光电催化降解有机染料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有毒难生化有机染料废水的治理因缺乏有效的处理方法成为了水处理领域的难点,对人类和环境造成了极大的危害。本论文对制备的掺杂钒和铅二氧化钛薄膜进行了表征和光催化研究。在此基础上,制备了具有更高的析氧电位和一定催化活性的二氧化铅电极,并进行了结构表征和可见光光电催化降解RhB的研究,提出可见光照射下的光电降解机理。
     采用溶胶—凝胶法在玻璃表面制备钒离子掺杂的TiO_2薄膜(VD_x、VT_x,VB_x),和铅离子掺杂的TiO_2薄膜(PbD_x、PbT_x)。通过XRD分析表明,晶型均为锐钛矿型。在同样掺杂摩尔比下,掺杂方式不同,薄膜所表现出的透过率也不相同。实验发现,通过VD_x/PbD_x方式制备的非均匀掺杂的TiO_2薄膜具有更高的光催化活性,掺杂摩尔比存在一个最佳值。以光催化降解甲基橙水溶液的探针反应,结果表明:V/Ti摩尔比为1.0%的非均匀掺钒的TiO_2薄膜光催化降解甲基橙的表观速率常数是纯TiO_2的2.3倍。Pb/Ti摩尔比为0.5%的非均匀掺铅的TiO_2薄膜光催化降解甲基橙的表观速率常数是纯TiO_2的2.52倍。
     分析表明,掺杂金属离子在薄膜内部富集时,作为TiO_2薄膜表面光生电子和空穴的捕获位或复合中心的机会也大大减少,但掺杂金属离子在TiO_2薄膜内部的分布则分离了光生电子和空穴,增强了光生电子与空穴的分离效率。反而延长了激发电子的寿命,抑制了载流子的复合,同时电荷转移电阻变小,电子更易于转移,光电流响应好。从而提高了TiO_2薄膜的光催化活性。
     提出较为理想的掺杂是,掺杂物离子在TiO_2薄膜近表面处捕获光生电子或空穴,随后,被捕获的电子或空穴迁移到TiO_2薄膜表面参与光催化反应。
     采用恒电位电沉积工艺制备了具有更高析氧过电位和一定催化活性的二氧化铅电极,结构表征结果显示PbO_2电极为β与α晶型共存。薄膜表面平整,致密性好,厚度约为0.6μm。电极在可见光区有吸收,因此对太阳光的利用率较高。光电催化过程可完全在可见光下进行。
     通过XPS分析表明,PbO_2膜表面Pb价态为+4价。电化学阻抗分析表明,在可见光光照下PbO_2的电荷转移电阻变小,具有良好的光电性能。
     研究了罗丹明B(RhB)在PbO_2表面上的吸附对光电催化降解的影响,根据实验结果,得出Langmuir吸附等温方程Ce/q_e=1.30992X+30.8591。红外光谱分析表明,PbO_2对RhB有吸附作用。
     以RhB的降解反应为探针反应,探讨了光催化技术与电催化技术联合对RhB的降解协同效果。结果表明,在本实验条件RhB的光电催化降解协同效应因子f
The treatment of toxic and dye wastewater is one of the biggest technical difficulties due to the lack of highly effective solution, which has cause severe hazard both to the humankind and our environment. In this paper, a novel TiO_2 thin films modified by non-uniform doping was adopted for the photocatalytic degradation. Various characterization techniques were used to research the mechanism of photocatalytic degradation. At the same time, PbO_2 electrode was prepared, which had the higher oxygen potential and good photocatalytic activity. And the structure was characteristic, and studied degraddtion of RhB under visible light. The mechanism of RhB by photoelectrocatalytic degradation was discussed.Sol-Gel method was used to prepare the novel TiO_2 thin films modified by vanadium ion doped (VD_x VT_x, VB_x) and lead ion doped (PbD_x PbT_x) on the glasses. The crystal of the films was anatase by XRD analysis. The transmittances of each film were different on the same concentration of different doped method. It was observed that the non-uniform doped TiO_2 films modified by VD_x/PbD_x method had higher photocatalytic activity and best rate of molar. The photocatalytic degradation of methyl orange is used as the probed reaction. The result is that the apparent rate constant k of non-uniform doped vanadium ion TiO_2 films was 2.3 times that of pure TiO_2 films whose the rate molar of V/Ti is 1.0%. And the apparent rate constant k of non-uniform doped lead ion TiO_2 films was 2.52 times that of pure TiO_2 films whose the rate molar of Pb/Ti is 0.5%.The result showed that when the doped metal ion clustered in the inner of thin film, the effective capture or recombination chance of electron-hole pair was decreased, but the separation of electron-hole pair was enhanced. The electron life was prolonged and the recombination chance of electron-hole pair was restrained, so the resistance of charge movement turned small and the electron was easy to transfer. The ideal doping effect was that the ion doptant captured the electron/hole near the surface of TiO_2 thin film, then the captured electron/hole transferred to the surface to had photocatalytic reaction.Constant potential technique was used to electrodeposit PbO_2 films with higher oxygen potential and good photocatalytic activity. The crystals included both β and α . The surface was flat and the thickness was about 0.6 μ m. The electrode had
    absorption in visible light region, so it can have photoelectrocatalytic degradation under the visible light. XPS analysis showed that the Lead of the film surface of PbO2 is only +4 valency. The EIS showed that the charge transfer resistance of PbO2 turned to small under the visible light.The photoelectrocatalytic degradation of RhB is influenced by the adsorption of RhB on the PbO2 surface. The Langmuir adsorption isotherm equation of RhB on the PbO2 surface Ce/qe=1.30992X+30.8591 is put forward on the basis of the experimental results.The synergetic effect of the combination of photo catalytic and electric technology was discussed with RhB. It was observed that the synergetic effect performed well and the promoting factor f was 741%.The influence factors on the photoelectrocatalytic degradation of RhB were investigated. The degradation of RhB is more efficient in acidic medium. And it performed the best in the electrolyte of NaCl. The degradation efficiency of RhB increased with a increase of the potential. The degradation efficiency of RhB increased greatly when H2O2 was added.The mechanism of photoelectrocatalytic degradation of RhB was proposed. The reaction leads mainly to N-de-alkylation of the RhB chromophore skeleton. The removal of COD with reaction times followed the first reaction kinetics. The reaction kinetics constant of COD removal was 0.00359mm'1. The new products were DER^ EER^ DR> ER and R. The products were all experience a process of up then down except the original dye. It was showed that the process of producing and degradation.With PbO2 as the photoelectric catalyst, the photoreaction leads mainly to N-dea lkylation of the dye. By contrast, cleavage of the whole conjugated chromophore stru cture predominates in the electric chemistry oxidation.
