二氧化钒微纳米结构的合成及其机敏特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钒氧化合物纳米材料在光电、气敏、磁性以及储能节能等领域有着广泛的应用前景。本论文旨在通过对二氧化钒晶体结构的分析,探索其特异的结构,发展新的合成路线和方法,从而获得具有特定形貌、尺寸、维度、单分散性等的纳米材料;同时,设计一些简单便利的普适性策略来合成钒氧化合物的纳米结构,特别是二维结构的超薄纳米片,并且对纳米材料的生长机理和形成机制、材料尺寸形貌与性能的关系等进行了有益的探索。不仅对我们了解纳米材料合成提供了另外一个途径,同时也给理论分析纳米材料形成的本质原因提供了可能的理论指导。
     本论文的主要研究内容和成果如下:
     1.在我们的工作中,通过一个简易的水热反应合成了新相二氧化钒微/纳米结构(为方便起见,命名为VO2(D))。通过XRD粉末衍射和X—射线吸收精细结构(synchrotron radiation X-ray absorption fine structure, XAFS)和电子自旋共振波谱的综合分析,我们证明了首次发现的二氧化钒是和单斜相NiWO4同型的新物相。我们在研究不同晶型的二氧化钒晶体结构时发现,VO2(D)的晶体结构存在着转换为金红石型VO2(R)的可能,从而为我们提供了一条合成金红石型VO2(R)可能的新途径。此外,混合密度泛函计算从理论上揭示了从VO2(D)到金红石型VO2(R)转换的可行性。对VO2(D)微/纳米结构的后续热处理,实现了在较低温度下转变为金红石型VO2(R)。差示扫描量热法曲线明确的表明所获得的金红石型VO2(R)临界温度点附近具有可逆的金属—绝缘体转变。从而通过金红石型VO2(R)的可逆金属/绝缘体转变,获得单斜的VO2(M)(最昂贵的金属氧化物之一)。以上结果表明我们所合成的新相V02(D),为实现较低温度下转换为金红石型VO2(R)提供了一条新途径,同时也丰富了二氧化钒系列物质。同时对于所得到新相VO2(D),变温电导率显示其半导体性质,而温度相关的磁化率测量和磁矩的计算分析表明,VO2(D)由反铁磁Heisenberg链组成。这也为二氧化钒材料在磁场和电子领域应用以及一个更好地了解氧化钒材料反铁磁机制提供了研究的基础。钒氧化合物还有更为宽广的物种空间值得深入研究,新的具有电学转换性质的钒氧化合物材料的发现必将会在智能节能领域的应用方面开启新的大门。
     2.我们提出了一种简捷的方法在室温条件下通过插层—去插层法从有较强层间化学键的材料来制备单层二维结构。比如,首先合成的原子尺度厚度V02(B)单层及其时间演化实验说明了相关的插入—水合—剥离过程。单层中高度扭曲的VO6八面体通过同步加速X射线吸收精细结构测试说明了其独有的电子构型以及卓越的结构稳定性。第一性原理计算指出VO2(B)单层有一个⊿Eg=0.19eV的能带,该值比体型结构中的配体更大,并且在紫外光谱测试中也取得了良好的结果。本实验为拓展石墨烯以外原子尺度厚度二维纳米材料提供了方向,并可能在凝聚态物理和纳米电子学等领域引起新的发现。
     3.我们进一步借鉴和发展了之前室温下的插层—去插层法,发展了一种锂化—剥离方法,并将其称之为M相锂化—R相剥离的方法,采用温和简单又可靠的锂化的剥离方法制备了高度结晶性的、厚度仅为~3nm VO2(M)超薄纳米片。本文中利用变温FT—IR光谱研究了VO2(M/R)超薄二维结构相变过程中在红外区间优异的红外透过/阻断性能。此外,通过紫外—可见—近红外漫反射光谱的进一步研究,发现了VO2(M)样品的能带间隙的变化,发现其金属化增强的特点。特别是采用XAFS来研究了VO2(M)超薄纳米片的局域结构,并利用XAFS得到的结构差异辅助理论计算,解释了其超薄二维结构对红外区间优异的相变性能和金属化的提高所起的作用。这些超薄纳米片由于2D纳米超薄结构具有优异的光学透明度和相变特性,为其未来的应用前景提供了实验理论基础。
Vanadium oxide nanomaterials have exhibited promising applications in sensors, optics, magnetism and energy storage and energy saving. In this dissertation, preparation of nanomaterials with well-defined size, morphology, dimensionality and diversity has been developed through novel synthesis approaches and stratages. The valuable explorations of their novel structures and properties have been carried out based on the structural analysis and theoretical guidance of vanadium oxides; meanwhile, the general synthetic routes have been developed to synthesize vanadium oxides nanostructures, especially for those two dimension structure of ultrathin nanosheets, along with their formation mechanisms, emphasizing on the structural-related properties. The main parts of the results are summarized briefly as follows:
     1. New-phased VO2micro/nanostructures built by nanoflakes have been first synthesized by a hydrothermal method with NH4VO3as precursor in the presence of poly (vinyl pyrrolidone)(PVP). The combined structural analysis of X-ray powder diffraction (XRD) and X-ray absorption fine structure (XAFS) spectroscopy determined the crystal structure as a new-phased vanadium dioxide, which is the isostructure of monoclinic NiWO4and designated as VO2(D). In particular, electron spin resonance (ESR) measurement provides the direct evidence of vanadium ion at the four oxidation state. The formation energy of VO2(D) was estimated and showed a very close value to rutile-type V02(R), which guided the preparation of V02(R/M) by making use of the structural transformation from VO2(D) to VO2(R) at320℃, which was a comparatively lower temperature from other vanadium oxide, such as VO2(B). The obtained VO2(R) shows the reversible metal-to-insulator transition (MIT) near critical temperature (Tc) which is associated with clear changes in differential scanning calorimetry (DSC) curves. In addition, the temperature-dependent DC electrical conductivity of the new-phased VO2(D) exhibits Arrhenius-type behaviour, which reveals its semiconducting character with a band gap of0.33eV. ESR and temperature-dependent magnetic susceptibility measurements were employed to obtain information for the magnetic properties of VO2(D), which correspond to one-dimentional Heisenberg system.
