用研讨会论文集,1999.130~133
    [85] 周康根,张启修,罗爱平等.膜法处理氧化铝厂工业外排水研究(1)—电渗析极限电流密度测定.全国首届膜分离技术在冶金中的应用研讨会论文集,1999.138~141
    [86] 周康根,张启修,罗爱平等.膜法处理氧化铝厂外排水研究(2)—工艺流程研究.全国首届膜分离技术在冶金中的应用研讨会论文集,1999.142~145
    [87] 李青刚,周康根,张启修.离子膜原电池还原钛液中的铁.全国首届膜分离技术在冶金中的应用研讨会论文集,1999.158~162
    [88] 王玮.膜电解脱碱扩大试验及配套技术研究:[中南工业大学学位论文].长沙:中南工业大学,1998
    [89] 李青刚.离子膜原电池法在冶金中的应用:[中南大学学位论文].长沙:中南工业大学,2000
    [90] Ivo Rouar, Karel Micka, Arnot Kimla. Electrochemical Engineering. 2, Academia ·Praha, 1986, 46~48
    [91] [美] Thomas K.Sherwood,Rebert L.Pigford,Charles R.Wilke.传质学(时钧,李盘生等译).北京:化学工业出版社,1988.344~358
    [92] 陆兆鄂编.电极过程原理与应用.北京:高等教育出版社,1992.169~176
    [93] [日] 中垣正幸著.膜物理化学(严忠,徐书绅,郎佩珍译).北京:科学出版社,1997.125~127
    [94] [日] 日根文男.电解槽工学.北京:化学工业出版社,1985,285~288
    [95] John S. Newman. Electrochemical Systems. Prentice-Hall, Inc., 1973, 340~346
    [96] [英] C.杰克逊 K.沃尔编.现代氯碱技术(第二卷).北京:化学工业出版社 1990.122~126
    [97] 陈延禧编著.电解工程.天津:天津科学技术出版社,1993.28~33
    
    
    [98] 柳厚田,王群洲,万咏勤等.硫酸溶液中铅阳极膜研究的几个问题.电化学,1996,2(2):123~127
    [99] 翟和生,陈旭光,尤金跨等.硫酸介质中Pb电极氧化物生长过程的研究.电化学,1995,1(1):65~68
    [100] Ivanov, Y. Stefanov, Z.Noncheva, et al. Insoluble anode used in hydrometallurgy Part Ⅰ.Corrosion resistance of lead and lead alloy anode. Hydrometallurgy, 2000, 57: 125~132
    [101] Ivo Rouar, Karel Micka, Arnot Kimla. Electrochemical Engineering, 1. Academia ·Praha, 1986, 331~337
    [102] 任建新主编.膜分离技术及其应用.北京:化学工业出版社,2003.253~270
    [103] 金世雄,马克勤,周文峰.Mn~(3+)离子阳极形成动力学与机理.南开大学学报(自然科学),1991,3:41~46,
    [104] T. H. Randle, A. T. Kuhn. The lead anode. Ⅰ, A Kinetic Study of the Electrolytic Oxidation of Cerium(Ⅲ) and Manganese(Ⅱ) in Sulfuric Acid at the Lead Dioxide Electrode. Aust. J. Chem., 1989, 42: 229~242
    [105] 金世雄,温青.硫酸溶液中Ce~(4+)离子在PbO_2电极上阳极氧化过程动力学.高等学校化学学报,1995,16(7):1109~1113
    [106] T. H. Randle, A. T. Kuhn. Kinetics and Mechanism of the Cerium (Ⅳ)/Cerium (Ⅲ) Redox Reaction on a Platinum Electrode. J. Chem. Soc., Faraday Trans. 1, 1983 79: 1741~1756
    [107] I. Ivanov, Y. Stefanov, Z. Noncheva, et al. Insoluble anodes used in hydrometallurgy Part Ⅱ. Anodic behanviour of lead and lead-alloy anodes. Hydrometallurgy, 2000, 57: 125~139
    [108] I. Ivanov, Y. Stefanov, Z. Noncheva, et al. Insoluble anodes used in hydrometallurgy Part Ⅰ. Corrosion resistance of lead and lead-alloy anodes. Hydrometallurgy, 2000, 57: 109~124
    [109] 蔡文斌,周伟舫.硫酸溶液中铅阳极膜研究的几个问题(一).电化学,1995,1(3):259~262
    [110] 柳厚田,王群洲,万咏勤,周伟舫.硫酸溶液中铅阳极膜研究的几个问题(二).电化学,1996,2(2):123~127
    [111] 柳厚田,王群洲,周伟舫,蔡文斌.硫酸溶液中铅阳极膜研究的几个问题(三).电化学,1997,3(1):1~5