引文
1.中国环境保护总局.2001年中国环境状况公报.环境保护,2002a,(6):3-15
    2.中国环境保护总局等.国家环境保护“十五”计划.中国环境科学出版社.2002b
    3.王连生.环境化学进展.北京化学工业出版社.1995:1-50
    4. Letrini O, Olibveros E, Braun A M. Photochemical Process for Water Treatment. Chem.Rev.. 1993, 92(2): 671-698
    5. Luck F. Wet air oxidation: past, present and future. Catalysis Today. 1999, 53: 81-91
    6. Legube B, Karpel Vel Leitner N. Catalytic ozonation: a promising advanced oxidation technology for water treatment. Catalysis Today. 1999, 53: 61-72
    7. Litter M I. Heterogeneous photocatalysis transition metal ions in photocatalytic systems. Appl.Catal.B: Environ.. 1999, 23: 89-114
    8.韦朝海,焦向东,陈焕钦.有毒难降解有机污染物治理方法的研究进展.重庆环境科学.1998,20(4):22-27
    9.韦朝海,侯轶.难降解毒性有机污染物废水高级氧化技术.环境保护.1998,(11):29-31
    10.张洪林.难降解有机物的处理技术进展.水处理技术.1998,24(5):259-264
    11.吴越.催化化学(下册).北京科学出版社.1995:1285-1288
    12. Schiavello M. Hteroggeneous Photocatalysis. Jojn Wily&Sons Ltd.1997: 1-15
    13.于向阳,梁文,杜永娟等.二氧化钛光催化材料的应用进展.材料导报.2000,14(2):38-40
    14.蔡乃才,董庆华.悬浮体系中的半导体光催化应用.化学通报.1997,1:9-13
    15. Linsebigler A L, Guangquan L, Yate J T. Kinetic studies in heterogeneous photocatalysis.4.The photomineralization of a hydroquinone and a catechol. J Photochem Photobiol A: Chem. 1990, 55: 243-249
    16. Hoffmann M R, Martin S T, Wonyong C et al. Environmental applications of semiconductor photocatalysis. Chem Rev. 1995, 95: 69-96
    17. Kormanm C, Bahnemann D W, Hoffmenn M R. Photolysis of chloroform and other organic molecules in aqueous titanium dioxide suspensions. Environ. Sci. Thchnol.. 1991, 25: 494-500
    18. Hoffmann M R, Martin S T, Wonyong C et al. Environmental applications of semiconductor photocatalysis. Chem Rev. 1995, 95: 69-96
    19.唐振宁.钛白粉的生产与环境管理.北京,化学工业出版社.2000,4
    20. Hsiao C Y, Lee C L, Ollis D F. Heterogeneous photocatalysis: degradation of dilute solutions of dichloromethane (CH_2Cl_2), chloroform(CHCl_3), and carbon tetrachloride(CCl_4) with illuminated photocatalyst. Catal. 1983, 82: 418-423
    21. Bacasa R P, Kiwi J. Effect of rutile phase on the photocatalytic properties of nanocrystalline titania during the degradation of p-coumaric acid. Applied Catalysis B: Environmental. 1998, 16: 9-29
    22. Sclafani A, Palmisano L, Schiavello M. Influence of the preparation methods of TiO_2 on the photo-catalytic degradation of phenol in aqueous dispersion. J Phys Chem. 1990, 94: 829-832
    23.张梅,杨绪杰,陆路德等.纳米TiO_2——一种性能优良的光催化剂.化工新型材料.2000,28(4):11-13,34
    24. Brus L E. Electron-electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J Chem Phys. 1984, 80: 4403-4409
    25. Brus L E. A simple model for the ionization potential, electrom affinity and aqueous redox potentials of small semiconductor crystallites. J Chem Phys. 1983, 79: 5566-5571
    26.李玉铭,李山东,林鸿溢.纳米半导体及其应用.物理化学学报.1997,13(11):1052-1055
    27.孙奉玉,吴鸣,李文钊等.二氧化钛表面光学特征与光催化活性的关系.催化学报.1998,19(2):121-124
    28. Brinkley D, Engel T. Active site density and reactivity for the photocatalytic dehydrogenation of 2-propanol on TiO_2(110). Surface Science. 1998, 415: L1001-L1006
    29.贺北平,王占生,张锡辉.半导体光催化氧化有机物的研究现状及发展趋势.环境科学.1994,15(3):80-83
    30.岳林海,樊帮棠.半导体复合体系催化降解水溶性染料研究.环境污染与防治.1994,16(4):2-5
    31. Harada K. Photocatalytic degradaion of organo-phosphorous in ssecticides in aqueous semiconductor suspensions. Wat. Res.. 1990, 24(11): 1415-1417
    32. Bedow T, Jug K. SINDOI Study of photocatalytic formation and reaction of OH radicals at Anatase particles. J. Phys. Chem.. 1995, 99: 258-291
    33. Matthews R W. Photocatalytic oxidation of chlorbenzene in aqueous of titanium dioxide. Wat Res. 1986, 20(5): 569-578
    34. Mattews R W.. Photocatalytic oxidation of chlorobenzene in aqueous suspensions of titanium dioxide. J. Catal.. 1998, 92(2): 565-569
    35. Mattews R W.. Solar-electric water purification using photocatalytic oxidation with as a stationary phase. Solar Energy. 1987, 30(6): 405-417
    36.李琳.多相光催化在水污染治理中的应用.环境科学进展.1994,6(2):24-30
    37.黄汉生.日本二氧化钛光催化剂环境净化技术开发动向.现代化工.1998,12:39-42
    38.朱丽芳,马彪.危险废物破坏的直接质谱研究——在TiO_2作用下三氯乙烯的气相光催化氧化反应的机理和生成物.国外环境科学技术.1997,4:25-35
    39.刘平,林华香,付贤智,孟春.掺杂TiO_2光催化剂膜材料的制备及其灭菌机理.催化学报.1999,20(3):325-328
    40.李田,严煦世,黄伟星.二氧化钛膜固定相光催化氧化法深度处理自来水.中国给水排水.1996,16(5):413-417
    41.李庆霖,席婵娟,金振声.多相光催化的一个分支—气固相光催化及其在环境治理方面的应用.太阳能学报.1994,15(3):279-282