     2. A convenient room-temperature intercalation-deintercalation strategy was proposed for the first time to synthesize layered compounds with strong interlaminar covalent bonds. As an example, VO2(B) single layers with atomic thickness of~0.69nm were first synthesized and time-dependent experiments suggested the involved intercalation-hydration-exfoliation process. This VO2(B)single layer possesses a more symmetric atomic structure with slight lattice expansion, as revealed by synchrotron radiation X-ray absorption fine structure (XAFS) explained the unique electronic structure and excellent structural stability. First-principle calculation indicated that the resulted VO2(B)single layers showed a band gap of⊿Eg=0.19eV higher than that of bulk counterpart, which is in good agreement with experimental UV-vis spectroscopy. This work opens the door for extending the two-dimensional nanomaterials with atomic-thickness aside from graphene, providing more possibilities for the energy-level engineering in photo voltaics and catalyst and may spark new discoveries in condensed matter physics and nanoelectronics.
     3. M phased VO2ultrathin nanosheets with thickness of only-3nm have been successfully synthesized by a developed lithiation-exfoliation method, which was called M phase lithiation-R phase exfoliation method. This method provided a novel way to elaborate VO2(M) nanostructures with highly crystalline under soft condition. The variable temperature FT-IR spectra of the VO2(M/R) ultrathin two-dimensional structure revealed their excellent infrared through/blocking performance in the infrared range during the phase transition. Additionally, the UV-visible-near infrared diffuse reflectance spectroscopy was first proposed to identify the changes of the energy band gap of the VO2(M) samples and revealed the features of its enhanced metallization. In particular, the local structures of VO2(M) ultrathin nanosheets were studied through synchrotron radiation X-ray absorption fine structure (XAFS), combined with first-principle calculation took use of structure differences revealed by XAFS, which explained the excellent phase transition performance in the infrared range and its enhanced metallization owing to its ultra-thin two-dimensional structure. VO2(M) ultrathin nanosheets may also be an attractive candidate for the use of smart window coatings because of their excellent optical transparency and thermochromic property due to the ultrathin2D nanostructures.
引文
[1]R. P. feynman, Science,1991,254,1300.
    [2]R. Brfinger, H. Gleiter, H. P. Klein, E. Marquit, Phys. Lett.,1984,102,365.
    [3]张立德,牟季美,纳米材料和纳米结构,科学出版社,2001.
    [4]王世敏,许祖勋,傅晶,纳米材料制备技术,化学工业出版社,2001.
    [5]A. D. Yoffe, Adv. Phys.1993,2,173.
    [6]C. Suryanarayana, F. H. Froes, Metall. Trams. A,1992,23,1071.
    [7](a) J. Stichlmair, J. Schmidt, Propleschr, J. Chem. Eng. Sci.,1992,47,3015; (b) H. J. Watzke, J. H. Fendler, J. Phys. Chem.,1987,91,854; (c) D. W. Parker, Adv. Mater.& Proc.,1991,139,68.
    [8](a) R. A. Webb, Phys. Rev. Lett.1985,54,2696; (b) H. W. Kroto, Nature 1985,318,162.
    [9](a) H. J. Watzke, J. H. Fendler, J. Phys. Chem.1987,91,855; (b) J. Stichlmair, J. Schmidt, Propleschr, J. Chem. Eng. Sci.1992,47,3015; (c) D. W. Parker, Adv. Mater.& Proc.1991,139, 68.
    [10]P. Ball, L. Garwin, Nature,1992,355,762.