    [112] S. R. Ellis, N.A. Hampson, M. C. Ball, F. Wilkinson. The lead dioxide electrode. J. Appl. Electrochem., 1986, 16: 159~167
    [113] M.A.安德森,A.J.鲁宾主编.水溶液吸附化学——无机物在固—液界面上的吸附作用(刘莲生等译).北京:化学工业出版社,1986.3~9
    [114] 顾惕仁,朱步瑶等.表面化学.北京:科学出版社,1994.276~281
    [115] Cheng-Fang lin et al. J. Colloid Interface Sci. 1997, 188: 201~208
    [116] K. G. Karthikeyan, Hershel A Elliott. J. Colloid Interface Sci. 1999, 220: 88~95
    [117] Nicolas Marier, Annie Delisee, et al. J. Colloid Interface Sci. 1999, 212: 252~263
    [118] Nicolas Marier, Annie Delisee, et al. J. Colloid Interface Sci. 1999, 212: 228~233
    [119] Ruetschi E. Ion selectivity and diffusion potentials in corrosion layers-PbSO_4 films
    
    on Pb in H_2SO_4. J. Electrochem. Soc., 1973, 120: 331~339
    [120] Burbank J.. The anodic oxides of lead. J. Electrochem. Soc., 1959, 106: 369
    [121] 查全性等著.电极过程动力学导论(第二版).北京:科学出版社,1987,411~412
    [122] Michel Martin, Alain Rollat. Electrolytic separation of cerium/rare earth values, [P]. U. S. A. 4676957, 1987-05
    [123] Derek Pletcher and Erika M. Valdes. Studies of the Ce(Ⅲ)/Ce(Ⅳ) couple in multiphase system containing a phase transfer reagent-Ⅱ. Indirect oxidations and the electrolytic preparation of ceric nitrate.[J]. Electrochimical Acta. 1988, 33(4): 509~513
    [124] 张绍琦,邓定机.铈(Ⅲ)的电解氧化和0.3MHDEHP—0.2MTBP煤油萃取分离铈和钷.核化学与放射化学,1982,4(4):243~248
    [125] 杨桂林,罗永,周敬民等.电解氧化—P_(507)(煤油)萃取法制备超高纯氧化铈的研究.稀土,1995,16(5):55~58
    [126] 刘建刚,宋洪芳,王文联.硫酸介质中铈的电解氧化研究.稀土,1993,14(4):24~30
    [127] James Frederick Spencer. The Metals of the Rare Earths. Longmans, Green and CO. 1919, 50,
    [128] I. M. Dalrymple, J. P. Millington. An indirect electrochemical process for the production of naphthaquinone. Appl. Electrochem., 1986, 16: 885~892
    [129] G. Kreysa, H. Medin. Indirect electrosynthesis of P-methoxybenzaldehyde. Appl. Electrchem., 1986, 16: 757~766
    [130] T. Tzedakis, A. Savall. Electrchemical regeneration of Ce(Ⅳ) for oxidation of P-methoxytoluene[J].Appl. electrochem., 1997, 27: 589~597
    [131] 金世雄,温青.硫酸溶液中Ce~(3+)在铂电极上氧化动力学.物理化学学报,1995,11(8):688~693
    [132] Terence H. Randle, Anselm T. KuHn. Kinetics and Mechanism of the Cerium(Ⅳ)/Cerium(Ⅲ) Redox Reaction on a Platinum Electrode. Chem., Faraday Trans. 1, 1983, 79: 1741~1756
    [133] 夏熙,刘洪涛,刘洋.Ce~(4+)/Ce~(3+)氧化还原线性极化与交流阻抗研究.化学学报,2002,60(9):1630~1636
    [134] 柳厚田,王群洲,周伟舫等.硫酸溶液中铅阳极膜研究的几个问题(三).电化学,1997,3(1):1~5
    [135] 方开泰著.均匀设计与均匀设计表.北京:科学出版社,1994.