    42. Nozik A J. Applied Phys.Letter.. 1977, 30: 567-569
    43. Goswami D Y. A review of engineering developments of aqueous phase solar photocatalytic detoxification and disinfections processes. J.Solar Energy Engineering. 1997, 119(5): 101-107
    44. Sopyan I, Marasawa S, Hashimoto K, Fujishima A. Highly efficient TiO_2 film photocatalyst: degradation of gaseous acetaldehyde. Chem.Lett.. 1994: 723-726
    45.张彭义,余刚,蒋展鹏.光活性二氧化钛膜的制备与应用.1998,6(5):49-56
    46.曹茂盛著.超微颗粒制备科学与技术.哈尔滨工业大学出版社.1998
    47.余桂郁,杨南如.溶胶—凝胶法简介 第三讲 溶胶—凝胶法工艺过程.硅酸盐通报.1993,6:61-66
    48. Heung Y H, Maro A.A. Properties of the TiO_2 membranes prepared by CVD of titanium tetraisopropoxide. J. Environmental Engineering. 1996, 6(4): 105-121
    49.孟广耀编著.化学气相沉积与无机新材料.科学出版社.1984
    50. Morooka S, Yasutakae T, Kobata A, et al. A mechanism for the production of ultra fine particles of TiO_2 by a gas-phase reaction. International Chemical Engineering. 1989, 29(1): 119-126
    51.胡黎明,李春忠,姚光辉等.化学气相沉积反应器中的超细粒子的形态控制.华东化工学院学报.1992,18(4):417-422
    52. Okuyama K, Kousaka Y. Thin tellurium films prepared by partially ionized vapor deposition. Thin solid films. 1986, 141(1): 71-76
    53.孙一军,张志峰,张良莹,姚熹.用MOCVD方法制备TiO2薄膜:工艺进展.硅酸盐通报.1997,2:37-40
    54.王辉.金红石硫水薄膜的强化直流磁控溅射制备方法.专利公开号CNB09190A(2001)
    55.罗瑾,周静,祖延兵,林促华.电沉积二氧化钛纳米微粒膜的光电化学性能和表面形貌研究.高等学报化学学报.1998,19:1484-1487
    56. Litter M I, Navio J A. Photocatalytic properties of iron doped titania semiconductors. J. Photochem.Photobio.A:chem.. 1996, 98(3): 171-181
    57. Choi W, Termin A, Hoffmann M R. The role of metal ion dopants in quantum-sized TiO_2: correlation between photoreactivity and charge carrier recombination dynamics. J. Phys. Chem.. 1994, 98: 13669-13679
    58.代斌,宫为民,张秀玲,何仁.等离子体技术在催化剂制备中的应用.现代化工.2001,12:36-41
    59.李芳柏,古国榜.多相光催化法废水处理工业化应用前景及技术经济分析.太阳能学报.1999,20(2):220-225
    60. Vogel R, Hoyer P, Weller H. Quantum-sized PbS, CdS, Ag_2S, Sb_2S_3 and Bi_2S_3 particles as sensitizers for various nanoporous wide-bandgap semiconductors. J. Phys. Chem.. 1994, 98: 3183-3189
    61. Vinogopal K, Kamat P V. Enhanced rates of photocatalyti degradation of an Azo dye using SnO_2/TiO_2 coupled semiconductor thin films. Environ.Sci.Technol.. 1995, 29: 841-846
    62. Esser P E, Holscher B D, Kerm W. Halogenated oxo-and peroxotitanium porphyrinated as sensitizers for the photooxygenation of olefinic compounds. J.molecular catalysisA:Chemical. 1999, 140: 13-24
    63. Chen S M. The photocatalytic auto oxidation of sulfur oxoanions by water-soluble porphyrin complexes. J of Molecular catalysis A:Chemical. 1999, 138: 1-13
    64. Hilgendorff M, Sundstrom V. Dynamics of electron injection and recombination of dye-sensitized TiO_2 particles. J.Phys.Chem.B. 1998, 102: 10505-10514
    65. Martini I, Hondaak J H, Hartland G V. Effect of Structure on electron transfer reaction between anthracene dye and TiO_2 nanoparticles. J.Phys.Chem.B. 1998, 102: 9508-9517
    66. Illive V, Alexiev V, Bilyarska L. Effect of phthalocyannine complex aggregation on the catalytic and photocatalytic oxidation of sulfur containing compounds.. J. Molecular catalysis A: Chemical. 1999, 137: 15-22
    67.岳林海,徐铸得.半导体的表面修饰与其光电化学应用.化学通报.1998,2:28-31
    68. Uchihana T. Effect of ethylenediam inetetraacetia acid on the photo catalytic activities and potentials of cadmium sulfide and cad-mium-selenide. J.Phys.Chem.. 1990, 94(1): 415-418
    69. Moser J, Punchiheua S, Infelta P P, et al. Surface complexation of colloidal semiconductors strongly enhances interfacial electron-transfer rates. Langmuir. 1991, 7(12): 3012-3018
    70.刘正保,姚清照.光催化氧化技术及其发展.工业水处理.1997,17(6):7-8
    71. Ooka C, Akita S, Ohashi Y, et al.. Crystallization of hydrothermally treated TiO_2 pillars in pillared montmorrillonite for improvement of the photocatalytic activity.. J. Mater. Chem.. 1999, 9: 2943-2952
    72. Boonstra H, Mutsaers C H A. Adsorption of hydrogen peroxide on the surface of titanium dioxide. J Phys Chem. 1975, 79: 1940-1946
    73. Draper R B, Fox M A. Titanium dioxide photosensitized reactions studied by diffuse reflectance flash photolysis in aqueous suspension of TiO2 powder. Langmuir. 1990,6: 1396-1402
    74. Gopel W, Rocker G, Feierabend R. Phys. Rev. E. 1983, 28: 3427-3434
    75. Pan J M, Maschhoff B L, Diebold U, Madey T E. J . Vac. Sci. Technol. A. 1992, 10: 2470-2481