    [11]R. E. Cavicchi, R. H. Silsbee, Phys. Rew. Lett.,1971,26,107.
    [12](a)L. E. Brus, J. Phys. Chem.,1986,90,2555; (b) J. Klabunde K, J. Stark, O. Koper, J. Phys. Chem.,1996,100,12142; (c) A. Henglein, Chem. Rev.,1989,89,1861.
    [13]张立德,牟季美,物理1992,21,167.
    [14]A. O. Caldeira, A. J. Leggett, Phys. Rev. Lett.,1981,46,212.
    [15](a) J. Karch, R. Birringer, H. Gleiter, Nature,1987,330,556; (b)朴顺玉,程雪琴,《超微粒应用技术的现状和展望》,中国科学院化冶所内部资料,1991.
    [16](a) C. Z. Wu, X. D. Zhang, B. Ning, J. L. Yang, Y.Xie, Inorg. Chem.,2009,48,6044; (b) C. Z. Wu, W. Xie, M. Zhang, L. F. Bai, J. L. Yang, Y. Xie, Chem. Eur. J.,2009,15,492; (c) S. D. Zhang, M. Zhou, X. Lu, C. Z. Wu, Y. F. Sun and Yi Xie, CrystEngComm,2010,12,3571-3578
    [17](a) A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, A. K. Geim, Rev. Mod. Phys.2009,81,109; (b) X. Du, I. Skachko, A. Barker, E. Y. Andrei, Nat. Nanotechnol.2008,3, 491; (c) J. Martin, N. Akerman, G. Ulbricht, T. Lohmann, J. H. Smet, K. von Klitzing, A. Yacoby, Nat. Phys.2008,4,144; (d) Y. Zhang, V. W. Brar, C. Girit, A. Zettl, M. F. Crommie, Nat. Phys. 2009,5,722; (e) A. K. Geim, and K. S. Novoselov, Nature Materials.,2007,6,183.
    [18]K. F. Mak, Ch. Lee, J. Hone, J. Shan, and T. F. Heinz, Phys. Rev. Lett.,2010,105,136805.
    [19](a)D. Teweldebrhan, V. Goyal, A. A. Balandin, Nano Lett.,2010,10,1209;(b)J. N. Coleman, M. Lotya, A. O'Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, I. V. Shvets, S. K. Arora, G. Stanton, H. Kim, K. Lee, G. T. Kim, G. S. Duesberg, T. Hallam, J. J. Boland, J. J. Wang, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, J. M. Perkins, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, and V. Nicolosi, Science, 2011,331,568.
    [20]J. Feng, X. Sun, C. Z. Wu, L. L. Peng, C. W. Lin, S. L. Hu, J. L. Yang, Y. Xie, J. Am. Chem. Soc.,2011,133,17832-17838.
    [21](a) K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos,. V. Grigorieva, A. A. Firsov, Science,2004,306,666; (b) K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V Grigorieva, S. V. Dubonos, A. A. Firsov, Nature 2005,438,197.
    [22]B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Nat. Nanotech.,2011,6, 147.
    [23]L. Y. Jiao, L. Zhang, X. R. Wang, G. Diankov, H. J. Dai, Nature,2009,458,877.
    [24]H. Zeng, C. Zhi, Z. Zhang, X. Wei, X. Wang, W. Guo, Y. Bando, D. Golberg, Nano Lett., 2010,10,5049.
    [25]K. G. Zhou, N. N. Mao, H. X. Wang, Y. Peng, H. L. Zhang, Angew. Chem. Inter. Ed.,2011,50, 10839.
    [26]J. S. Son, X. D. Wen, J. Joo, J. Chae, S. Baek, K. Park, J. H. Kim, K. An, J. H. Yu, S. G. Kwon, S. H. Choi, Z. Wang, Y. W. Kim, Y. Kuk, R. Hoffmann and T. Hyeon., Angew. Chem.,2009, 121,6993.
    [27]H. S. S. Ramakrishna Matte, A. Gomathi, Arun K. Manna, Dattatray J. Late, Ranjan Datta, Swapan K. Pati and C. N. R. Rao., Angew. Chem.,2010,122,4153.
    [28]H. S. S. Ramakrishna Matte, B. Plowman, Datta, C. N. R. R. Rao, Dalton T.,2011,40,10322.
    [29]Z. Y. Zeng, Z. Y. Yin, X. Huang, H. Li, Q. Y. He, G. Lu, F. Boey, H. Zhang, Angew. Chem. Int. Ed.,2011,50,11093-11097
    [30]J. Jang, S. Jeong, J. Seo, M. C. Kim, E. Sim, Y. Oh, S. Nam, B. Park, and J. Cheon. J. Am. Chem. Soc.,2011,133,7636-7639
    [31]D. D. Vaughn Ⅱ, R. J. Patel, M. A. Hickner, and R. E. Schaak., J. Am. Chem. Soc.,2010,132, 15170.