    [136] 隋治华、徐荣华、计志忠.环戊酮2-羟甲基化的均匀设计方法.化学通报,1987,7:29~30
    [137] 丁学杰等.均匀设计在精细化工工艺研究中的应用.精细化工,1991,8(4):1~4,
    
    
    [138] 张效禹等,均匀设计与统计调优在五氧化二钒回收中的应用.山西化工,1991,2:48~49
    [139] 黎元生,王军,张忠清.均匀设计在渣油加氢和催化剂研究中的应用.均匀设计论文选(第二集).1997,5:133~138
    [140] 立钧,均匀设计在清净型硼酸盐添加剂研制中的应用,均匀设计论文选(第二集)1997,5:156~163
    [141] 陈银生,张新胜,戴迎春,袁渭康.固定床电解槽变电流成对电解合成乙醛酸.电化学,2002,8(1):61~66
    [142] G. Kreysa, H. Medin. Indirect electrosynthesis of P-methoxybenzaldehyde.[J]. Appl. electrchem. 1986, 16: 757~767
    [143] T. Tzedakis, A. Savall. Electrchemical regeneration of Ce(Ⅳ) for oxidation of P-methoxytoluene. Appl. electrochem. 1997, 27: 589~597
    [144] Michel Martin, Alain Rollat Electrolytic separation of cerium/rare earth values[P] U.S.A. 4676957, 1987-06
    [145] 刘建刚,宋洪芳,王文联.硫酸介质中铈的电解氧化研究.稀土,1993,14(4):24~30
    [146] I. M. Dalrymple, J. R Millington. An indirect electrochemical process for the production of naphthaquinone. Appl. electrochem. 1986, 16: 885~893
    [147] Aris, R. Introduction to the Analysis of Chemical Reactors. Prentice-Hall, Englewood Cliffs, N. J., 1965. 285~294
    [148] Aris, R. Elementary Chemical Reactors Analysis. Prentice-Hall, Englewood Cliffs, N. J., 1969, 387~398
    [149] 龚竹青编著.理论电化学.长沙:中南工业大学出版社,1987.180~185
    [150] 陈延禧.电解工程.天津:天津科学技术出版社,1993.130~138
    [151] 夏熙,刘洪涛,刘洋.Ce~(4+)/Ce~(3+)氧化还原线性极化与交流阻抗研究.化学学报,2002,60(9):1630~1636
    [152] 沈慕昭.电化学基本原理及其应用.北京:北京师范大学出版社,1987.150~156
    [153] John O'M. Bockris and Amulya K. N. Reddy. Modem electrochemistry (volume 2). Macdonald & Co. (Publisher) Ltd, 1970, 1202~1209
    [154] 秦桂香,李云东,邢伟.稀土元素铈对快速镍刷镀工艺及镀层性能的影响.河南农业大学学报,2000,35(2):179~184
    [155] 黄培云主编.粉末冶金原理(第二版).北京:冶金工业出版社,1997.80~88
    [156] John S. Newman. Electrochemical Systems. Prentice-Hall, Inc., 1973, 365~373
    [157] [日] 日根文男著.电解槽工学(安家驹,陈之川译).北京:化学工业出版
    
    社,1985.226~232