    76. Bickley R I, Munuera G, Stone F S. J. Catal.. 1973, 31: 398-406
    77. Bickley R I, Stone F S. J.Catal.. 1973, 31: 389-395
    78. Gonzalez-Elipe A, Munuera G, Soria J J. Chem. Soc., Faraday Trans.. 1979, 75(1): 749-759
    79. Munuera G, Rives-Amau, V, Saucedo A. J. Chem. Soc.. 1979, 75(1), 736—748
    80. Anpo M, Kubokawa Y, Fujii T, Suzuki S. Quantum chemical and molecular oxygen-18 tracer studies of the activation of oxygen in photocatalytic oxidation reactions. J.Phys. Chem.. 1984, 88: 2572-2575
    81. Lu G, Linsebigler A, Yates J T Jr. J.Chem. Phys.. 1996, 102: 3005-3016
    82. Hoffmann A J, Carraway E R, Hoffmann M. Photocatalytic production of H_2O_2 and organic peroxides on quantum-sized semiconductor colloids. Environ.Sci.Technol.. 1994, 28: 776-785
    83. Gerischer H. Electrochim. Acta. 1993, 38: 3
    84. Wang C M, Heller A, Gerischer H. Palladium catalysis of O_2 reduction by electrons accumulated on TiO_2 particles during photo assisted oxidation of organic compounds. J. Am. Chem. SOC.. 1992, 114: 5230-5234
    85. Stafford U, Gray K A, Kamat P V, Varma. A.Chem. Phys. Lett.. 1993, 205: 55
    86. Fox M, Dulay M. Heterogeneous Photocatalysis. Chem. Rev.. 1993, 93: 341-357
    87. Goldstein S, Czapski G, Rabani J. Oxidation of Phenol by Radiolytically Generated .bul. OH and Chemically Generated SO_4.bul.-.A Distinction between .bul. OH Transfer and Hole Oxidation in the Photolysis of TiO_2 Colloid Solution. J. Phys. Chem.. 1994, 98: 6586-6591
    88. Walling C. Fenton's reagent revisited. Acc. Chem. Res.. 1975, 8: 125-131
    89. Eberhardt M K, Raminez G, Ayala E. Does the reaction of copper(I) with hydrogen peroxide give hydroxyl radicals : A study of aromatic hydroxylation. J.Org.Chem.. 1989, 54: 5922-5926
    90. Kisch H, ZangL, Lange C, MaierWF, Antonius C et al. Amorphous Titania - A Hybrid Semiconductor for Detoxification and Current Generation by Visible Light. Angew. Chem. Int. Ed.. 1998, 37: 3034-3036
    91. Eberhardt M K, Raminez G, Ayala E. Does the reaction of copper(I) with hydrogen peroxide give hydroxyl radicals : A study of aromatic hydroxylation. J.Org.Chem.. 1989, 54: 5922-5926
    92. O'Regan B, Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO_2 film. Nature. 1991, 353: 737-739
    93. Huber R, Sporlein S, Moser J E, Gratzel M Wachtveitl J. The role of surface in the ultrafast photoinduced electron transfer from sensitizing dye molecules to semiconductor colloids. J. Phys. Chem. B. 2000, 104: 8995-9003
    94 . Wang Y , Asbury J B , Lian T . Ultrafast excited-state dynamics of Re(CO)3Cl(dcbpy) in solution and on Nanocrystalline TiO2 and ZrO2 Thin Films. J. Phys. Chem A. 2000, 104: 4291-4299
    95. Gust D, Moore T A. Science. 1989, 244: 35
    96. Cho Y, Choi W, Lee C, Hyeon T, Lee H. Visible Light-Induced Degradation of Carbon Tetrachloride on Dye-Sensitized TiO_2. Environ. Sci. Technol.. 2001, 35: 966-970
    97. Konovalova T A, Kispert L D. Surface modification of TiO2 nanoparitcles with carotenoids. EPR study. J. Phys. Chem. B. 1999, 103: 4672-4677
    98. Chatterjee D, Mahata A. Photoassisted detoxification of organic pollutants on the surface modified TiO_2 semiconductor particulate system . Catalysis
     Communication. 2001, 2: 1-3
    99. Houlding V H, Gratzel M. Photochemical H_2 generation by visible light. Sensitization of TiO_2 particles by surface complexation with 8-hydroxyquinoline. J. Am. Chem. Soc.. 1983, 105: 5695-5696
    100. He J, Zhao J, ShenT, HidakaH, Serpone N. Photosensitization of colloidal titania particles by electron injection from an excited organic dye-antennae function. J. Phys. Chem. B. 1997, 101: 9027-9034
    101. Wu T, Liu G, Zhao J. Photoassisted Degradation of Dye Pollutants V: Self Photosensitized Oxidative Transformation of RhB under Visible Light Irradiation in Aqueous TiO_2 Dispersions. J. Phys. Chem. B. 1998, 102: 5845-5851
    102. Zhang F, Zhao J, Shen T, HidakaH, Pelizzetti E, Serpone N. Photoassisted Degradation of Dye Pollutants II: Adsorption and Degradation Kinetics of Eosin in TiO_2 Dispersions under Visible Light Irradiation. Applied Catalysis B. 1998, 15: 147-156
    103. Zhao J, Hidaka H., Serpone N., Evidence for H2O2 generation during the TiO2-assisted photodegradation of dyes in aqueous dispersion under visible light illumination, J. Phys. Chem. B, 1999, 103,4862-4867