    [32]C. Schliehe, B. H. Juarez, M. Pelletier, S.n Jander, D. Greshnykh, M. Nagel, A. Meyer, S. Foerster, A. Kornowski, C. Klinke, and Ho. Weller,. Science,2010,329,550.
    [33]Z. W. Wang, C. Schliehe, T. Wang, Y. Nagaoka, Y. Charles Cao, W. A. Bassett, H. M. Wu, H. Y. Fan, and H. Weller., J. Am.Chem. Soc.,2011,133,14484.
    [34](a) B. S. Guiton, Q. Gu, A. L. Prieto, M. S. Gudiksen, H. Park, J. Am. Chem. Soc.2005,127, 498. (b) J. Wu, Q. Gu, B. S. Guiton, N. P. Leon, L. Ouyang, H. Park, Nano Lett.2006,6,2313; (c) E. Baudrin, G. Sudant, D Larcher, B. Dunn, J. M Tarascon, Chem. Mater.2006,18,4369; (d) Y. Q. Wang, Z. J. Zhang, Y. Zhu, Z. C. Li, R. Vajtai,. L. J. Ci, P. M. Ajayan, ACS Nano,2008,2, 1492; (e) J. Liu, Q. Li, T. Wang, D. Yu, Y. Li, Angew. Chem., Int. Ed.2004,43,5048; (f) X. Chen, X. Wang, Z. Wang, J. Wan, J. Liu, Y. T. Qian, Nanotechnology 2004,15,1685; (g) G. C. Li, K. Chao, Z. Wang, H. R. Peng, K. Z. Chen, Z. K. Zhang, Inorg. Chem.2007,46,5787
    [35]D. Hagrman, J. Zubieta, C. J. Warren, L. M. Meyer, Michael M. J. Treacy and R. C. Haushalter, J. Solid State Chem.,1998,138,178.
    [36]W. Li, J. R. Dahn, D.Wainwright, Science,1994,264,1115;
    [37](a) T. D. Manning, I. P. Parkin, M. E. Pemble, D. Sheel, D. Vernardou, Chem. Mater.,2004, 16,744. (b) F. J. Morin, Phys. Rev. Lett.,1959,3,34.
    [38]J. B. Goodenough, J. Solid State Chem.,1971,3,490.
    [39]D. W. Murphy, P. A. Christian, J. N. Carides, J. Electrochem. Soc.,1979,126,497.
    [40]Y. Q. Wang, Z. J. Zhang, Y. Zhu, Z. C. Li, R. Vajtai,. L. J. Ci, P. M. Ajayan, ACS Nano,2008, 2,1492.
    [41]C. Z. Wu, Z. P. Hu, W. Wang, M. Zhang, J. L. Yang, Y. Xie, Chem. Commun.,2008,3891.
    [42]S. D. Zhang, Y. M. Li, C. Z. Wu, F. Zheng, and Yi Xie, J. Phys. Chem. C,2009,113:15058-15067.
    [43]K. F. Zhang, X. Liu, Z. X. Su, H. L. Li, Mater. Lett.,2007,61,2644.
    [44]B. G. Hyde, A. N. Bagshaw, S. Anderson, M. O. Keeffe, Annu. Rev.,1974,4,43.
    [45]Y. Oka, T. Yao, and N. Yamamoto, J. Mater. Chem.,1991,1,815.
    [46]S. D. Zhang, B. Shang, J. L. Yang, W. S. Yan, S. Q. Wei and Yi Xie, Phys. Chem. Chem. Phys.,2011,13,15873.
    [47]M. F. Becker, A. B. Buckman, R.r M. Walser, T. Lepine, P. Georges, and A. Brun, Appl. Phys. Lett.,1994,65,1507
    [48]G. Xu, C. M. Huang, P. Jin, M. Tazawa, and D. M. Chen, Appl. Phys. Lett.,2008,104, 053101.
    [49]S. H. Chen, H. Ma, X. J. Yi, T. Xiong, H. C. Wang, C. J. Ke, Sensors and Actuators A,2004, 115,28.
    [50]许雯,邱家稳,赵印中,真空科学与技术,2001,21,485.
    [51]J. He, B. Liu, A. Zhang Energy Policy,2002,34,3702.
    [52]Chemical Industry Vision 2020 Technology Partnership, Chemical Industry R&D Roadmap for Nanomaterials By Design:From Fundamentals to Function,2003 (www. ChemicalVision2020. org).
    [53]M. M. Stevens, J. H. George, Science,2005,310,1135.
    [54]B. S. Guiton, Q. Gu, A.L. Prieto, M.S. Gudiksen and H. Park, J. Am. Chem. Soc.,2005,127, 498.
    [55]Z. F. Peng, W. Jiang and H. Liu, J. Phy Chem. C,2007,111,1119.