    [158] [日] 中桓正幸著.膜物理化学(严忠,徐书绅,郎佩珍译).北京:科学出版社,1997.122~127
    [159] 黄培云.粉末冶金原理(第二版).北京:冶金工业出版社,1997.88
    [160] 秦桂香,李云东,邢伟.稀土元素铈对快速镍刷镀工艺及镀层性能的影响.河南农业大学学报,2000,35(2):179~184
    [161] L.I.安特罗波夫著.理论电化学(吴仲达,朱耀斌,吴万伟译).北京:高等教育出版社,1982.506~517
    [162] 沈慕昭.电化学基本原理及其应用.北京:北京师范大学出版社,1987.192~196
    [163] 龚竹青编著.理论电化学导论.长沙:中南工业大学出版社,1987.364~369
    [164] 熊兆贤等编著.无机材料研究方法—合成制备、分析表征与性能检测.厦门:厦门大学出版社,2001.156~158
    [165] 徐光宪主编.稀土(第二版,上册).北京:冶金工业出版社,1995.791~792
    [166] 刘建刚,宋洪芳,王文联.硫酸介质中铈的电解氧化研究.稀土,1993,14(4):24~30
    [167] Derek Pletcher, Erika M. Valdes. Studies of The Ce(Ⅲ)/Ce(Ⅳ) Couple in Multiphase Systems Containing Reagent-Ⅰ. Condition for The Extraction of Ce(Ⅳ) and Electrode Kineties. Electrochimica Acta., 1988, 33(4): 499~507
    [168] 林河成.氧化铈产品的生产应用及市场.有色金属,2002,5:22~25
    [169] 张丽娟,王国良,索继栓等.氧化铈纳米微粒的制备及其在金属钒钝化中的应用.化学研究,2000,11(4):24~27
    [170] 董相廷,李铭,张伟等.沉淀法制备CeO_2纳米晶与表征.中国稀土学报,2001,19(1):24~26
    [171] 张秀凤,张迈生,涂华民.低价铈复盐微波辐射化学氧化还原合成法.中国稀土学报,2002,20(专辑):122~124
    [172] 吴君毅,高玮,张凡等.小颗粒氧化铈制备过程中的团聚控制.稀土,2001,22(1):5~8
    [173] 周新木.柠檬酸络盐沉淀法制备超细氧化铈.中国稀土学报,2002,20(专辑):67~69
    [174] 彭新林,龙志奇,崔梅生等.共沉淀法合成铈锆复合氧化物及表征.中国稀土学报,2002,20(专辑):104~107
    [175] 徐志珍,扬云霞,袁双龙等.高松装密度CeO_2的制备研究.中国稀土学报,2002,20(专辑):119~121
    [176] 姜亚龙,刘红,郑琦.高松装比氧化铈的制备.江西冶金,2000,20(6):10~12
    
    
    [177] 张立德,牟季美著.纳米材料和纳米结构.北京:科学出版社,2001.124
    [178] 熊兆贤等编著.无机材料研究方法-合成制备、分析表征与性能检测.厦门:厦门大学出版社,2001.3~9
    [179] 洪维民,田蓉屏.稀土超微粉末的制备方法及应用.稀有金属,1995,19(5):384~400
    [180] 胡黎明,沈卫.超细粉末制备技术进展.化工生产与技术,1996,12(4):1~5
    [181] 陆九芳,李总成,包铁竹编著.分离过程化学.北京:清华大学出版社,1993.312~318
    [182] 葛荣德,赵天从,刘志宏等.团聚参数在氧化锆超细粉末团聚状态表征中的应用.粉末冶金技术,1994,12(2):87~90
    [183] [法] R.科埃略,B.阿拉德尼兹著.电介质材料及其介电性能(张冶文,陈玲译).北京:科学出版社,2000.112~113
    [184] 高艳阳,崔子文,高建峰.SnO_2超细粉末制备中粉体团聚的形成及防止。华北工学院学报,1996,17(2):124~126

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700