    104. Liu G, Zhao J, Hidaka H, Serpone N. ESR spin-trapping detection of radical intermediates in the TiO_2-assisted photo-oxidation of sulforhodamine B under visible irradiation. J Photochem & Photobio A: Chemstry. 2000, 148: 331-339
    105. Wu T, Liu G, Zhao J, et al. Mechanistic study of the TiO_2-assited photodegradation of squarylium cyanine dye in methanolic suspensions exposed to visible light. New J Chem. 2000, 24: 93-98
    106. Zhao J, T Wu, Wu K, et al. Photoassisted Degradation of Dye Pollutants 3: Evidence for the Need for Substrate Adsorption on TiO_2 Particles. Environ. Sci. Technol.. 1998, 32: 2394-2400
    107. Liu G, Wu T, Li X, Zhao J. Photooxidation Pathway of Sulforhodamine-B. Dependence on the Adsorption Mode on TiO2 Exposed to Visible Light Radiation. Environ. Sci. Technol.. 2000, 34: 3982
    108. Liu G, Wu T, Zhao J. Photo-Assisted Degradation of Dye Pollutants.8: Irreversible Degradation of Alizarin Red under Visible Light Irradiation in Air-Equilibrated Aqueous TiO2 Dispersions. Environ. Sci. Technol.. 1999, 33: 2081-2087
    109. Zhao W, Chen C, Li X, et al. Photodegradation of Sulforhodamine-B Dye in Platinized Titania Dispersions under Visible Light Irradiation—Influence of
     platinum as a functional co-catalyst. J. Phys. Chem. B. 2002, 106: 5022-5027
    110. Wu T, Lin T, Zhao J, et al. TiO_2-Assisted Photodegradation of Dyes Ⅸ: Photooxidation of A Squaryl ium Cyanine Dye in Aqueous Dispersions Under Visible Light Irradiation. Environ. Sci. Technol.. 1999, 33: 1379-1387
    111.孙晓君,冯玉杰,蔡伟民,等.废水中难降解有机物的高级氧化技术.化工环保.2001,21(5):264-269
    112.谢茂松,王学林,徐桂芬等.用电多相催化反应处理二硝基苯酚工业废水的方法.中国专利,961155.45.0.
    113.杨卫身,周集体,杨凤林.微电解法降解染料的研究.上海环境科学.1996,15(7):30-32
    114.宋卫峰,吴斌,马前等.电解法降解有机污染物机理及动力学的研究.化工环保.2001,21(3):131-136
    115. Iniesta J, Exposito E, Gonzalez-Garcia J, et al. Electrochemical treatment of industrial wastwater containing phenols. J. Electrochem.Soc.. 2002, 149(5): D57-D62
    116. Polcaro A M, Palmas S. Electrovhemical oxidation of chlorophenols. Ind. Eng. Chem.Res.. 1997, 36: 1791-1798
    117. CaNizares P, Dominguez J A, Rodrigo M A, et al. Effect of the current intensity in the electrochemical oxidation of aqueous phenol wastes at an activated carbon and steel anode. Ind.Eng.Chem.Res.. 1999, 38: 3779-3785
    118. McConvey I F, Scott K, Henderson J M, et al. Electrochemical reaction with parallel reversible surface adsorption: interpretations of the kinetics of anodic oxidation of aniline and phenol to carbon dioxide. Chem.Eng.Process. 1987, 22: 231-235
    119. De Sucre V S, Watkinson A P. Anodic oxidation of phenol for wast water treatment. Cam.J.Chem.Eng.. 1981, 59: 52-59
    120. Vlyssides A G, Loizidou M, Karlis P K, et al. Electrochemical oxidation of a textile dye wastwater using a Pt/Ti electrode. Hazardous Materials B. 1997, 70: 41-52
    121. Vlyssides A G, Papaioannou D, Loizidoy M, et al. Testing an electrochemical method for treatment of textile dye wastwater. Waste Management. 2000, 20: 569-574
    122. Mohan N, Balasubramanian N, Subramanian V. Electrochemical reaction of simulated textile effluent. Chem.Eng.Technol.. 2001, 24: 749-753
    123. Naumczyk J, Szpyrkowicz L, Zilio-Grandi F. Electrochimica.Acta. 2002, 47: 3509-3515
    124. Yang C H, Lee C C, Wen T C. Hypochlorite generation on Ru-Pt binary oxide for treatment of dye wastewater. J.Appl.Electrochem. 2000, 30: 1043-1051
    125. Jia J P, Yang J, Liao J, et al. Treatment of dyeing wastewater with ACF electrodes. Water Res. 1999, 33(3): 881-884
    126.贾金平,杨骥,廖军.活性炭纤维(ACF)电极法处理染料废水的探讨.上海环境科学.1997,16(4):19-22
    127.赵少陵,贾金平.活性炭纤维电极法处理印染废水的应用研究.上海环境科学.1997,16(5):24-27
    128.申哲民,王文华,贾金平,等.不同形式电极与染料溶液的反应及其能耗,环境污染防治技术与设备.2000,1(2):21-24
    129.许海梁,杨卫身,周集体,等.葸醌染料的电解处理研究.环境保护科学.1998,24(4):14-16
    130.许海梁,杨卫身,周集体,等.偶氮染料废水的电解处理.化工环保.1999,19(1):32-36
    131. Lin S H, Peng C F. Continuous treatment of textile wastewater by combined coagulation electrochemical oxidation and activated sludge. Water Res. 1996, 30(3): 587-592
    132.梁镇海,许文林,孙彦平.焦化含酚废水在Ti/PbO_2电极上的氧化处理.稀有金属材料与工程.1996,25(3):37-40
    133. Lin S H, Shyu C T, Sun M C. Saline wastewater treatment by electrochemical method. Water Res. 1998, 32(4): 1059-1066