    [56]C. Tsang and A. J. Manthiram, Electrochem. Soc.,1997,144,520
    [57]M. Soltani, M. Chaker, E. Haddad, R.V. Kruzelecky, J. Margot Appl. Phys. Lett.,2004,85, 1958.
    [58]H. T. Yuan, K. C. Feng, X. J. Wang, C. J. He, D. H. Li, Y. X. Nieb, K. A. Feng Applied Surface Science,2005,243,36.
    [59]F. J. Morin, Phys. Rev. Lett.,1959,3,34.
    [60]Y. A. Vlasov, M. O'Boyle, H. F. Hamann, Sharee J. McNab, Nature,2005,438,65.
    [61]H. T. Yuan, K.C. Feng, X-J. Wang, C. Li, C. J. He, Y. X. Nie, Chinese Phys.,2004,13,82.
    [62]X. J. Wang, Kean Feng, Jpn. J. Appl. Phys.,2002,41,312.
    [63]M. Soltani, M. Chaker 1, E Haddad and R Kruzelesky, Meas. Sci. Tech.,2006,17,1052
    [64]J. N. Huiberts, R. Griessen, Nature,1996,380,231.
    [65]X.J. Wang, K.A. Feng, Appl. Surf. Sci.,2001,177,8.
    [67]P. Ball, Nature,1998,391,232.
    [68]C. M. Lampert, Mater. Today,2004,3,28.
    [69]L. T. Kang, Y. F. Gao, H. J. Luo, acs applied materials interfaces.,2009,1,2211.
    [70]L. T. Kang, Y. F. Gao, Z. Zhang, J. Du, C. Cao, Z. Chen, H. J. Luo, J. Phys. Chem. C,2010, 114,1901.
    [71]尹大川,许念坎,现代科技理论与应用,1996,5,589.[72](a)陈长虹,易新建,熊笔锋,物理学报,2001,50,451;(b)王利霞,李建平,何秀丽,高晓光,物理学报,2006,55,2846;(c)李金华,袁宁一,谢太斌,但迪迪,物理学报,2007,56,1790.
    [73]D. C. Yin, N. K. Xu, J. Y. Zhang, X. L. Zheng, Materials Researeh Bulletin,1996,31,335.
    [74]E. Strelcov, Y. Lilach, and A. Kolmakov, Nano Lett.,2009,9,2322.
    [1](a)C. Leroux and G. Nihoul, Physical Review B,1998,5,5111; (b)R. B. Lopez, L. A. Boatner, T. E. Haynes, L. C. Feldman and R. F. Haglund Jr., J. Appl. Phys.,2002,92,4031.
    [2]G. Andersson,Acta Chem. Scand.,1954,8,1599.
    [3]G. Andersson, Acta Chem. Scand.,1956,10,623.
    [4](a) F. J. Morin, Phys. Rev. Lett.,1959,3,34; (b) L. Whittaker, H. Zhang and S. Banerjee, J. Mater. Chem.,2009,19,2968; (c) D. P. Partlow, S. R. Gurkovich, K. C. Radford and L. J. Denes, J. Appl. Phys.,1991,70,443; (d) H. Liu, A. Rua, O. Vasquez, V. S. Vikhnin, F. E. Fernandez, L. F. Fonseca, O. Resto and S. Z. Weisz, Sensors,2005,5,185; (e) T.D. Manning, I. P. Parkin, M.E. Pemble, D. Sheel and D. Vernardou, Chem. Mater.,2004,16,744; (f) A. C. Jones, S. Berweger, J. Wei, D. Cobden and M. B. Raschke, Nano Lett.,2010,10, 1574.
    [5](a) Dimitra Vernardou, Martyn E. Pemble, and David W. Sheel, Chem. Vap. Deposition,2007,13,158; (b) T.J. Hanlon, J.A. Coath, M.A. Richardson, Thin Solid Films, 2003,436,269; (c) Clara Piccirillo, Russell Binions, and Ivan P. Parkin, Eur. J. Inorg. Chem.2007,4050
    [6]H.T. Evans, Jr., M.E. Mrose, Am. Mineral.,1955,40,861.
    [7]B.G. Hyde, A.N. Bagshaw, S. Anderson, M.O. Keeffe, Annu. Rev.,1974,4,43
    [8]C. Z. Wu, Z. P. Hu, W. Wang, M. Zhang, J. L. Yang, Y. Xie, Chem. Commun.,2008, 3891.
    [9](a) C. Tsang and A. J. Manthiram, Electrochem. Soc.,1997,144,520; (b) K. Zhang, X. Liu, Z. Su and H. Li, Materials Letters,2007,61,2644.
    [10](a) Z. F. Peng, W. Jiang and H. Liu, J. Phy. Chem. C,2007,111,1119; (b) Z. Gui, R. Fan, W. Mo, X. Chen, L. Yang, S. Zhang, Y. Hu, Z. Wang and W. Fan, Chem. Mater.,2002,
    14,5053;(c)B. S. Guiton, Q. Gu, A.L. Prieto, M.S. Gudiksen and H. Park, J. Am. Chem. Soc., 2005,127,498.
    [11]C. Z. Wu, J. Dai, X. D. Zhang, J. Yang, F. Qi, C. Gao, Y. Xie, Angew. Chem., Int. Ed. 2010,122,138.
    [12]a) C. Z. Wu, F. Feng, J. Feng, J. Dai, J. L. Yang, Y Xie, J. Phys. Chem. C,2011,115, 791-799; b) Y. F. Sun, S. S. Jiang, W. T. Bi, R. Long, X. G. Tan, C. Z. Wu, S. Q. Wei, and Y. Xie, Nanoscale,2011,3,4394-4401; c)L. Liu, F. Cao, T. Yao, Y. Xu, M. Zhou, B. Y. Qu, B. C. Pan, C. Z. Wu, S. Q. Wei, Y. Xie, New J. Chem.,2012,36,619-625..
    [13]D. Hagrman, J. Zubieta, C. J. Warren, L. M. Meyer, Michael M. J. Treacy and R. C. Haushalter, J. Solid State Chem.,1998,138,178.
    [14]P. E. Bloxchl, Phys. Rev. B,1994,50,17953.
    [15]J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett.,1996,77,3865.
    [16](a) J. Heyd, G.E. Scuseria and M. Ernzerhof, J. Chem. Phys.,2003,118,8207; (b) J. Heyd, G.E. Scuseria, M. Ernzerhof, J. Chem. Phys.,2006,124,219906.
    [17](a) G. Kresse and J. Hafner, Phys. Rev. B,1993,48,13115; (b) G. Kresse and J. Furthmuller, Phys. Rev. B,1996,54,11169; (c) G. Kresse and D. Joubert, Phys. Rev. B,1999, 59,1758.
    [18]R. D. Shannon, Acta Cyst.,1976, A32,751.
    [19]J. M. Booth and P. S. Casey, Phys. Rev. Lett.,2009,103,086402.
    [20](a)C.N.R. Rao, D.D. Sarma, S. Vasudevan and M.S. Hedge, Proc. R. Soc. London Ser. A,1979,367,239; (b) J. Mendialdua, R. Casanova and Y. Barbaux, J. Electron. Spectrosc. Relat. Phenom.,1995,71,249.
    [21](a) C. Cao, Y. Gao, L. Kang and H Luo, CrystEngComm,2010,12,4048; (b) X. C. Jiang, Y. L.Wang, T. Herricks and Y. N. Xia, J. Mater. Chem.,2004,14,695; (b) Y. L.Wang, X. C. Jiang and Y. N. Xia, J. Am. Chem. Soc.,2003,125,16176.
    [22](a) J. H. Huang and L. A. Gao, Cryst. Growth Des.,2006,6,1528; (b) F. Bonet, K. Tekaia-Elhsissen and K. V. Sarathy, Bull. Mater. Sci.,2000,23,165; (c) J. S. Hu, L. L. Ren, Y. G. Guo, H. P. Liang, A. M. Cao, L. J. Wan, C. L. Bai, Angew. Chem. Int. Ed.,2005,44, 1269.
    [23](a) I. Washio, Y. J. Xiong, Y. D. Yin, and Y. N. Xia, Adv. Mater.,2006,18,1745; (b) B. Lim, Pedro H. C. Camargo and Y. N. Xia, Langmuir,2008,24,10437.
    [24](a)Z. Zhang, B. Zhao and L. Hu, J. Solid State Chem.,1996,121,105;(b)J. H. Zhang, H. Y. Liu, P. Zhan, Z. L. Wang and N. B. Ming, Adv. Funct. Mater.,2007,17,1558.
    [25]T.-T. Tseng and W.J. Tseng, Ceramics International,2009,35,2837.
    [26](a) P. Sun,W.Y. Fu, H. B. Yang, S. K. Liu, B. M. Luo, Y. M. Sui,Y. Y. Zhang, M. X. Yuan and D. Ma, Materials Chemistry and Physics,2010,119,432; (b) Z. P. Zhang, X. Q. Shao, H. D. Yu, Y. B. Wang and M. Y. Han, Chem. Mater.,2005,17,332.
    [27]C. Z. Wu, F. Feng, J. Feng, J. Dai, J. L. Yang, and Y. Xie, J. Phys. Chem. C,2011,115, 791.
    [28]A. Assoud, J. X. Xu and H. Kleinke, Inorg. Chem.,2007,46,9906.
    [29]I. Djerdj, D. Sheptyakov, F. Gozzo, D. Arcon, R. Nesper, and M. Niederberger, J. Am. Chem. Soc.,2008,130,11364.
    [30]H. Kato, T. Waki, M. Kato, K. Yoshimura and K. Kosuge, J. Phys, Soc. Jpn.,2001,70, 325.
    [31]T. Yamauchi, Y. Ueda, N. Mori and Phys. Rev. Lett.,2002,89,057002.