    134. Panizza M, Bocca C, Cerisola G. Electrochemical treatment of wastwater containing polyaromatic organic pollutants. Water Res. 2000, 34(9): 2601-2605
    135. Huang B J, Chou S S, Perng M G et al. Case study on the bioeffluent of petrochemical watewater by electro-Fenton method. Water Sci.Technol. 1999, 39(10-11): 145-149
    136. Zor S, Yazizi B, Erbil M, et al. The electrocatalysis degradation of linear alkylbenzenesulfonate(LAS) on platinum electrode. Water Res. 1998, 32(3): 579-586
    137.王鹏,刘伟藻,方汉平.电化学氧化与厌氧技术联用处理垃圾渗沥水.环境科学.2001,22(5):70-73
    138. Coddu R, Polcaro A M, Lavagnolo M C, et al. Electrochemical treatment of landfill leachate: oxidation at Ti/PbO_2 and Ti/SnO_2 anodes. Environ Sci Technol. 1998, 32: 3570-3573
    139. Chiang L C, Chang J E, Wen T C. Indirect oxidation effect in electrochemical oxidation treatment of landfill leachate. Water Res. 1995, 29(2): 671-678
    140.李小明,王敏,矫志奎,等.催化电解法处理垃圾渗滤液的研究.中国给水排水.2001,17(8):14-17
    141. Chiang L C, Chang J E, Chung C T, et al. Electrochemical oxidation combined with physical-chemical pre-treatment processes for the treatment of refractory landfill leachate. Environ.Eng.Sci.. 2001, 18(6): 369-379
    142. Sxpyrkowicz L, Naumczyk J, Zhang J Q, et al. Electrochemical treatment of tannery wastwater using Ti/Pt and Ti/Pt/Ir electrodes. Water Res. 1995, 29(2): 517-524
    143. Rao N n, Somasekhar K M, Kaul S N, et al. Electrochemical oxidation of tannery wastwater. Chem. Tech.&Bio. 2001, 76: 1124-1131
    144.贾金平,叶建昌,张舒茶.活性炭纤维电极法处理草浆造纸黑液的应用研究.上海环境科学.2000,19(3):120-123
    145.宋卫峰,倪亚明,何德文.电解法水处理技术的研究进展.化工环保.2001,21(1):11-15
    146. Ayranci E, Conway B E. Removal of phenol, phenoxide and chlorophenols from wast-waters by adsorption and electrosorption at high-area carbon felt electrodes. J. Electroanal. Chem.. 2001, 513: 100-110
    147. Juttner K, Galla U, Schmieder H. Electrochemical approaches to environmental problem in the process industry. Electrochimica.Acta. 2000, 45: 2575-2594
    148.许文林,王雅琼.固定床电化学反应器研究进展.化工冶金.1995,16(3):263-270
    149. Tennakoont C L K. Electrochemical treatment of human wastes in a packed bed reactor. Appl. Electrochem.. 1996, 26: 18-29
    150.张红波,徐仲榆,莫孝文.膨胀石墨流态化电极处理酸性含镉废水的研究.环境科学.1994,14(6):20-23
    151. Brillas E, Calpe J C, Casado J. Mineralization of 2,4-D by advanced electrochemical oxidationprocesses. Water Res. 2000, 34(8): 2253-2262
    152. Brillas E, Eva M, Juan C. Iron(Ⅱ) catalysis of the mineralization of aniline using a carbon-PTFE O_2-Fed cathode. Electrochem. Soc. 1996, 143: L49-L52
    153. Brillas E, Mur E, Sauleda R, et al. Aniline mineralization by AOP's: anodic oxidation, photocatalysis, electro-Fenton processes. Appl. Catal. B:Environ. 1998a, 16: 31-42
    154. Brillas E, Sauleda R, Casado J. Degradation of 4-Chlorophenol by anodic oxidation, electro-Fenton, Photoelectro-Fenton and peroxi-coaguation process. J. Electrochem. Soc.. 1998b, 145: 759-765
    155. Vinodgopal K, Stafford U, Gray K A, et al. Electrochemically assisted photocatalysis.2.The particulate films. J. Phys.Chem.. 1994, 98: 6797-6803
    156.戴清,郭妍,袁春伟等.二氧化碳多孔薄膜对含氯苯酚的电助光催化降解.催化学报.1999,20(3):317-320
    157.冷文华,童少平,成少安等.负载型二氧化钛光电降解苯胺机理.环境科学学报.2000,20(6):781-784
    158.刘鸿,冷文华,吴合进等.光电催化降解磺基水杨酸的研究.催化学报.2000,21(3):209-212
    159.贾金平,廖军,方海军等.光电化学法处理水中腐殖酸的初步研究.上海环境科学.1997,16(3):24-26
    160.吴合进,吴鸣,谢茂松等.增强型电场协助光催化降解有机污染物.催化学报.2000,21(5):399-403
    161.安太成,何春,朱锡海等.三维电极电助光催化降解直接湖蓝水溶液的研究.催化学报.2001,22(2):193-197
    162. Pelegrini R, Peralta-Zamora P, De Andrade A R, et al. Electrochemically assisted photocatalytic degradation of reactive dyes. Appl.Catal.B:Environ.. 1999, 22: 83-90
    163. Treimer S E, Feng J, Johnson D C. Photoassisted electrochemical incineration of selected organic compounds. J.Electrochem.Soc.. 2001, 148(7): E321-E325
    164.周明华,吴祖成,祝巨等.基于均相光化学氧化的光电一体化降解硝基酚的研究.催化学报.2002,23(4):376-380
    165. Matra I Litter. Review Heterogeneous Photocatalysis Transition Metal Ions in Photocatalytic Systems. J.Environmental. 1999, 23: 89-114
    166. Ashokkumar M. An overview on semiconductor particulate systems for photoproduction of hydrogen. J.Hydrogen Energy. 1998, 23(6): 427-438
    167.潘海波,林德娟,刘隆兴,等.掺钒TiO_2纳米粉体的制备及性能.材料研究学报.2001,15(5):535-539