    [32]M. D. Lumsden, B. Sales, D. Mandrus, S. E. Nagler and J. R. Thompson, Phys. Rev. Lett.,2001,86,159.
    [33]N. A. Chernova, J. Katana Ngala, P. Y. Zavalij and M. S. Whittingham, Phys. Rev. B, 2007,75,014402.
    [34]J. P. Pouget, H. Launois, J. P. O'Haenens, P. Merenda, T. M. Rice, Physical Review Letters,1975,35,873
    [35]J P D'Haenens, D Kaplan and P Merenda, J. Phys. C:Solid State Phys.,1975,8,2267.
    [36]H. T. Zhu, J. Luo, J. K. Liang, G. H. Rao, J. B. Li, J. Y. Zhang, Z. M. Du,Physica B: Condensed Matter,2008,403,3141-3145.
    [37]H. Kweon, K. W. Lee, E. M. Lee, J. Park, I-M. Kim, and C. E. Lee, Phys. Rev. B,2007, 76,045434.
    [1]A. Ayari, E. Cobas, O. Ogundadegbe, M. S. Fuhrer, J. Appl. Phys.2007,101,014507.
    [2]W. Seo, Y. W. Jun, S. W. Park, H. Nah, T. Moon, B. Park, J. G. Kim, Y. J. Kim, J. Cheon, Angew. Chem.2007,119,8984.
    [3]R. R. Chianelli, M. H. Siadati, M. P. De La Rosa, G. Berhault, J. P. Wilcoxon, R. Bearden, B. L. Abrams, Catal. Rev. Sci. Eng.2006,48,1.
    [4]D. Kong, W. Dang, J. J. Cha, H. Li, S. Meister, H. Peng, Z. Liu and Y. Cui, Nano Lett.2010, 10,2245.
    [5]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, Science 2004,306,666.
    [6](a) L. Y. Jiao, L. Zhang, X. R. Wang, G. Diankov, H. J. Dai, Nature 2009,458,877; (b) H. Zeng, C. Zhi, Z. Zhang, X. Wei, X. Wang, W. Guo, Y. Bando, D. Golberg, Nano Lett.2010,10, 5049.
    [7](a) M. Osada, T. Sasaki, J. Mater. Chem 2009,19,2503; (b) R. Mas-Balleste, C. Gomez-Navarro, J. Gomez-Herrero, F. Zamora, Nanoscale,2011,3,20.
    [8]J. Feng, X. Sun, C. Z. Wu, L. L. Peng, C. W. Lin, S. L. Hu, J. L. Yang, Y. Xie, J. Am. Chem. Soc.2011,133,44,17832.
    [9]Z. Y. Zeng, Z. Y. Yin, X. Huang, H. Li, Q. Y. He, G. Lu, F. Boey, H. Zhang, Angew. Chem. Int. Ed.2011,50,1.
    [10](a) S. Laruelle, P. Poizot, E. Baudrin, V. Briois, M. Touboul and J. M. Tarascon, J. Power Sources 2001,97-98,251; (b) H. Daishu, S. Junichi, I. Hiromasa, U. Yoshiharu, W. Masataka, M. Takafumi and W. Iwao, J. Mater. Chem,2003,13,897.
    [11]L. Ren, X. Qi, Y. D. Liu, G. L. Hao, Z. Y. Huang, X. H. Zou, L. W. Yang, J. Li, and J. X. Zhong, J. Mater. Chem.,2012,22,4921.
    [12]G. C. Li, K. Chao, H. R. Peng, K. Z. Chen, and Z. K. Zhang, Inorg. Chem.2007,14,5787.
    [13]J. Y. Huang, L. Zhong, C. M. Wang, J. P. Sullivan, W. Xu, L. Q. Zhang, S. X. Mao, N. S. Hudak, X. H. Liu, A. Subramanian, H. Y. Fan, L. Qi, A. Kushima, and J. Li, Science 2010,330, 15150.
    [14]C. Z. Wu, Z. P. Hu, W. Wang, M. Zhang, J. L. Yang, Y. Xie, Chem. Commun.,2008,3891.
    [15]F. J. Morin, Phys. Rev. Lett.1959,3,34.
    [16]T. D. Manning, I. P. Parkin, M. E. Pemble, D. Sheel, D. Vernardou, Chem. Mater.2004,16, 744.
    [17]J. B. Goodenough, J. Solid State Chem.1971,3,490.
    [18]D. W. Murphy, P. A. Christian, J. N. Carides, J. Electrochem. Soc.1979,126,497.
    [19]Y. Q. Wang, Z. J. Zhang, Y. Zhu, Z. C. Li, R. Vajtai,. L. J. Ci, P. M. Ajayan, ACS Nano,2008, 2,1492.
    [20](a) W. Li, J. R. Dahn and D. S. Wainwright, Science 1994,264,1115; b) S. D. Zhang, Y. M. Li, C. Z. Wu, F. Zheng, and Y. Xie, J. Phys. Chem. C 2009,113,15058; c) S. A. Corr, M. Grossman, Y. F. Shi, K. R. Heier, G. D. Stucky and R. Seshadri, J. Mater. Chem.2009,19,4362.
    [21]J. Kohler, H. Makihara, H. Uegaito, H. Inoue, M. Toki, Electrochim. Acta 2000,46,59.
    [22]C. Leroux, G. Nihoul, Physical Review B 1998,5,5111.
    [23]a) J. F. Liu, Q. H. Li, T. H. Wang, D. P. Yu, and Y. D. Li, Angew. Chem.2004,116,5158-5162. b) L. Q. Mai, Y. H. Gu, C. H. Han, B. Hu, W. Chen, P. C. Zhang, L. Xu, W. L. Guo, and Y. Dai, Nano Lett.2009,2,826.
    [24]X. Chen, X. Wang, Z. Wang, J. Wan, J. Liu and Y. T. Qian, Nanotechnology 2004,75,1685.
    [25]G. A. Sawatzki, D. Post, Phys. Rev. B 1979,20,1546.
    [26]Y. Zhang, Y. W. Tan, H. L. Stormer, P. Kim, Nature 2005,438,201.
    [27]K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H. L. Stormer, Solid State Commun.2008,146,351.
    [28](a) P. E. Blochl, Phys. Rev. B 1994,50,17953; b) G. Kresse and J. Furthmuller, Phys. Rev. B 1996,54,11169; (c) J. P. Perdew and Y. Wang, Phys. Rev. B 1992,45,13244; (d) Y. Wang and J. P. Perdew, Phys. Rev. B 1991,44,13298; (c) Y. Wang and J. P. Perdew, Phys. Rev. B 1991,44, 13298
    [29]B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Nature Nanotechnology 2011,6,147.
    [1]H. Peng, W. Dang, J. Cao, Y. Chen, D. Wu, W. Zheng, H. Li, Z.-X. Shen and Z. Liu, Nat. Chem,2012,4,281.
    [2]Z. Li and X. Peng, J. Am. Chem. Soc.,2011,133,6578.
    [3]a) H. S. S. Ramakrishna Matte, A. Gomathi, A. K. Manna, D. J. Late, R. Datta, S. K. Pati, C. N. R. Rao, Angew. Chem. Int. Ed.2010,49,4059-4062; b)W. Seo, Y. W. Jun, S. W. Park, H. Nah, T. Moon, B. Park, J. G. Kim, Y. J. Kim, J. Cheon, Angew. Chem. Int. Ed.2007,46,8828-8831. c) D. Kong, W. Dang, J. J. Cha, H. Li, S. Meister, H. Peng, Z. Liu and Y. Cui, Nano Lett.2010,10, 2245-2250..
    [4]L. Liu, T. Yao, X. G. Tan, Q. H. Liu, Z. Q. Wang, D. C. Shen, Z. H. Sun, S. Q. Wei, Y. Xie, Small,2012, accepted.
    [5]a) M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, D. N. Basov, Science,2007,318,1750. b) J. Wei, Z. H. Wang, W. Chen, D. H. Cobden, Nat. Nanotechnol.2009,4,420.
    [6]D. Kucharczyk, T. Niklewski, J. Appl. Cryst.,1979,12,370.
    [7]a) C. Z. Wu, F. Feng, J. Feng, J. Dai, J. L. Yang, Y Xie, J. Phys. Chem. C,2011,115,791-799; b) Y. F. Sun, S. S. Jiang, W. T. Bi, R. Long, X. G. Tan, C. Z. Wu, S. Q. Wei, and Y. Xie, Nanoscale,2011,3,4394-4401; c) L. Liu, F. Cao, T. Yao, Y. Xu, M. Zhou, B. Y. Qu, B. C. Pan, C. Z. Wu, S. Q. Wei, Y. Xie, New J. Chem.,2012,36,619-625.
    [8]C. Z. Wu, J. Dai, X. D. Zhang, J. Yang, F. Qi, C. Gao, Y. Xie, Angew. Chem., Int. Ed.2010, 122,138.
    [9]L. Q. Mai, B. Hu, W. Chen, Y. Y. Qi, C. S. Lao, R. S. Yang, Y. Dai, Z. L. Wang, Adv. Mater. 2007,19,3712-3716.
    [10]R. Long, B. Y. Qu, R. C. Tan, Y. F. Sun, X. G. Tan, W. Ying, B. C. Pan, Y. J. Xiong, and Y. Xie, Phys. Chem. Chem. Phys,2012,14,7225-7228.
    [11]Y. F. Sun, S. S. Jiang, W. T. Bi, R. Long, X. G. Tan, C. Z. Wu, S. Q. Wei, and Y. Xie, Nanoscale,2011,3,4394

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700