    168. Zhao G L, Han G R, Takashi M, et al. Photoelectronchemical properties of sol-gel-derived Ti_(1-x)V_xO_2 solid solution film photoelectrodes. Thin Solid Films. 2002, 410: 14-20
    169. Zhao G L, Kozuka H, Lin H, et al. Preparation and photoelectrochemical properties of Ti_(1-x)V_xO_2 solid solution thin film photoelectrodes with gradient bandgap. Thin Solid Films. 1999, 340: 125-131
    170. Jeosadaque J. Sene, Walter A. Zeltner, Marc A. Anderson. Fundamental Photoelectrocatalytic and Electrophoretic Mobility Studies of TiO2 and V-Doped TiO2 Thin-Film Electrode Materials. J. Phys. Chem.B. 2003, 107: 1597-1603
    171. Rodella C B, Nascente PA P, Franco R WA, et al. Phys. Stat.Sol. (A). 2001, 187: 161-169
    172. Gratzel C K, Uirousek M, Gratzel M. Decomposition of organophorous on photoactivated TiO_2 surface. J.Phys.Chem.. 1990, 94(6): 375-387
    173. Karakitou K E, Verykios X E. Effects of altervalent cation doping of TiO_2 on its perpfomance as a photo catalyst for water cleavage. J.Phys.Chem.. 1993, 97(6): 1184-1189
    174. Zhao G L, Kozuka H, Lin H, et al. Sol-gel preparation of Ti_(1-x)V_xO_2 solid solution thin film electrodes with conspicuous photoresponse in the visible visible region. Thin Solid Films. 1999, 339: 123-128
    175. Bisquert J, Garcia Belmonte G, Fabregat Santiago F, et al. Phy. Chem.B. 2000, 104: 2287-2293
    176. Hong Liu, Shaoan Cheng, Ming Wu, et al. Photoelectrocatalytic degradation of sulfosalicylic acid and its electrochemical impedance spectroscopy investigation. J. Phys. Chem.. 2000, 104: 7016-7020
    177. Wilk K, Breuer H D. The Influence of Transition Metal Doping on the Physical and Photocatalytic Properties of Titania. J. Photochemistry and Photobiology A: Chemistry. 1999, 121: 49-53
    178.王幼平,余家国,赵修建等.溶胶—凝胶工艺制备掺铅TiO_2纳米薄膜及其光催化性能的研究.中国环境科学.1998,18(3):244-247
    179.赵青南,余家国,赵修建等.釉面砖表面掺铅TiO_2涂层的溶胶—凝胶法制备及其光催化性能.陶瓷工程.1998,32(6):4-6
    180.于向阳,程继健.铁、铬离子掺杂对TiO_2薄膜光催化活性的影响.无机材料学报.2001,16(4):742-748
    181. Satoko H, Yasuaki K, Isao Y, et al. Development of hydrophilic outside mirror coated with titania photocatalyst. JSAE Review. 2000, 21: 97-102
    182. Martin K, Marcus M, Philipp R R, et al. Plasma-CVD-coated glass beads as photocatalyst for water decontamination. Catalysis Today. 2002, 72: 267-279
    183.刘鸿,吴鸣,吴合进等.氢处理二氧化钛的光催化性能及电化学阻抗谱.物理化学学报,2001,17(3):286-288
    184. Trassatti S. Electrocatalysis in the anodic evolution of oxygen and chlorine. Electrochemica. Acta. 1984, 29(11): 1503-1512
    185. Comninellis Ch, Pulgarin C. Anodic oxidation of phenol for wast water treatment. J. Appl. Electrochem.. 1991, 21: 703-708
    186. Vlyssides A G, Loizidou M, Karlis P K, et al. Electrochemical oxidation of a textile dye wastwater using a Pt/Ti electrode. J. Hazardous materials B. 1999, 70: 41-52
    187. Awad Y M, Abuzaid N S. Electrochemical oxidation of phenol using graphite anodes. Sep.Sci.Technol.. 1999, 34(4): 699-708
    188. Can izares P, Dominguez J A, Rodrigo M A, et al. Effect of the current intensity the electrochemical oxidation of aqueous phenol wastes at an activated carbon and steel anode. Ind.Eng.Chem.Res.. 1999, 38: 3779-3785
    189. Kuramitz H, Nakata Y, Kawasaki M, et al. Electrochemical oxidation of bisphenol A. Application to the removal of bisphenol A using a carbon fiber electrode. Chemosphere. 2001, 45: 37-43
    190. Kirk D W, Sharifian H, Foulkes F R. Anodic oxidation of aniline for waste water treatment. J. Appl. Electrochem.. 1985, 15: 285-292
    191. Pulgarin C, Adler N, Peringer P, et al. Electrochemical detoxification of a 1,4-benzoquinone solution in wastewater treatment. Water Res.. 1994, 28: 887-893
    192.宋卫峰,吴斌,倪亚明.形隐阳极电解处理有机废水机理及其动力学的研究.上海环境科学.2001,20(2):78-81
    193. Iniesta J, Michaud P A, Panizza M, et al. Anodic oxidation of aniline for waste water treatment. J.Appl.Electrochem.. 1985, 15: 285-292
    194. Kotz R, Stucki S, Caecer B. Electrochemical waste water treatment using high overvoltage amode Part Ⅰ: physical and electrochemical properties of SnO_2 anodes. J. Appl. Electrochem.. 1991, 21: 14-21
    195. Pohl J P, Rickert H, Trasatti in S. Electrodes of Conductive Metallic Oxides, Part A. Elsevier Amsterdam. 1980, (Chapter 4)
    196. De Suecre V S, Watkinson A P. Anodic oxidation of phenol for waste water treatment. The Canadian J. Chemical Engineering. 1981, 59(2): 52-59
    197. Hwang B J, Lee K L. Electrocatalytic oxidation of 2-chlorophenol on a composite PbO_2/polypyrrole electrode in aqueous solution. 1996, 26: 153-159
    198. Tahar n B, Savall A. Electrochemical degradation of phenol in aqueous solution on bismuth doped lead dioxide: a comparison of the activities of various electrode formulations. J.Appl.Electrochem.. 1999, 29: 277-783
    199. Tahar N B, Savall A. Mechanistic aspects of phenol electrochemical degradation by oxidation by oxidation on a Ta/PbO_2 anode. J.Electrochem.Soc.. 1998, 145: 3427-3434
    200. Bother P, Garnier P. Mise en evidence et localisation des protons dans les bioxydes de plomb PbO_2 aet β chimiques et electrochimiqueazx. J.Solid Statc Chem. 1984, (52): 146-159
    201. Velichenko A B. Mechanism of lead dioxide electrodeposition. J.Electroanalytical Chemistry. 1996, (45): 127-132
    202. Gattrell M, Kirk D W. The electrochemical oxidation of aqueous phrnol at a glassy carbon electrode. The Canadian J. Chemical Engineering. 1990, 68: 997-1003
    203. Linsebigler A L, Guangquan L, Yate J T. Photocatalysis on TiO_2 surface:principles, mechanisms and delected results. Chem.Rev.. 1995, 95: 735-751
    204. Kurtz R L, Stockbauer R, Madey T E, et al. Synchrotron radiation studies of H_2O adsorption on TiO_2(110). Surf.Sci.. 1989, 218: 178-200
    205.曹长春,蒋展鹏,余刚等.TiO_2薄膜光电协同催化氧化降解活性艳红.环境科学.2002,23(6):108-111
    206. Dong H K, Anderson M A. Photoelectrocatalytic degradation of formic acid using a porous TiO_2 thin-film electrode. Environ.Sci.Technol.. 1994, 28: 479-482
    207. Liu, G.;Li, X.;Zhao, J.;Hidaka, H.;Serpone, N., Photo-Assisted Degradation of Dye Pollutants.8: Irreversible Degradation of Alizarin Red under Visible Light Irradiation in Air-Equilibrated Aqueous TiO_2 Dispersions, Environ. Sci. Technol., 1999, 33, 2081-2087
    208. Liu, G.;Li, X.;Zhao, J.;Hidaka, H.;Serpone, N., Photooxidation Pathway of Sulforhodamine-B. Dependence on the Adsorption Mode on TiO_2 Exposed to Visible Light Radiation, Environ. Sci. Technol., 2000, 34, 3982-3990
    209. Prevot, A. B.;Baiocchi, C.;Brussino, M. C.;Pramauro, E.;Savarino, P.;Augugliaro, V.;Marci, G.;Palmisano. L., Photocatalytic Degradation of Acid Blue 80 in Aqueous Solutions Containing TiO_2 Suspensions, Environ. Sci. Technol., 2001, 35, 971-976
    210. Zhang, F.;Zhao, J.;Hidaka, H.;Pelizzetti, E.;Serpone, N., Photoassisted Degradation of Dye Pollutants Ⅱ: Adsorption and Degradation Kinetics of Eosin in TiO_2 Dispersions under Visible Light Irradiation, Applied Catalysis B, 1998, 15, 147-156
    211. Wu, T.;Liu, G.;Zhao, J.;Hidaka, H.;Serpone, N., Photoassisted Degradation of Dye Pollutants V: Self Photosensitized Oxidative Transformation of RhB under Visible Light Irradiation in Aqueous TiO2 Dispersions, J. Phys. Chem. B, 1998, 102,5845-5851
    212 . Flesazr B , Ploszynska J . An attempt to define benzene and phenol electrochemical oxidation mechanism. Electrochimica Acta. 1985, 30 ( 1 ): 31-42
    213. Do J S, Yeh W C, Chao I Y. Kinetics of the oxidative dagration of formaldehyde with electro generated hypochlorite ion. Ind. Eng. Chem. Res.. 1997, 36: 349-356
    214. WatanabeT, TakirawaT, Honda K. Photocatalysis through Excitation of Adsorbates. 1. Highly Efficient N-Deethylation of Rhodamine B Adsorbed to CdS J.Physical Chemistiy, 1977, 81 (19): 1845-1851
    215. Chen C C, Zhao W, Lei P X, Zhao J C, Serpone N. Photosensitized Degradation of Dyes in Polyoxometalate Solutions versus TiO_2 Dispersions under Visible-Light Irradiation:Mechanistic Implications, J Chem. Eur.. 2004, 10: 1956-1965.
    216. Liu G, Li X, Zhao J, et al. Photooxidation Pathway of Sulforhodamine-B. Dependence on the Adsorption Mode on TiO_2 Exposed to Visible Light Radiation. Environ. Sci. Technol.. 2000, 34: 3982-3990
    217. Prevot A B, Baiocchi C, Brussino M C, et al. Photocatalytic Degradation of Acid Blue 80 in Aqueous Solutions Containing TiO_2 Suspensions. Environ. Sci. Technol.. 2001, 35: 971-976.
    218. Cermenati L, Pichat P, Guillard C, et al. Probing the TiO_2 photocatalytic mechanism in water purification by use of quinoline photo-Feton generated OH radicals and superoxide dismutase. J. Phys. Chem. B. 1997, 101: 2650-2658

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700